

Autonomous Robotics

Winter 2025

Abhishek Gupta TAs: Carolina Higera, Entong Su, Bernie Zhu

Class Outline

- Project 1 out, repos created!
- Pick up cars next week:1/14: 4:30-5:30pm and1/15: 4:00-5:00pm

- Post questions, discuss any issues you are having on Ed.
- Students with **no** access to 002, e-mail us with your student ID.
 Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Today's Objective: Understand how to formalize state estimation

Fundamental Problem: State is hidden

But all decision making depends on knowing state

Solution: Estimate belief over state

$$bel(x_t) = P(x_t | z_{1:t}, u_{1:t})$$

Belief is a probability of each possible state given history

Also called Posterior / Information state / State of knowledge

Represent belief? Parametric (Gaussian), Non-parametric (Histogram)

Fundamental Axioms of Probability

 $0 \le \Pr(A) \le 1$

 $Pr(\Omega) = 1$ $Pr(\phi) = 0$

 $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$

- Pr(A) denotes probability that the outcome
- ω is an element of the set of possible outcomes A.
- A is often called an event. Same for B.
- Ω is the set of all possible outcomes.
- φ is the empty set.

Joint and Conditional Probability

- *P*(*X*=*x* and *Y*=*y*) = *P*(*x*,*y*)
- If X and Y are independent then P(x,y) = P(x) P(y)
- $P(x \mid y)$ is the probability of x given y $P(x \mid y) = P(x,y) / P(y)$ $P(x,y) = P(x \mid y) P(y)$
- If X and Y are independent then P(x | y) = P(x)

Law of Total Probability, Marginals

Bayes Formula

$$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$
$$\Rightarrow$$
$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Lecture Outline

Let's represent the state estimation problem graphically

Assumptions:

1. Robot receives a stream of measurements / actions.

2. One measurement / action per time-step.

What is belief in this setting?

P(current state | all past information)

$$P(x_t | \boldsymbol{z_t}, \boldsymbol{u_t}, \boldsymbol{x_{t-1}}, \ldots)$$

Can we estimate this?

P(current state | all past information)

$$P(x_t | \boldsymbol{z_t}, \boldsymbol{u_t}, \boldsymbol{x_{t-1}}, \ldots)$$

Good ol' Markov to the rescue

Andrey Andreyevich Markov (1856 - 1922)

Solution: Markov Assumption

Markov assumption :

Future state conditionally independent of past actions, measurements given present state.

$$P(x_t | u_t, x_{t-1}, z_{t-1}, u_{t-1}, \dots) = P(x_t | u_t, x_{t-1})$$
$$P(z_t | x_t, u_t, x_{t-1}, z_{t-1}, u_{t-1}, \dots) = P(z_t | x_t)$$

Probabilistic models

State transition probability / dynamics / motion model

$$P(x_t | x_{t-1}, \boldsymbol{u_t})$$

Measurement probability / Observation model

$$P(\boldsymbol{z_t}|\boldsymbol{x_t})$$

When does Markov not hold?

$$P(x_t | x_{t-1}, \mathbf{u}_t) \quad P(z_t | x_t)$$

whenever state doesn't capture all requisite information

- Camera images at different times of the day
- Unmodelled pedestrians in front of laser
- Steady gusts of wind

How do we tractably calculate belief?

 $bel(x_t) = P(x_t | z_{1:t}, u_{1:t})$

Ans: Bayes filter!

Bayes Filters

$$Bel(x_t) = P(x_t | u_1, z_1 ..., u_t, z_t)$$

We want to recursively express $Bel(x_t)$ in terms of three entities

$$p(z_t|x_t)$$

Measurement

$$p(x_t | x_{t-1}, u_{t-1})$$

$$Bel(x_{t-1})$$

Previous Belief

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1 $bel(x_{t-1})$

Step 1: Prediction - push belief through dynamics given action

$$bel(x_{t-1}) = p(x_{t-1}|u_{1:t-1}, z_{1:t-1}) \xrightarrow{\text{using}} \overline{bel}(x_t) = p(x_t|u_{1:t}, z_{1:t-1})$$

Step 1: Prediction - push belief through dynamics given action

(discrete)
$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u}_t, x_{t-1}) bel(x_{t-1})$$

(total probability)

Derivation: Dynamics Update

Step 1: Prediction - push belief through dynamics given action

$$(\text{discrete}) \quad \overline{bel}(x_t) = \sum P(x_t | u_t, x_{t-1}) bel(x_{t-1}) \\ (\text{total probability}) \\ p(x_t | u_{1:t}, z_{1:t-1}) = \sum_{x_{t-1}} p(x_t, x_{t-1} | u_{1:t}, z_{1:t-1}) \\ p(x) = \sum_{y} p(x_y) \\ p(x_t | x_{t-1}, u_t, u_{1:t-1}, z_{1:t-1}) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{y} p(x_y)) \\ p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t, u_{1:t-1}, z_{1:t-1}) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ p(x, B | C) = p(A | B, C) p(B | C) \\ = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{1:t-1}, z_{1:t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{t-1}, z_{t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_t | x_{t-1}, u_t) p(x_{t-1} | u_{t-1}, z_{t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_{t-1} | x_{t-1}, u_t) p(x_{t-1} | u_{t-1}, z_{t-1}) \\ (p(x) = \sum_{x_{t-1}} p(x_{t-1} | x_{t-1}, u_{t-1}, u_{t-1},$$

Derivation: Measurement Update

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1 $bel(x_{t-1})$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u}_t, x_{t-1}) bel(x_{t-1})$$

$$bel(x_t) = \eta P(z_t | x_t) \overline{bel}(x_t)$$

Bayes filter is a powerful tool

$$\mathcal{X} = \mathbf{O}$$
PEN, CLOSED
 $\mathcal{A} = \mathbf{P}$ ULL, LEAVE $P(x_t | x_{t-1}, u_t)$

$$P(O|C, P) = 0.7$$
$$P(C|C, P) = 0.3$$

HTTPS://YOUTU.BE/AFUA50H9UEK

$$\begin{bmatrix} P(x_t = \mathbf{O} | x_{t-1} = \mathbf{O}, u_t) & P(x_t = \mathbf{O} | x_{t-1} = \mathbf{C}, u_t) \\ P(x_t = \mathbf{C} | x_{t-1} = \mathbf{O}, u_t) & P(x_t = \mathbf{C} | x_{t-1} = \mathbf{C}, u_t) \end{bmatrix}$$
$$P(.|., \mathbf{P}) = \begin{bmatrix} 0.8 & 0.7 \\ 0.2 & 0.3 \end{bmatrix} \quad P(.|., \mathbf{L}) = \begin{bmatrix} 0.5 & 0 \\ 0.5 & 1 \end{bmatrix}$$

HTTPS://YOUTU.BE/AFUA50H9UEK

$$\mathcal{X} = \mathbf{O}$$
PEN, CLOSED
 $\mathcal{A} = \mathbf{P}$ ULL, LEAVE
 $\mathcal{Z} = \mathbf{O}$ PEN, CLOSED $P(z_t | x_t)$

$$\begin{bmatrix} P(\boldsymbol{z_t}|\mathbf{O}) \\ P(\boldsymbol{z_t}|\mathbf{C}) \end{bmatrix} \qquad P(\mathbf{O}|.) = \begin{bmatrix} 0.6 \\ 0.2 \end{bmatrix} \quad P(\mathbf{C}|.) = \begin{bmatrix} 0.4 \\ 0.8 \end{bmatrix}$$

HTTPS://YOUTU.BE/AFUA50H9UEK

 $\mathcal{X} = \mathbf{OPEN}, \mathbf{CLOSED}$ $\mathcal{A} = \mathbf{PULL}, \mathbf{LEAVE}$ $\mathcal{Z} = \mathbf{OPEN}, \mathbf{CLOSED}$ $Bel(x_0) = \begin{bmatrix} 0.4\\ 0.6 \end{bmatrix}$

Open

PULL

 $\mathcal{X} = \mathbf{O}$ PEN, CLOSED $\mathcal{A} = \mathbf{P}$ ULL, LEAVE $\mathcal{Z} = \mathbf{O}$ PEN, CLOSED

$$\overline{Bel}(x_t) = \sum_{x_{t-1}} P(x_t | u_t, x_{t-1}) Bel(x_{t-1})$$

$$\begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix} = \begin{bmatrix} P(x_t = \mathbf{O}|x_{t-1} = \mathbf{O}, \mathbf{u}_t) & P(x_t = \mathbf{O}|x_{t-1} = \mathbf{C}, \mathbf{u}_t) \\ P(x_t = \mathbf{C}|x_{t-1} = \mathbf{O}, \mathbf{u}_t) & P(x_t = \mathbf{C}|x_{t-1} = \mathbf{C}, \mathbf{u}_t) \end{bmatrix} \begin{bmatrix} P(x_{t-1} = \mathbf{O}) \\ P(x_{t-1} = \mathbf{C}) \end{bmatrix}$$
$$\overline{Bel}(x_t)$$

 $\mathcal{X} = \mathbf{O}$ PEN, CLOSED $\mathcal{A} = \mathbf{P}$ ULL, LEAVE $\mathcal{Z} = \mathbf{O}$ PEN, CLOSED **Prediction**: Given action, propagate belief through dynamics

$$\overline{Bel}(x_t) = \sum_{x_{t-1}} P(x_t | u_t, x_{t-1}) Bel(x_{t-1})$$

$$\begin{bmatrix} 0.74\\ 0.26 \end{bmatrix} = \begin{bmatrix} 0.8 & 0.7\\ 0.2 & 0.3 \end{bmatrix} \begin{bmatrix} 0.4\\ 0.6 \end{bmatrix}$$
$$\overline{Bel}(x_t) \qquad P(.|.,\mathbf{P}) \quad Bel(x_{t-1})$$

 $\mathcal{X} = \mathbf{O}$ PEN, CLOSED $\mathcal{A} = \mathbf{P}$ ULL, LEAVE $\mathcal{Z} = \mathbf{O}$ PEN, CLOSED

 $\overline{Bel}(x_t) = \begin{bmatrix} 0.74\\ 0.26 \end{bmatrix}$

Open

CLOSED

 $\mathcal{X} = \mathbf{O}$ PEN, CLOSED $\mathcal{A} = \mathbf{P}$ ULL, LEAVE $\mathcal{Z} = \mathbf{O}$ PEN, CLOSED

$$Bel(x_t) = \eta P(z_t | x_t) \overline{Bel}(x_t)$$

$$\begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix} = \boldsymbol{\eta} \begin{bmatrix} P(\boldsymbol{z_t} | \mathbf{O}) \\ P(\boldsymbol{z_t} | \mathbf{C}) \end{bmatrix} * \begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix}$$
$$Bel(x_t) \qquad P(\mathbf{C}|.) \qquad \overline{Bel}(x_t)$$

 $\mathcal{X} = \mathbf{O}$ PEN, CLOSED $\mathcal{A} = \mathbf{P}$ ULL, LEAVE $\mathcal{Z} = \mathbf{O}$ PEN, CLOSED

$$Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$$

$$\begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix} = \boldsymbol{\eta} \begin{bmatrix} 0.4 \\ 0.8 \end{bmatrix} * \begin{bmatrix} 0.74 \\ 0.26 \end{bmatrix} = \eta \begin{bmatrix} 0.296 \\ 0.208 \end{bmatrix} = \begin{bmatrix} 0.58 \\ 0.42 \end{bmatrix}$$
$$Bel(x_t) \qquad \overline{Bel}(x_t)$$

 $\mathcal{X} = \mathbf{OPEN}, \mathbf{CLOSED} \\ \mathcal{A} = \mathbf{PULL}, \mathbf{LEAVE} \\ \mathcal{Z} = \mathbf{OPEN}, \mathbf{CLOSED}$ $Bel(x_t) = \begin{bmatrix} 0.58 \\ 0.42 \end{bmatrix}$

- Robot initially thought the door was open with 0.4 prob
- Robot took the PULL action, then thought the door was open with 0.74 prob
- Robot received a CLOSED measurement, now thinks open with 0.58 prob

Robot lost in a 1-D hallway

Action at time t: NOP

 ${\mathcal X}$

NOP action implies belief remains the same! (still uniform — no idea where I am)

Measurement at time t: "Door"

$$z_t = \text{Door}$$

 $P(z_t | x_t) = \mathcal{N}(\text{door centre}, 0.75m)$

Action at time t+1: Move 3m right

Measurement at time t+1: "Door"

 $z_{t+1} = \text{Door}$

Do actions always increase uncertainty?

HTTPS://YOUTU.BE/BC1ATPRPPJC

Do measurements always reduce uncertainty?

- Level of uncertainty can be formalized as **entropy**
 - Low entropy if belief is tightly concentrated (e.g., concentrated on one state)
 - High entropy if belief is very spread out (e.g., uniform distribution)
- What if you reach into your pocket and can't find your keys?
 - Initially: low entropy (belief concentrated around pocket, some probability in other states around the house)
 - After: high entropy (very little probability in pocket, other states around the house have increased probability)

Ok this seems simple? What makes this hard!

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Tractable Bayesian inference is challenging in the general case

We will work out the conjugate prior and discrete case, leaving the MCMC/VI cases as an exercise

How does this connect back to our racecar?

Where am I in the world?

Lecture Outline

So what do we need to define to instantiate this?

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1 $bel(x_{t-1})$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u}_t, x_{t-1}) bel(x_{t-1})$$

$$bel(x_t) = P(z_t | x_t) \overline{pel}(x_t)$$

Let's ground this in the context of the car

PREDICTION

 $P(x_t | u_t, x_{t-1})$

CORRECTION

 $P(z_t|x_t)$

Motion Model

How do we know this? \rightarrow it's just physics!

 $P(x_t | u_t, x_{t-1})$

A Spectrum of Motion Models

VS

Highest-fidelity models capturing everything we know

(Red Bull F1 Simulator)

Simple model with lots of noise

Why is the motion model probabilistic?

- If we know how to write out equations of motion, shouldn't we be able to predict exactly where an object ends up?
- "All models are wrong, but some are useful" George Box
 - Examples: ideal gas law, Coulomb friction
- Stochasticity is a catch-all for model error, actuation error, ...

What defines a good motion model?

- In theory: try to accurately model the uncertainty (e.g., actuation errors)
- In practice...
 - We need just enough stochasticity to explain any measurements we'll see (Bayes filter uses measurements to hone in on the right state)
 - We need a model that can deal with unknown unknowns
 (No matter the model, we need to overestimate uncertainty)
 - We would like a model that is computationally cheap (Bayes filter repeatedly invokes this model to predict state after actions)
- Key idea: simple model + stochasticity

What motion model should I use for MuSHR?

- A kinematic model governs how wheel speeds map to robot velocities
- A dynamic model governs how wheel torques map to robot accelerations
- For MuSHR, we'll ignore dynamics and focus on kinematics (assuming the wheel actuators can set speed directly)
- Other assumptions: wheels roll on hard, flat, horizontal ground without slipping

Kinematic Car Model

Kinematic Car Model

 $\rightarrow P(x_t|u_t, x_{t-1})$ ADD NOISE

Class Outline

