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Logistics

m Project 1 out, repos created!
m Pick up cars next week:1/14: 4:30-5:30pm and1/15: 4:00-5:00pm

m Post questions, discuss any issues you are having on Ed.
m Students with no access to 002, e-mail us with your student ID.
m Students that have not been added to the class, email

abhgupta@cs.washington.edu with the subject-line “Waitlisted for
CSE478”



mailto:abhgupta@cs.Washington.edu

W What is Bayes rule?

P(X]Y) = P(YIX)P(X)

P(X]Y) = P(Y[X)P(X)/P(X,Y)

P(XIY) = P(Y[X)P(X)/P(Y)

P(X]Y) = P(Y[X)/P(Y)

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




Today’s Objective: Understand how to formalize state estimation

What does it mean to estimate “state”?

State
estimation

Sensors

-

Camera

GPS




Fundamental Problem: State is hidden

But all decision making depends on knowing state

Estimate belief over state

bel(xt) — P(xt‘zlztaulzt)

Belief is a probability of each possible state given history
Also called Posterior / Information state / State of knowledge

Represent belief? Parametric (Gaussian), Non-parametric (Histogram)



Fundamental Axioms of Probability

0<Pr(4)<1
Pr(2)=1 Pr(¢)=0
Pr(AUB)=Pr(A)+Pr(B)-Pr(ANB)

Pr(A) denotes probability that the outcome

w is an element of the set of possible outcomes A.
A is often called an event. Same for B.

Q is the set of all possible outcomes.

@ is the empty set.



Joint and Conditional Probability

s P(X=xandY=y)=P(x,y)

s If Xand Y are independent then
P(x,y) = P(x) P(y)

= P(x|y)is the probability of x giveny
P(x |y) = P(x,y) / P(y)
P(x,y) =P(x|y)P(y)

s If Xand Y are independent then
P(x | y) = P(x)



Law of Total Probability, Marginals

Discrete case Continuous case
ZP(X)Il _[p(x)dle
P(x) = P(x,) p(x)= | p(x,y) dy

P(x)=3 P(x| P p(x)=[px|y)p(y)dy



Bayes Formula

P(x,y)=P(x|y)P(y)=P(y|x)P(x)

—

P(y|x) P(x) likelihood-prior

P —
(x ‘ ») P(y) evidence
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Let’s represent the state estimation problem graphically

O—0—
O00®

Assumptions:
1. Robot receives a stream of measurements / actions.

2. One measurement / action per time-step.



What is belief in this setting?

O—0—
O00®

P( current state | all past information)

P(iEt‘Zt, Uty LTt_1, )



Can we estimate this?

P( current state | all past information)

P(th‘zt, Uty LTt_1, )



Good ol’ Markov to the rescue

Andrey Andreyevich Markov (1856 - 1922)



Solution: Markov Assumption

Markov assumption :

Future state conditionally independent of past actions, measurements given present state.

P(xt‘utamt—lazt—laut—la - ) — P(mt‘utaxt—l)

P(Zt|xt7ut7xt—17 ft—1y Ut—1, - - ) — P(Zt|xt)



Probabilistic models

State transition probability / dynamics / motion model

P(CCt\CCt—laut)

Measurement probability / Observation model

P(z|xy)



When does Markov not hold?

P(xi|lxi_1,us)  P(z¢|xs)

whenever state doesn’t capture all requisite information

- Camera images at different times of the day
- Unmodelled pedestrians in front of laser

- Steady gusts of wind




How do we tractably calculate belief?

Input data Belief

Measurement Actions —}
Z1:t U7t

bel(xy) = P(x¢|z1:¢, U1:t)

Bayes filter!



Bayes Filters

Bel(x,)=P(x, |u,,z, ...,u,,z,)
We want to recursively express Bel(x,) in terms of three entities

p(zt|xt)

Measurement

p(Te|Te—1,Us—1) Bel(x;_1)

Dynamics Previous Belief



Bayes filter in a nutshell

Key Idea: Apply Markov to get a recursive update!



Bayes filter in a nutshell

Step 0. Start with the belief at time step t-1
bel(zs_1)

bel(xi_1)



Bayes filter in a nutshell

Step 1: Prediction - push belief through dynamics given action

bel(xi—1) = p(Te—1|u1:4—1,21:4—1) > @(%ﬁ) = p(@e|uie, z1:4-1)
using

p(xt‘xt—la Ut—l)




Bayes filter in a nutshell

Step 1: Prediction - push belief through dynamics given action

(discrete) @(xt) — Z P($t|ut, xt—l)bel(wt—l)

(total probability)




Derivation: Dynamics Update

Step 1: Prediction - push belief through dynamics given action

(discrete) E(g}t) = Z P(act |ut, xt—l)bel(xt—l)

(total probability)

p(we|ute, 21:0-1) = Z p(t, Te—1|u1:t, 21:4-1)

_ p(@) =3 p(zy)

Y

- ZP(ﬂ?t|£€t—1autaulzt—1,Zl:t—l)p(wt—ﬂul:t—l,Z1:t—1)

Tt—1

p(4, B|C) = p(A|B, C)p(B|C)

= Z p(xt|33‘t_1, ’U,t)p(aft—l |u1:t—17 Zl:t—l)

Tt—1

Motion model Previous Belief



Bayes filter in a nutshell

Step 2: Correction - apply Bayes rule given measurement

@(ivt) = p(@¢|uit, 21:4—-1) , > bel(xy) = p(Te|uie, 21:¢)
using

p(zt|we)




Bayes filter in a nutshell

Step 2: Correction - apply Bayes rule given measurement
bel (z)p(ze|z) N bel(z¢) = nP<z1t\wt)@(wt)

bel(xy) = —— B
> e, bel(zt)p(zt|Te) n=

> P(z¢|2)bel (x)




Derivation: Measurement Update

Step 2: Correction - apply Bayes rule given measurement

E(ajt)p(zt‘xt) bel(xy) = nP(z|x:)bel (x:)

bel(xy) = — = _ !
bel(xy)p(2¢|xe
2, bel(@e)p(2t|2e) 1 > P(z¢|zy)bel(xt)

bel(x:) = p(ae|ure, 21:¢)

— p(xt|u1:t7 Z1:t—15 Zt)

 PXIY,2)P(Y]2)
PUYINZ) = & Tp XY, 2)P(Y|2) (Bayes)

_ p(2t|utit, 21:0—1, Te)P(@¢ [, 21:0—1)
th p(zt|utt, 21:0—1, Te)p(2¢ U1t 21:0-1)

P(Zt\il't)p(xﬂul:t, Zl:t—l)

— (Markov)
bel(xt) th p(z¢|we)p(we|ut:e, 21:0-1)




Bayes filter in a nutshell

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

bel ZCt ZP 513t|ut,il3t 1)b€l($t 1)

Step 2: Correction - apply Bayes rule given measurement

bel(x) = nP(z|z:)bel(x;)



Bayes filter is a powerful tool

v /
Localization Mapping SLAM POMDP




Example: Opening a Door

X = OPEN, CLOSED
A = PULL, LEAVE P(x¢|Ts_1,uys)

HTTPS://YOUTU.BE/AFUA50H9UEK



Example: Opening a Door

HTTPS://YOUTU.BE/AFUA50H9UEK



Example: Opening a Door

X = OPEN, CLOSED
A = PULL, LEAVE
Z = OPEN, CLOSED  P(z¢|x¢)

HTTPS://YOUTU.BE/AFUA50H9UEK



Example: Opening a Door

X = OPEN, CLOSED 0.4 0.&13

A = PULL, LEAVE Bellwo) = 0.6 8:2

Z = OPEN, CLOSED O'(Z)
Open

PULL



Example: Opening a Door

Prediction: Given action, propagate belief

X — OPEN, CLOSED through dynamics
A =PULL LEAVE 35 = S P(ayfu 1) Bel(ri 1)
Z = OPEN, CLOSED



Example: Opening a Door

X = OPEN, CLOSED
A = PULL, LEAVE
Z = OPEN, CLOSED

Prediction: Given action, propagate belief
through dynamics

Bel(z;) = Z P(x¢|ug, xi—1)Bel(xs_1)

Tt—1

0.74] [0.8 0.7] [0.4
0.26| — 0.2 0.3] |0.6

Bel(z;) P(|,P) Bel(r;_1)



Example: Opening a Door

X = OPEN, CLOSED ___ ~ [o.74 0.&13
A = PULL, LEAVE Bel(z) = 0.26 8:91 ll
Z = OPEN, CLOSED O'(Z)

Open

CLOSED



Example: Opening a Door

X — OPEN. CLOSED Correction: Given measurement, apply

Bayes’ rule

Z = OPEN, CLOSED

rize) = N ol




Example: Opening a Door

X — OPEN. CLOSED Correction: Given measurement, apply

Bayes’ rule

Z = OPEN, CLOSED

P(z, = 0)] _ 0.4] [0.74] _ [0.296] _ [0.58
[P(:vt=C)] - 77 [0.8] [0.26] — 7 [0.208] B [0.42]

Bel(x;) Bel(z;)



Example: Opening a Door

X = OPEN, CLOSED
A = PULL, LEAVE
Z = OPEN, CLOSED

Bel(xy) =

0.58

0.42

= Robot initially thought the door was open with 0.4 prob
= Robot took the PULL action, then thought the door was open with 0.74 prob
= Robot received a CLOSED measurement, now thinks open with 0.58 prob

T

Open



Robot lost in a 1-D hallway

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Uniform (robot could be anywhere)



NOP

Action at time t

U = NOP

AN NN NN NN NN N (N (N (N [ (N (N (N (N N Y N N N (Y (N N (N N U N (N (Y (N (NN N NN N

NOP action implies belief remains the same!

(still uniform — no idea where | am)



Measurement at time t: “Door”

2z = Door
P(zi|x¢) = N(door centre,0.75m) @ G g




Action at time t+1: Move 3m right

Ug+1 = 3m right @ @ @
P(xiy1|ussr, zg) = N(z¢ + usp1,0.25m)

lllllllllllllllllllllllllllllllllllllllll




Measurement at time t+1: “Door”

zt+1 = Door
P(zi11|x¢41) = N(door centre, 0.75m) @ @ g @:




Do actions always increase uncertainty?

HTTPS://YOUTU.BE/BC1ATPRPPIC



Do measurements always reduce uncertainty?

= Level of uncertainty can be formalized as entropy
= Low entropy if belief is tightly concentrated (e.g., concentrated on one state)

= High entropy if belief is very spread out (e.g., uniform distribution)

= Whatif you reach into your pocket and can’t find your keys?
= Initially: low entropy (belief concentrated around pocket, some probability in
other states around the house)

= After: high entropy (very little probability in pocket, other states around the
house have increased probability)




Ok this seems simple? What makes this hard!

Bel(xt) =1 P(Zt | xt) P(xt | utaxt—l) Bel(xt—l) dxt—l

Tractable Bayesian inference is challenging in the general case

We will work out the conjugate prior and discrete case,
leaving the MCMC/VI cases as an exercise



How does this connect back to our racecar?

Where am | in the world?
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So what do we need to define to instantiate this?

Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

@(xt) = ’ P(a:t|ut,a:t_1 Bl(ﬂjt_]_)

Step 2: Correction - apply Bayes rule given measurement

bel(x) = el(xt)



Let’s ground this in the context of the car

PREDICTION CORRECTION

PREDICTION CORRECTION

P(x¢|ug, xp—1) P(z¢|x¢)



Motion Model

How do we know this?
-2 it’s just physics!




A Spectrum of Motion Models

Highest-fidelity models Simple model

. . with lots of noise
capturing everything
we know

(Red Bull F1 Simulator)



https://www.f1simulatormaniac.com/red-bull-simulator/

Why is the motion model probabilistic?

= If we know how to write out equations of motion,
shouldn’t we be able to predict exactly where an

object ends up?

= “All models are wrong, but some are useful” —
George Box
= Examples: ideal gas law, Coulomb friction

m Stochasticity is a catch-all for model error, actuation
error, ...




What defines a good motion model?

= Intheory: try to accurately model the uncertainty (e.g., actuation errors)
= In practice...

= We need just enough stochasticity to explain any measurements we'll see
(Bayes filter uses measurements to hone in on the right state)

= We need a model that can deal with unknown unknowns
(No matter the model, we need to overestimate uncertainty)

= We would like a model that is computationally cheap
(Bayes filter repeatedly invokes this model to predict state after actions)

s Key idea: simple model + stochasticity



W What motion model should | use for MuSHR? .

= A kinematic model governs how wheel speeds map to
robot velocities

= A dynamic model governs how wheel torques map to robot
accelerations

= For MuSHR, we'll ignore dynamics and focus on kinematics
(assuming the wheel actuators can set speed directly)

s Other assumptions: wheels roll on hard, flat, horizontal
ground without slipping



Kinematic Car Model

X

X-COORDINATE
Y-COORDINATE
HEADING

SPEED
STEERING ANGLE



Kinematic Car Model

fij:f(ajvu)

-

INTEGRATE

—->

ADD NOISE

P($t|ut,$t—1)

Lt—1
Yt—1

Or—1

+ Az

- Ay

-AG
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