

Autonomous Robotics

Winter 2025

Abhishek Gupta TAs: Carolina Higuera, Entong Su, Bernie Zhu

Recap: Robotics Spans Applications and Industries

- Applicable in a variety of industries and spaces:
 - Industry:
 - Industrial manufacturing
 - Warehouse navigation
 - Outdoor navigation/locomotion:
 - Legged locomotion
 - Outdoor navigation
 - Last mile delivery
 - Self driving cars
 - Home and office manipulation
 - Mobile manipulation
 - Dexterous manipulation

Industrial Robotics

Industrial Robotics Today

Robots in Warehouses (Kiva@Amazon)

Navigation

DARPA Urban Challenge 2007

Self-Driving Cars

High-Speed Drone Navigation

Champion-Level Performance in Drone Racing using Deep Reinforcement Learning

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, D. Scaramuzza

Locomotion

Boston Dynamics BigDog (2008)

Humanoid Parkour

Outdoor Locomotion

Manipulation

Dexterous Manipulation

Mobile Manipulation

Bimanual Manipulation with Foundation Models

Why should we care about robotics?

Societal Impact

\$\$

Not solved yet!

Ok this is great – how do we build these robots?

Need a formal framework for problem definition and a set of tools to solve them

Sense-plan-act framework with probabilistic inference!

What are we going to talk about today?

- Work through a robotic design process
 - Learn how to think about the design of mobile robot systems
 - Work through the steps for a mobile helicopter
 - Start thinking about how to do this for a car!

Anatomy of a flying vehicle

Mission: Takeoff to Landing

Mission

Task: Sets of conditions the robot needs to satisfy

- Given:
 - Start (latitude, longitude), Goal (latitude, longitude)
 - List of no-fly-zones (unsafe air space)
 - Coarse terrain map of continental USA
 - Sensors GPS, Laser, etc
- Objective:
 - Minimize time it takes to complete mission
- Constraint:
 - Don't come close to obstacles / don't enter no-fly-zones
 - Don't exceed limits of the vehicle (flying upside down)
 - Don't run out of fuel!

How do we tractably solve the task?: The model-based way

Begin with a blank slate

Let's use our knowledge about the world to solve this?

Let's use our knowledge about the world to solve this?

Let's use our knowledge about the world to solve this?

Let's start by thinking about how to model the world

How can we model how the world works?

How can we model how the world works?

Model describes our understanding of how the world **works:**

- Variables that are modeled:
 - Position of helicopter
 - Speed of helicopter
 - Payload distribution
 - …
- How they change:
 - Physics (including wind/temperature)
 - Obstacles/maps of the world
 - Other aircrafts
 - …
- Cost / objective of the mission
 - No fly zones
 - Flight preferences

How can we instantiate a helicopter world model?

"All models are wrong, but some are useful" – George Box

How do we actually use the model?

How do we actually use the model?

Using world models to decide behavior

Planning (coarse/global)

"Plan" at coarse (10 m) resolution, follow the global route, avoid all obstacles, produce smooth dynamically feasible paths "Control" at fine (10cm) resolution to follow designated path, rejecting disturbances and model errors

What is planning?

Planning is an optimization problem in which ...

we search over a sequence of actions...

towards minimizing a cost function (e.g., time)...

using a model of the robot to predict where it will go...

while making sure we are not violating constraints (e.g. crash).

What is control?

Robot will go "off" the plan for many reasons (disturbance, model errors, actuation errors, ...)

A controller immediately corrects for any tracking error and gets the robot back on the path

Let's zoom out

Let's zoom out

How do we estimate "state" for the world model?

So far: Assume we know everything about the world.

What commands should we send to the actuator?

Now: How do we use raw sensor data to update what we know about the world?

How can we use the sensor readings to update the world model?

World models need to be grounded in the "state" of the world

- Where is the robot in the world? What is it's state?	GPS
- What are the obstacles in the world?	Laser
- What type are the obstacles (radio towers, trees)?	Camera
- What are the no-fly-zones?	Radio
- Are there other aircrafts?	Radio
- What is the wind, temperature, etc?	Pitot tube, barometer,

Why is this difficult?

Why is estimating the state of the world model difficult?

Large amounts of information

(courtesy Chamberlain et al.)

Why is estimating the state of the world model difficult?

Noisy sensor readings – e.g., flying in a snowstorm

Estimate a "belief" over the state of the system in the world model

Laser reflected by snow!

Correctly fused laser data using probabilistic models

Obtain probabilistic estimates of state P(world model|data)
Use the probabilistic estimates of state for robust "planning" under uncertainty

Yay! We have most of the elements of a system

But we have no helicopters, only cars! Do the same lessons apply?

We'll figure that out this quarter!

Sense-Plan-Act Framework

Robotics has three primary subpieces:

- 1. Sensing \rightarrow from measurements
- 2. Planning \rightarrow from models
- 3. Acting \rightarrow control in the world

Sensing: Why is it nontrivial?

- Sensors have overwhelming amounts of information
- Partially observed
- Noisy and prone to drift

Acting: Why is it nontrivial?

Robot systems in the real world are subject to significant perturbations/noise \rightarrow need to be stable in the face of these perturbations

Planning: Why is it nontrivial?

- Searching/Optimization through a complex non-convex space
- Combination of discrete/continuous optimization

Robotics: Integrated System Research

Focus on addressing all problems at once

How do we tractably solve the task?: The model-free way

What does a typical model based look like?

End-to-End Learning Based Control for Robots

End-to-End Learning Based Control for Robots

Option 1: Imitation Learning

Learning by copying an expert

Option 2: Reinforcement Learning

Learning through trial and error

Why might we want/not want to do this?

Class Outline

