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YA/ Why is RRT* preferable to RRT? @0

Provable guarantees 0%

Speed 0%

Path optimality 0%

None of the above 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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We have built a model-based control system!

Our knowledge of how the Helicopter
world works (Modeling) Models
World R .
Model Planning
State. How do we decide
estimation How do we decide how to act to
where we are in the accomplish task?
world? (Estimation) (Planning/Control)
Control
Sensors

; Actuators

Robot interacts with
environment
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Are we done?



Model-based Control for Robotics

Focus on addressing all problems at once

M(q)d + C(q,q)q = 74(q) + Bu,
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What does a typical model based look like?
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End-to-End Learning Based Control for Robots
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Why might we want/not want to do this?
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Framework for Sequential Decision Making - Markov Decision Process

States: S

Actions: A

Rewards: R

Transition Dynamics - p(s¢11]S¢, ay)

Markov property (81, S2, 53) = p(83|s2)p(s2]s1)p(s1)
Trajectory T — (SQ, aop, o, S1,A41,71,...,5T7, 4T, ’I"T)

Key: MDPs obey the Markov property
Past is independent of the future conditioned on the present



Mapping MDPs to the Real World

Task: Place kettle in sink

| State: Camera Images / Joint Encoders

Action: Joint torques/velocities

)

: ) Reward: Distance from kettle to sink
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Transition: World physics




Reinforcement Learning Formalism

i Rules for choosing actions
———————————————————————————— A ¢
f
:[AgentJ— [ \
state| |reward action olcy
L A
o | ' ' Uy
L ¢S] Environment - T _/
St

Maximize the sum of expected rewards under policy

Needs to be learned



Reinforcement Learning Formalism

i Rules for choosing actions
____________________________ A
f
:[AgentJ— [ \
state| |reward action olcy
L A iy’

t+l \\*\\
, | Environment )4 \_ : f)
E3 “

T
m@ax S E r(s¢, at)
T | t=0

Needs to be learned
Trajectory sampled using policy



Why isn’t this just optimal control?

Optimal control Reinforcement Learning
T
° T ]
1mMin C\T+.U
ul.T 1 ( b t) meaXETNﬂ'Q Z’r St, at
= | t=0 -

S.t. Lt+1 = f(:z:'t,ut)

Cosmetic differences: Real differences:
e Costs vs rewards  Known model vs sample-able model
e Often discrete vs continuous time



Main thing to learn - Policies

Policies are mappings from states to optimal actions
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Ok so how can we learn policies?

- T
max Err, E r(s¢, at)
/ = - \

Model-free RL Model-based RL Imitation Learning
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Ok so how can we learn policies?
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Imitation Learning: Intuition

Given: Demonstrations of optimal behavior

Goal: Train a policy to mimic the demonstrator

Pros: No rewards, online experience needed (?)



~|dea 1: Imitation Learning via Behavior Cloning

Given: Demonstrations of optimal behavior

arg max E(s+,a*)~D [log mg(a™|s™)]
Goal: Train a policy to mimic the demonstrator

|ldea: Treat imitation learning as a supervised learning problem!

supervised
[ learning ] Wg(atlot)




~ldea 1: Imitation Learning via Behavior Cloning

Given: Demonstrations of optimal behavior

arg max E(s+,a*)~D [log mg(a™|s™)]
Goal: Train a policy to mimic the demonstrator

if disinstance(env.action_space, gym.spaces.Box):
. . criterion = nn.MSELoss()
Discrete vs continuous else:
criterion = nn.CrossEntropylLoss()
# Extract initial policy
model = student.policy.to(device)
def train(model, device, train_loader, optimizer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
if disinstance(env.action_space, gym.spaces.Box):
if isinstance(student, (A2C, PPO)):
action, _, _ = model(data)
else:
action = model(data)
action_prediction = action.double()
else:
dist = model.get_distribution(data)
action_prediction = dist.distribution.logits
target = target.long()
loss = criterion(action_prediction, target)
loss.backward()
optimizer.step()

Maximum likelihood



The original deep imitation learning system

ALVINN: Autonomous Land Vehicle In a Neural Network
1989

30 Output
) Units

-
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Where we are in 20257




So does behavior cloning really work?

= Imitation Learning # Supervised Learning

argmg“XE(s*,a*)ND [lOgﬂ'Q(CL*‘S*)] <1:"(S,a,)"\J,O(T(') []‘(a’ — a*)]
T |

Not the same!




So does behavior cloning really work?

s Fails in practice as well!




So is all hope lost?
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Can it work in special cases?

Video: Bojarski et al. ‘16, NVIDIA



Why did that work?

Recorded
steering
wheel angle

Adjust for shift

Desired steering command

and rotation

> Random shift
Center camera]—: and rotation CNN

\ 4

I

Right camera A

weight adjustment

Network
computed
steering
command

Back propagation |

.

/( i D7
| 4
: B a

Bojarski et al. ‘16, NVIDIA



What is the general principle?

— training trajectory
— g expected trajectory

stability

100

Corrective labels that bring you
back to the data
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What might this mean mathematically?

= training trajectory

can we make pgata(0t) = pr, (0¢)7



Concrete Instantation: DAgger

can we make pqata(0t) = D, (04)7?

idea: instead of being clever about p;,(0:), be clever about pgata(0¢)!

DAgger: Dataset Aggregation

goal: collect training data from p;,(0;) instead of pgata(0¢)
how? just run mg(a;|o;)

but need labels a;!

1. train mg(a;|os) from human data D = {07,a1,...,0n,ayN}
2. run my(as|o;) to get dataset D, = {01,...,0p/}

3. Ask human to label D, with actions ay

4. Aggregate: D < DU D,

Ross et al. ‘11



DAgger Example

Ross et al. ‘13



What's the problem?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
2. run mg(a¢|os) to get dataset D = {01,...,0n}

3. Ask human to label D, with actions a;

4. Aggregate: D < DU D,




How might we fix this?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
) Do at data
"Generate” 2. run 7y (as|o;) to get dataset D = {01,...,0n/} < collection time
corrective labels 3. Ask human to label D, with actions a;
automatically 4. Aggregate: D <+ DU D,




How might we fix this?

Ross et al. ‘11

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
2. run mg(az|os) to get dataset D = {01,...,05/} +

3. Ask human to label D, with actions a;
4. Aggregate: D < DU D,

Do at data
collection time



Noising the Data Collection Process

Key idea: force the human to correct for noise during training

. Supervisor .
A Robot Yri = argmin By (g, ) = 2108 [ (15 (¢ ) e, ¥)]
t=0 T
* Maximize likelihood
@ Under noise during data collection

Noise Injection

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17



Noising the Data Collection Process

Key idea: force the human to correct for noise during training

. Supervisor

* Robot

V'S
.

Noise Injection

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17



Why might this not be enough?

Key idea: force the human to correct for noise during training

Supervisor

Robot

®

Noise Injection

Assumes that the expert can actually perform behaviors under noise
- Not always possible!

DART: Noise Injection for Robust Imitation Learning, Laskey et al CoRL ‘17



How might we fix this?

1. train my(as|os) from human data D = {o1,a1,...,0n,an}
"Generate” 2. run mg(az|oy) to get dataset D, = {01,...,05}
corrective labels 3. Ask human to label D, with actions a;
automatically 4. Aggregate: D «+ DUD,

Ross et al. ‘11



How can we find corrective labels?

state

How might we obtain these corrections?

'l Agent |

reward
R,
Rt+1
-
St+1
<

-
L

s

Environment ]4—

—$
1>

Key insight: Augment D with states (s,), actions (a,)
that lead back to optimal states under dynamics

N Isin — f(se,a0)]| < €

St+1 — f(8t7 at)
A known/approximate dynamics model can help find corrective labels

CCIL: Continuity-based data augmentation for corrective imitation learning, Ke et al ICLR ‘24



Generating Corrective Labels for Imitation Learning

@ f(s¢,aq)

, Find states (s,), actions (a,) that lead back
, t t

| to optimal states under true dynamics
St+1 — f(St, Cbt) ‘\ |

\_‘:_____) [si41 — f(st,ar)|| <€

Intuition: find labels to bring OOD states back in distribution (where policy can be trusted)

Easy with known dynamics ]
But dynamics are not known! > More machinery needed with learned dynamics!

CCIL: Continuity-based data augmentation for corrective imitation learning, Ke et al ICLR ‘24



Generating Corrective Labels for Imitation Learning with Learned Dynamics

o
minimizing MISE on expert data
+ spectral norm

" % r
When can we trust learned dynamics f¢ ? H5t+1 — Jo(se,ae)|| < e
l Find states (s;), actions (a,) that lead back to
Under approximately Lipschitz smooth optimal states under #de learned dynamics,
models, trust models around training data where learned dynamics can be trusted

CCIL: Continuity-based data augmentation for corrective imitation learning, Ke et al ICLR ‘24



Overall Learning Pipeline with Corrective Labels

/ Expert Data Collection \ / Learning Approximate Dynamics \
o

« [MSE + \; - Lipschitz(s}, a;) + |[\; —)\||0]

argminlE « .+
gml 83,07,854

1/ (s3 + Ay a5) = [ (55,03

A )

Lipschitz(s$,a}) = Ea,n(

_ o

/ Generating Corrective Labels \

Supervised learning

meax E(s,a)ND log o (CL’S)




How well does generating corrective labels work?

With corrective labels Without corrective labels

Altonomous (1x)

CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning, Ke et al 24
Data Efficient Behavior Cloning for Fine Manipulation via Continuity-based Corrective Labels, Deshpande et al ‘24



How well does generating corrective labels work?

With corrective labels

Without corrective labels



So does this solve all the issues in imitation?
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Can we make it work without more data?

s DAgger addresses the problem of | g tmtory
distributional “drift” RN

= What if our model is so good that it
doesn’t drift?

= Need to mimic expert behavior very
accurately

= But don’t overfit!



Why might we fail to fit the expert?

Multimodal behavior.. amongst other reasons
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Not a matter of network size! It’s about distributional expressivity



Why might we fail to fit the expert?

Multimodal behavior = use more expressive probability distributions

Output mixture of Gaussians

Latent variable models

Autoregressive discretization

Diffusion models

"




Why might we fail to fit the expert?

Output mixture of Gaussians

Latent variable models

Autoregressive discretization

Diffusion models

4
0(0101610)0)®
\‘i‘\\ﬁn\;‘g\t\‘&w}n ;/‘ %
INANAS S

\ A
20
)\

N




Why might we fail to fit the expert?

Output mixture of Gaussians

Latent variable models

3. Autoregressive discretization ﬁ/ ‘}%
# 4. Diffusion models N
5.

__________

Action

Yy
VV
: I!i
: el i ! i
T —— ! | - . paxead
| Mixture of Gaussians ! y ] ) | iter VA
1 o AAAANYYYYYYYYYY
1 | 4 : =0.. li vv:
1 | - i A
1 4
é} ! Categorical : = i iiiii
__________ 1.0 =1.0 -0.5 (g) 0.5 1.0
(a) Explicit Policy (b) Implicit Policy (c) Diffusion Policy



Some cool imitation videos



1x and tesla humanoid robots

® 1X END-TO-END AUTONOMY
UPDATE, JAN 2024




ALOHA Manipulation

Cook Shrimp

(autonomous)

6x speed



TRI Diffusion Policies




Perspectives on Imitation — don’t believe everything you see online

training
data

supervised We(at |0t>
learning

= Pros: o A
o P <
= Easy to use, no additional infra \ e A4

= Can sometimes be unreasonably effective

m Cons:

= Challenges of compounding error, multimodality

= Doesn’t really generalize

= Very expensive in terms of data collection!
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