

Autonomous Robotics Winter 2025

Abhishek Gupta

TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

We have built a model-based control system!

Are we done?

Model-based Control for Robotics

Focus on addressing all problems at once

What does a typical model based look like?

End-to-End Learning Based Control for Robots

Why might we want/not want to do this?

Modules compensate for each other

Avoids hand-designing and supervising interfaces

Often more performant/less biased

Lack of Interpretability

Lack of Reusability

Often data inefficient

Lecture Outline

A Formalism for Sequential Decision Making

Imitation Learning: Behavior Cloning

Imitation Learning: Improvements – Compounding Error

Imitation Learning: Improvements – Multimodality

Framework for Sequential Decision Making - Markov Decision Process

States: \mathcal{S}

Actions: \mathcal{A}

Rewards: \mathcal{R}

Transition Dynamics - $p(s_{t+1}|s_t, a_t)$

Markov property

$$p(s_1, s_2, s_3) = p(s_3|s_2)p(s_2|s_1)p(s_1)$$

Trajectory

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_T, a_T, r_T)$$

Key: MDPs obey the Markov property
Past is independent of the future conditioned on the present

Mapping MDPs to the Real World

Task: Place kettle in sink

State: Camera Images / Joint Encoders

Action: Joint torques/velocities

Reward: Distance from kettle to sink

Transition: World physics

Reinforcement Learning Formalism

Maximize the sum of expected rewards under policy

Needs to be learned

Reinforcement Learning Formalism

Why isn't this just optimal control?

Optimal control

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$

s.t.
$$x_{t+1} = f(x_t, u_t)$$

Cosmetic differences:

- Costs vs rewards
- Often discrete vs continuous time

Reinforcement Learning

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

Real differences:

Known model vs sample-able model

Main thing to learn - Policies

Policies are mappings from states to optimal actions

Tabular

<u>Linear</u>

$$\pi(a|s) = \langle \phi(s,a), w \rangle$$

Arbitrary function approx

Ok so how can we learn policies?

Ok so how can we learn policies?

Imitation Learning

Lecture Outline

A Formalism for Sequential Decision Making

Imitation Learning: Behavior Cloning

Imitation Learning: Improvements – Compounding Error

Imitation Learning: Improvements – Multimodality

Imitation Learning: Intuition

Given: Demonstrations of optimal behavior

Goal: Train a policy to mimic the demonstrator

Pros: No rewards, online experience needed (?)

Idea 1: Imitation Learning via Behavior Cloning

Given: Demonstrations of optimal behavior

 $\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$

Goal: Train a policy to mimic the demonstrator

Idea: Treat imitation learning as a supervised learning problem!

Idea 1: Imitation Learning via Behavior Cloning

Given: Demonstrations of optimal behavior

 $\arg \max_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}} \left[\log \pi_{\theta}(a^* | s^*) \right]$

Goal: Train a policy to mimic the demonstrator

Discrete vs continuous

Maximum likelihood

```
if isinstance(env.action_space, gym.spaces.Box):
    criterion = nn.MSELoss()
else:
    criterion = nn.CrossEntropyLoss()
# Extract initial policy
model = student.policy.to(device)
def train(model, device, train_loader, optimizer):
   model.train()
   for batch_idx, (data, target) in enumerate(train_loader):
      data, target = data.to(device), target.to(device)
      optimizer.zero_grad()
      if isinstance(env.action_space, gym.spaces.Box):
         if isinstance(student, (A2C, PPO)):
            action, _, _ = model(data)
         else:
            action = model(data)
         action prediction = action.double()
      else:
         dist = model.get distribution(data)
         action_prediction = dist.distribution.logits
         target = target.long()
      loss = criterion(action_prediction, target)
      loss.backward()
      optimizer.step()
```

The original deep imitation learning system

ALVINN: Autonomous Land Vehicle In a Neural Network 1989

Where we are in 2025?

So does behavior cloning really work?

Imitation Learning ≠ Supervised Learning

$$\arg\max_{\theta} \mathbb{E}_{(s^*,a^*)\sim\mathcal{D}} \left[\log \pi_{\theta}(a^*|s^*)\right] \qquad \qquad \mathbb{E}_{(s,a)\sim\rho(\pi)} \left[1(a=a^*)\right]$$
Not the same!

So does behavior cloning really work?

Fails in practice as well!

So is all hope lost?

Lecture Outline

A Formalism for Sequential Decision Making

Imitation Learning: Behavior Cloning

Imitation Learning: Improvements – Compounding Error

Imitation Learning: Improvements – Multimodality

Can it work in special cases?

Video: Bojarski et al. '16, NVIDIA

Why did that work?

What is the general principle?

Corrective labels that bring you back to the data

What might this mean mathematically?

Concrete Instantation: DAgger

```
can we make p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)?
idea: instead of being clever about p_{\pi_{\theta}}(\mathbf{o}_t), be clever about p_{\text{data}}(\mathbf{o}_t)!
```

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$

how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

but need labels \mathbf{a}_t !

- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

Ross et al. '13

What's the problem?

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
 - 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

How might we fix this?

"Generate" corrective labels automatically 1. train
$$\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$$
 from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 \mathbf{o}_t
 \mathbf{a}_t

How might we fix this?

1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 2. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t Do at data collection time

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 \mathbf{o}_t
 \mathbf{a}_t

4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Noising the Data Collection Process

Key idea: force the human to correct for noise during training

$$\hat{\psi}_{k+1} = rgmin_{\psi} E_{p(\xi|\pi_{ heta^*},\psi_k)} - \sum_{t=0}^{T-1} \log\left[\pi_{ heta^*}(\pi_{\hat{ heta}}(\mathbf{x_t})|\mathbf{x_t},\psi)
ight]$$
 Maximize likelihood

Under noise during data collection

Noise Injection

Noising the Data Collection Process

Key idea: force the human to correct for noise during training

Noise Injection

Why might this not be enough?

Key idea: force the human to correct for noise **during** training

Noise Injection

Assumes that the expert <u>can</u> actually perform behaviors under noise \rightarrow Not always possible!

How might we fix this?

"Generate"

1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

How can we find corrective labels?

How might we obtain these corrections?

Key insight: Augment D with states (s_t), actions (a_t) that lead back to optimal states under dynamics

$$||s_{t+1}^* - f(s_t, a_t)|| \le \epsilon$$

$$s_{t+1} = f(s_t, a_t)$$

A known/approximate dynamics model can help find corrective labels

CCIL: Continuity-based data augmentation for corrective imitation learning, Ke et al ICLR '24

Generating Corrective Labels for Imitation Learning

Find states (s_t), actions (a_t) that lead back to optimal states under true dynamics

$$||s_{t+1}^* - f(s_t, a_t)|| \le \epsilon$$

$$\min_{s_t, a_t} \|s_{t+1}^* - f(s_t, a_t)\|$$

Intuition: find labels to bring OOD states back in distribution (where policy can be trusted)

Easy with known dynamics

But dynamics are not known! ———— More machinery needed with learned dynamics!

Generating Corrective Labels for Imitation Learning with Learned Dynamics

minimizing MSE on expert data + spectral norm

When can we trust learned dynamics \hat{f}_{ϕ} ?

Under approximately Lipschitz smooth models, trust models around training data

$$||s_{t+1}^* - \hat{f}_{\phi}(s_t, a_t)|| \le \epsilon$$

Find states (s_t), actions (a_t) that lead back to optimal states under true learned dynamics, where learned dynamics can be trusted

Overall Learning Pipeline with Corrective Labels

How well does generating corrective labels work?

With corrective labels

Without corrective labels

How well does generating corrective labels work?

With corrective labels

Lecture Outline

A Formalism for Sequential Decision Making

Imitation Learning: Behavior Cloning

Imitation Learning: Improvements – Compounding Error

Imitation Learning: Improvements – Multimodality

Can we make it work without more data?

- DAgger addresses the problem of distributional "drift"
- What if our model is so good that it doesn't drift?
- Need to mimic expert behavior very accurately
- But don't overfit!

Multimodal behavior.. amongst other reasons

Not a matter of network size! It's about distributional expressivity

Multimodal behavior \rightarrow use more **expressive** probability distributions

- 1. Output mixture of Gaussians
- Latent variable models
- 3. Autoregressive discretization
- 4. Diffusion models
- 5. ...

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization
- 4. Diffusion models
- 5. ...

- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

- 4. Diffusion models
- 5. ...

Some cool imitation videos

1x and tesla humanoid robots

ALOHA Manipulation

TRI Diffusion Policies

Perspectives on Imitation – don't believe everything you see online

Pros:

- Easy to use, no additional infra
- Can sometimes be unreasonably effective

Cons:

- Challenges of compounding error, multimodality
- Doesn't really generalize
- Very expensive in terms of data collection!

Lecture Outline

A Formalism for Sequential Decision Making

Imitation Learning: Behavior Cloning

Imitation Learning: Improvements – Compounding Error

Imitation Learning: Improvements – Multimodality

Class Outline

