
Autonomous Robotics
Winter 2025
Abhishek Gupta

TAs: Carolina Higuera, Entong Su, Bernie Zhu

Slides borrowed from many sources – Sidd Srinivasa,
Sanjiban Choudhury, M Likhachev

Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient

Lecture Outline

Lazy A*

Recap

From PRMs to RRT

RRT to RRT*

Minimal Cost Path on a Graph

START, GOAL

GRAPH
(VERTICES,

EDGES)

COST (E.G.
LENGTH)

Pseudocode

While goal not expanded

Add (or update) s’ to OPEN

Push start into OPEN

Pop best from OPEN

Add best to CLOSED

For every successor s’

If g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’)

Dijkstra’s Algorithm

Nice property:
Only process nodes ONCE. Only process cheaper nodes than goal.

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search
● Computes optimal g-values for relevant states

Properties of heuristics

What properties should h(s) satisfy? How does it affect search?

Admissible: h(s) <= h*(s) h(goal) = 0

If this true, the path returned by A* is optimal

Consistency: h(s) <= c(s,s’) + h(s’) h(goal) = 0

If this true, A* is optimal AND efficient (will not re-expand a node)

Effect of the Heuristic Function
● Weighted A* Search: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

Courtesy Max Likhachev

Lecture Outline

Lazy A*

Recap

From PRMs to RRT

RRT to RRT*

1
2

But is the number of expansions really what we want to minimize in motion planning?

What is the most expensive step?

Edge evaluation is expensive

1
3

(Schulman et al. ’14)

Check if helicopter
intersects with tower

Check if manipulator
intersects with table

Edge evaluation dominates planning time

1
4

Edge Evaluations

Other

Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015

Let’s revisit Best First Search

1
5

S

A

B
G

C

Element
(Node)

Priority Value
(f-value)

Node S f(S)

1
6

S

A

B
G

C

Element
(Node)

Priority Value
(f-value)

Node S f(S)

Node A f(A)

Node C f(C)

Let’s revisit Best First Search

What if we never use C? Wasted collision check!

1
7

S

A

B
G

C

Element
(Node)

Priority Value
(f-value)

Node S f(S)

Node A f(A)

Node C f(C)

1
8

The provable virtue of laziness:

Take the thing that’s expensive (collision checking)

and

procrastinate as long as possible
till you have to evaluate it!

Lazy (weighted) A*
Cohen, Phillips, and Likhachev 2014

Key Idea:

1. When expanding a node, don’t collision check edge to successors

(be optimistic and assume the edge will be valid)

2. When expanding a node, collision check the edge to parent

(expansion means this node is good and worth the effort)

3. Important: OPEN list will have multiple copies of a node

(multiple candidate parents since we haven’t collision check)

Lazy A*
Cohen, Phillips, and Likhachev 2014

ComputePath function
while(sgoal is not expanded)

remove s with the smallest
[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such

that s’ not in CLOSED
if edge (s,s’) in collision

c(s,s’) = ∞
if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Non lazy A* Lazy A*
ComputePath function
while(sgoal is not expanded)

remove s with the smallest
[f(s) = g(s)+h(s)] from OPEN;
if s is in CLOSED

continue;
if edge(parent(s), s) in collision

continue;
insert s into CLOSED;
for every successor s’ of s such

that s’ not in CLOSED
no collision checking of edge
if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);
insert s’ into OPEN; // multiple

copies

2
1

A*

G (goal)S (start)

N edges
all in
collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

2
2

A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

A* will
collision check
all N+2 edges!

Lazy A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

B (from S)

A (from S)

…..

f = 1

f = 2

Lets set f(s) = g(s)

f = 1000

X

X (from S)

S

2
4

Lazy A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

A (from S)

A (from B)

S

…..

S-B

B

f = 2

f = 3

X

2
5

Lazy A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

We have TWO copies of A in OPEN!

OPEN CLOSED CollChecked

A (from S)

A (from B)

S

…..

S-B

B

f = 2

f = 3

X

2
6

Lazy A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

We have TWO copies of A in OPEN!

OPEN CLOSED CollChecked

A (from B) S

…..

S-B

B

f = 3

X

A

S-A

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

S S-B

B S-A

B-A

A-G

A

G

Lazy A*

Lecture Outline

Lazy A*

Recap

From PRMs to RRT

RRT to RRT*

Why are PRMs not enough?

n Sampling indiscriminately wastes a significant number of points in parts of the
space not needed.

n Requires accurately solving the 2 point BVP for non-holonomic systems

n We don’t care about going from anywhere to anywhere, just start to goal

n Q: can we build up the graph/tree incrementally with only a little more work and no 2-point BVP?

Rapidly exploring Random Tree (RRT)
Steve LaValle (98)

n Basic idea:

n A* à explicitly sample the whole graph to store in memory

n RRT à sample the tree on the fly as you keep going, grow an “implicit
graph”

n Avoid memory costs
n Avoid solving the 2 point BVP for non-holonomic control

Rapidly exploring Random Tree (RRT)
Steve LaValle (98)

n Basic idea:

n Build up a tree through generating “next states” in the tree by
executing random controls à no need to solve 2 point BVP exactly

n Execute tree search in the RRT, same as before

n Caveat: not exactly above to ensure good coverage

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state
with probability 1%, this ensures it attempts to connect to goal semi-regularly

Rapidly exploring Random Tree (RRT)

Sample a new state

Find closest point

Approximately find controls
Steer forward

Add to tree

How to Sample

Rapidly exploring Random Tree (RRT)
n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)
n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)
n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state
with probability 1%, this ensures it attempts to connect to goal semi-regularly

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01

n NEAREST_NEIGHBOR(xrand, T): need to find (approximate)
nearest neighbor efficiently

n KD Trees data structure (upto 20-D) [e.g., FLANN]

n Locality Sensitive Hashing

n SELECT_INPUT(xrand, xnear)
n Approximate two point boundary value problem

n If too hard to solve, often just select best out of a set of control sequences.
This set could be random, or some well chosen set of primitives.

RRT Practicalities

n No obstacles, holonomic:

n With obstacles, holonomic:

n Non-holonomic: approximately (sometimes as approximate as picking best of a
few random control sequences) solve two-point boundary value problem

RRT Extension

Growing RRT

n Volume swept out by unidirectional RRT:

xS

Bi-directional RRT

xG
xS xG

n Volume swept out by bi-directional RRT:

n Difference more and more pronounced as dimensionality increases

n Planning around obstacles or through narrow passages can
often be easier in one direction than the other

Multi-directional RRT

Lecture Outline

Lazy A*

Recap

From PRMs to RRT

RRT to RRT*

Why is RRT not enough?
n RRT guarantees probabilistic completeness but not optimality

(shortest path)

n In practice leads to paths that are very roundabout and non-direct ->
not shortest paths

n Asymptotically optimal version of RRT*

n Main idea:

n Swap new point in as parent for nearby vertices who can be reached
along shorter path through new point than through their original
(current) parent

n Consider path lengths and not just connectivity

Asymptotically optimal RRT à RRT*

RRT*

Source: Karaman and Frazzoli

Connect new node to a better parent

Rewire nearby nodes through new node

RRT*

Source: Karaman and Frazzoli

RRT

RRT*

RRT*

Source: Karaman and Frazzoli

RRT RRT*

RRT*

Source: Tim Chinenov

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

à In practice: do smoothing before using the path

n Shortcutting:

n along the found path, pick two vertices xt1, xt2 and try to connect them directly
(skipping over all intermediate vertices)

n Nonlinear optimization for optimal control

n Allows to specify an objective function that includes smoothness in state,
control, small control inputs, etc.

Post Processing for Motion Planning

n Sampling-based methods are typically much easier to get working. One of the
great thing about RRT is that it doesn't require careful discretization of the action
space and instead takes advantage of an extend operator (i.e., local controller or
an interpolation function) which naturally exists in most robotics systems

n For planning in a continuous space, when comparing a quick implementation of
RRT and a quick implementation of Anytime version of A*, RRT is typically much
faster due to sparse exploration of a space.

n A* and its variants are typically harder to implement because they require a)
careful design of discretization of the state-space and action-space (to make sure
edges land where they are supposed to land); b) careful design of the heuristic
function to guide the search well.

Maxim Likhachev on A* vs PRM/RRT

n A* and its variants (including anytime variants) typically generate better quality solutions
and very consistent solutions (similar solutions for similar queries) which is beneficial in
many domains.

n A* and its variants can often be made nearly as fast as RRT and sometimes even faster if
one analyzes the robotic system well to derive a powerful heuristic function. Many robotic
systems have natural low-dimensional manifolds (e.g., a 3D workspace for example) that
can be used to derive such heuristic functions.

n A* and its variants can be applied to both discrete and continuous (as well as hybrid)
systems, whereas sampling-based systems tend to be more suitable for continuous
systems since they rely on the idea of sparse exploration. (Within the same point, it should
be noted that A* and its variants apply to PRMs and its variants. PRM is just a particular
graph representation of the environment.)

Maxim Likhachev on A*/D* vs PRM/RRT

n In summary, I think for continuous planning problems, A* and its variants require
substantially more development efforts (careful analysis of the system to derive
proper graph representation and a good heuristic function) but can result in a
better performance (similar speed but better quality solutions and more
consistent behavior).

Maxim Likhachev on A*/D* vs PRM/RRT

Lecture Outline

Lazy A*

Recap

From PRMs to RRT

RRT to RRT*

Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient

