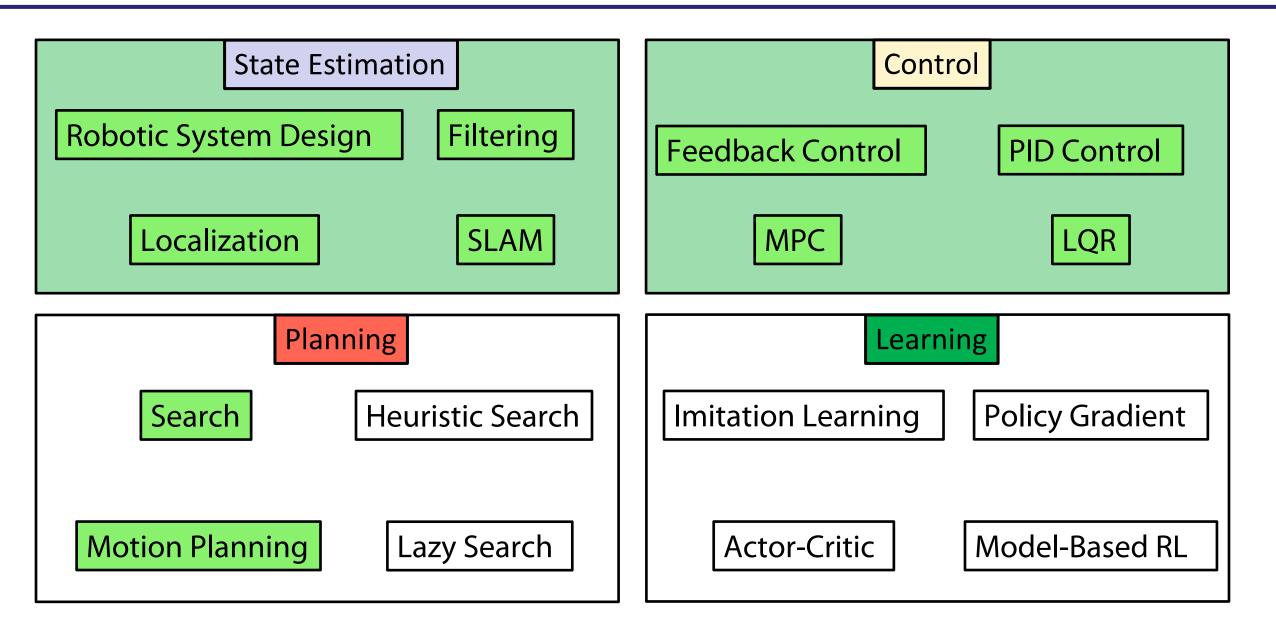


Autonomous Robotics Winter 2025

Abhishek Gupta

TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline



Logistics

- 2 papers in seeded discussion:
 - Paper 1: RRT-Connect, Kuffner et al
 - Paper 2: <u>LazySP</u>, Dellin et al

- Post questions, discuss any issues you are having on Ed.
- Students with no access to 002, e-mail us with your student ID.
- Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Lecture Outline

Best-First Search

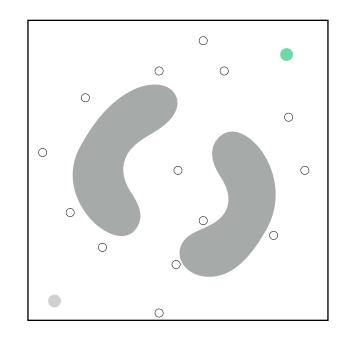
Heuristics and A*

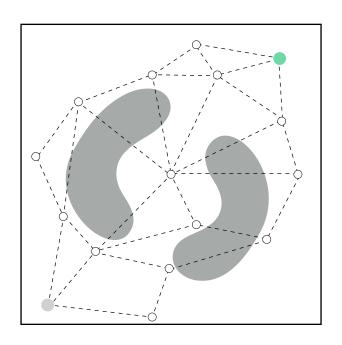
Lazy A*

Creating a Graph

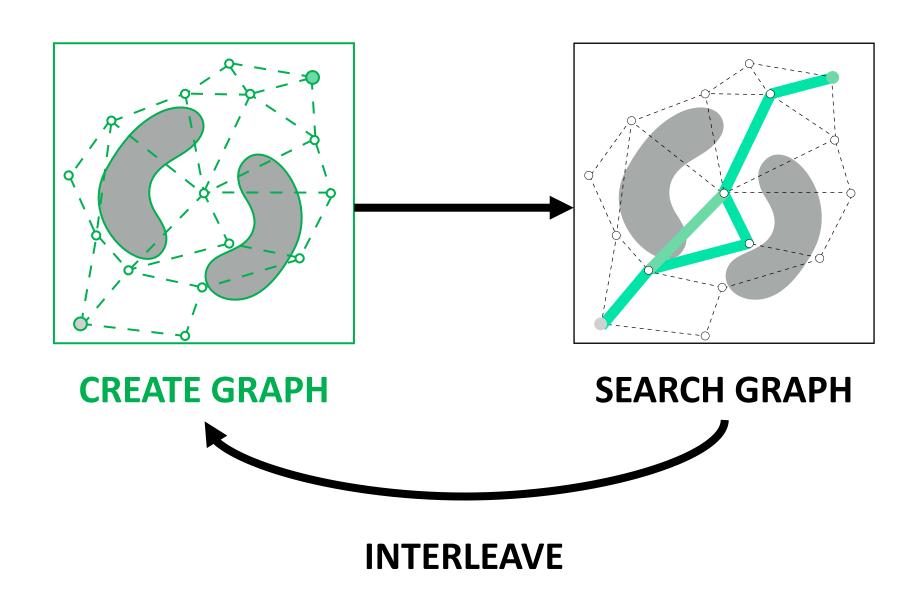
$$G = (V, E)$$

- 1. Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges

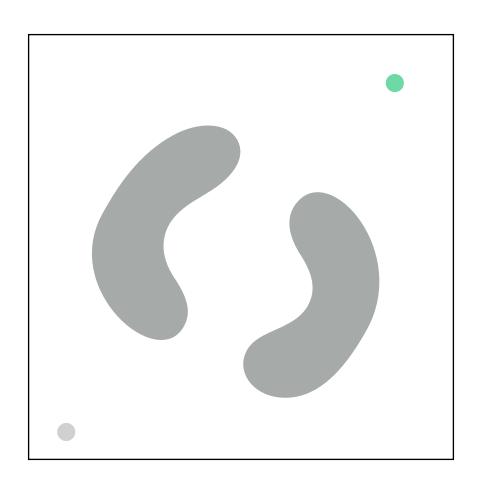




Sampling-Based Motion Planning



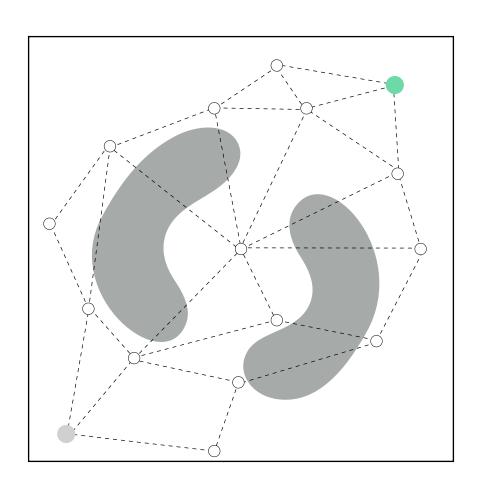
Minimal Cost Path on a Graph



START, GOAL

COST (E.G. LENGTH)

Minimal Cost Path on a Graph

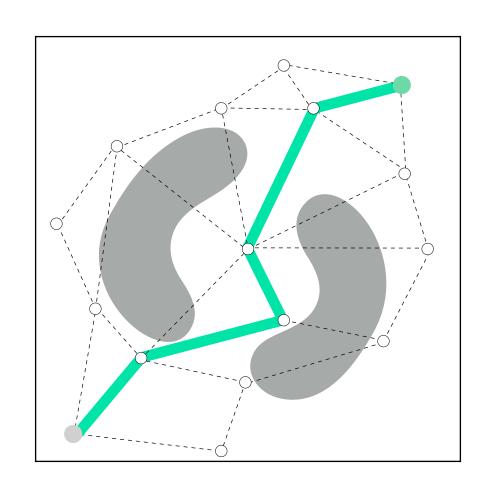


START, GOAL

COST (E.G. LENGTH)

GRAPH (VERTICES, EDGES)

Minimal Cost Path on a Graph



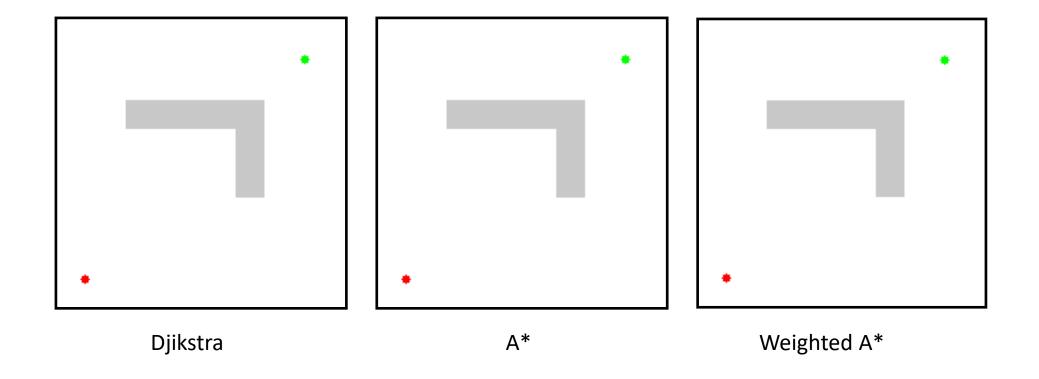
START, GOAL

COST (E.G. LENGTH)

GRAPH (VERTICES, EDGES)

High-order bit

Expansion of a search wavefront from start to goal



Courtesy wikipedia

What do we want?

1. Search to systematically reason over the space of paths

2. Find a (near)-optimal path quickly

(minimize planning effort)

Best first search

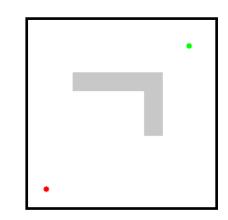
This is a meta-algorithm

BFS maintains a priority queue of promising nodes

Each node is ranked by a function f(s)

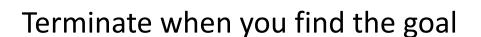
Populate queue initially with start node

Element (Node)	Priority Value (f-value)
Node A	f(A)
Node B	f(B)

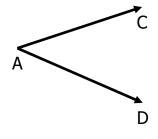


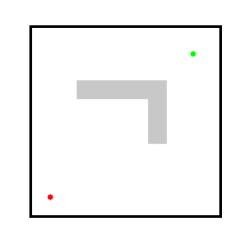
Best first search

Search explores graph by expanding most promising node min f(s)



Element (Node)	Priority Value (f-value)
Node A	f(A)
Node B	f(B)

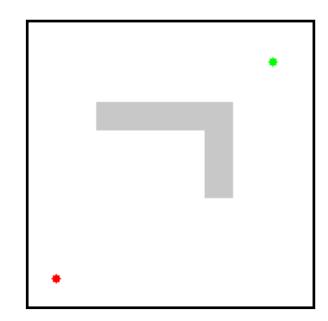




Best first search

Key Idea: Choose *f(s)* wisely!

- when goal found, it has (near) optimal path
 - minimize the number of expansions



Notations

Given:

Start Sstart Goal Sgoal

Cost *c*(*s*, *s*′)

Objects created:

OPEN: priority queue of nodes to be processed

CLOSED: list of nodes already processed

g(s): estimate of the least cost from start to a given node

Pseudocode

Push start into OPEN

While goal not expanded

Pop best from OPEN

Add best to CLOSED

For every successor s'

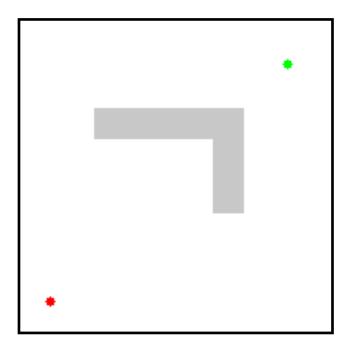
If
$$g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s')$$
Add (or update) s' to OPEN

Dijkstra's Algorithm

Set
$$f(s) = g(s)$$

Sort nodes by their cost to come

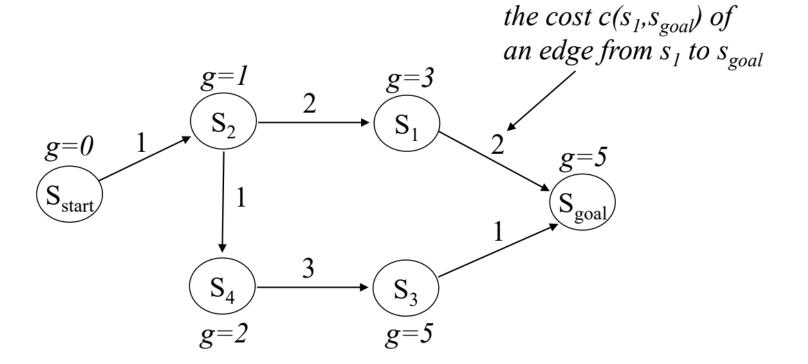


Dijkstra's Algorithm

- optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$ the cost $c(s_1, s_{goal})$ of an edge from s_1 to s_{goal}

Dijkstra's Algorithm

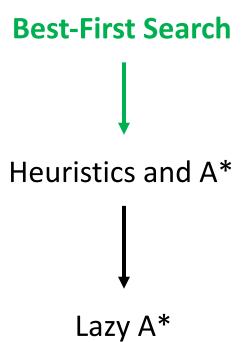
- optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$



Nice property:

Only process nodes ONCE. Only process cheaper nodes than goal.

Lecture Outline



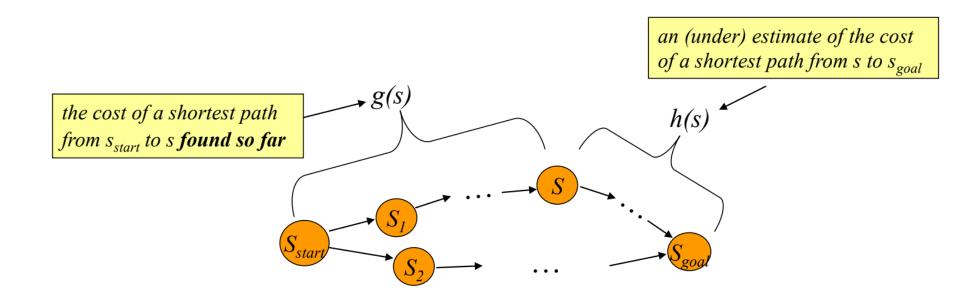
Can we have a better f(s)?

Yes!

f(s) should estimate the cost of the path to goal

Heuristics

What if we had a heuristic h(s) that estimated the cost to goal?



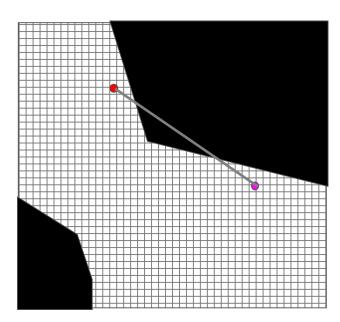
Set the evaluation function f(s) = g(s) + h(s)

Example of heuristics?

1. Minimum number of nodes to go to goal

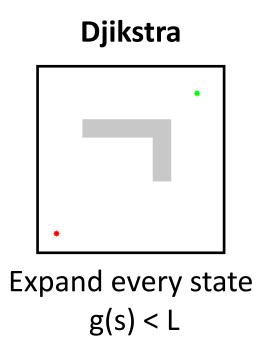
2. Euclidean distance to goal (if you know your cost is measuring length)

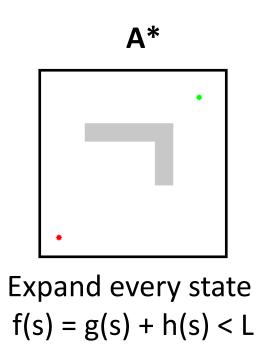
- 3. Solution to a relaxed problem
- 4. Domain knowledge / Learning



A* [Hart, Nillson, Raphael, '68]

Let L be the length of the shortest path





Both find the optimal path ...

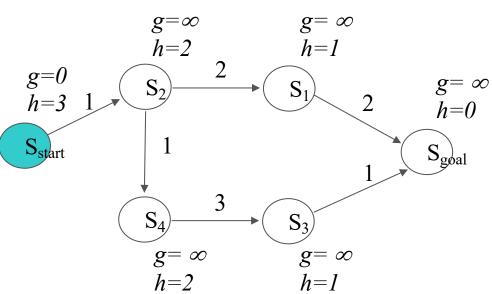
but A* only expands relevant states, i.e., does much less work!

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next \ state \ to \ expand: \ s_{start}$

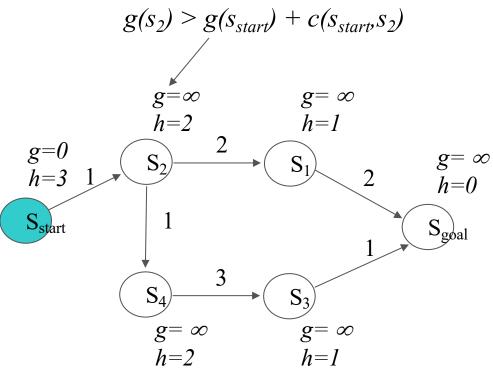


```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
g(s) = g(s) + c(s,s')
```

$$CLOSED = \{\}$$

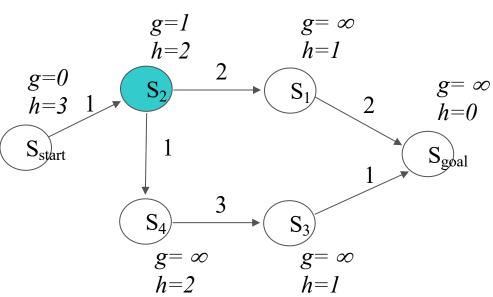
 $OPEN = \{s_{start}\}$
 $next\ state\ to\ expand:\ s_{start}$



```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}\}$$

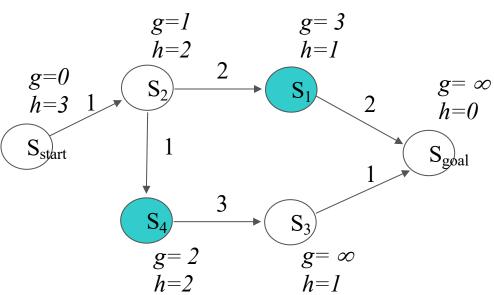
 $OPEN = \{s_2\}$
 $next \ state \ to \ expand: \ s_2$



```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2\}$$

 $OPEN = \{s_1, s_4\}$
 $next \ state \ to \ expand: \ s_1$



```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_1\}$$

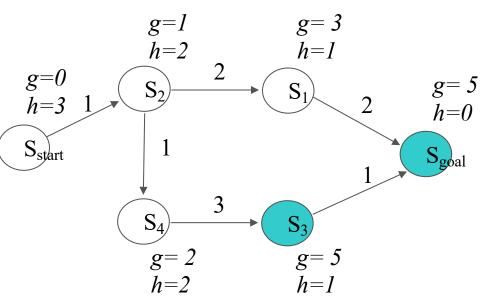
 $OPEN = \{s_4, s_{goal}\}$
 $next \ state \ to \ expand: \ s_4$



```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_1, s_4\}$$

 $OPEN = \{s_3, s_{goal}\}$
 $next \ state \ to \ expand: \ s_{goal}$



```
while(s_{goal} is not expanded)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
      insert s' into OPEN;
                                                          h=2
                                                                         h=1
                                              g=0
                                                                                       g=5
                                                          S_2
                                              h=3
                                                                                       h=0
 CLOSED = \{s_{start}, s_2, s_1, s_4, s_{goal}\}
                                             Sstart
                                                                                      S_{goal}
 OPEN = \{s_3\}
 done
                                                         S_4
```

h=2

 S_2

 S_4

g=0

h=3

Sstart

h=1

g=5

g=5

h=0

 S_{goal}

Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

h=2

 S_2

 S_4

g=0

h=3

Sstart

h=1

g=5

g=5

h=0

 S_{goal}

Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

Properties of heuristics

What properties should h(s) satisfy? How does it affect search?

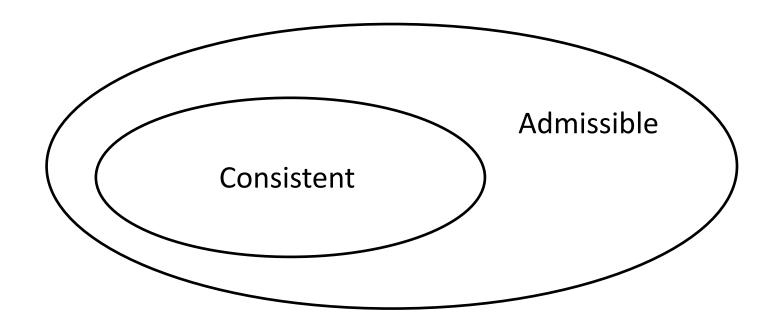
Admissible:
$$h(s) \le h^*(s)$$
 $h(goal) = 0$

If this true, the path returned by A* is optimal

Consistency:
$$h(s) \le c(s,s') + h(s')$$
 $h(goal) = 0$

If this true, A* is optimal AND efficient (will not re-expand a node)

Admissible vs Consistent



Theorem: ALL consistent heuristics are admissible, not vice versa!

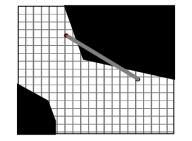
Takeaway:

Heuristics are great because they focus search on relevant states

AND

still give us optimal solution

• For grid-based navigation:

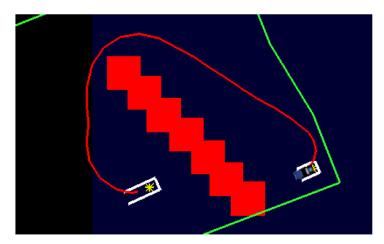


- Euclidean distance
- Manhattan distance: $h(x,y) = abs(x-x_{goal}) + abs(y-y_{goal})$
- Diagonal distance: $h(x,y) = max(abs(x-x_{goal}), abs(y-y_{goal}))$
- More informed distances???

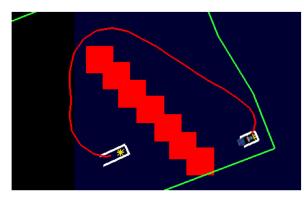
Which heuristics are admissible for 4-connected grid? 8-connected grid?

• For lattice-based 3D (x,y,Θ) navigation:

Any ideas?



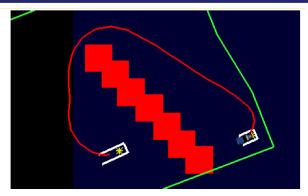
• For lattice-based 3D (x,y,Θ) navigation:



-2D(x,y) distance accounting for obstacles (single Dijkstra's on 2D grid cell starting at goalcell will give us these values)

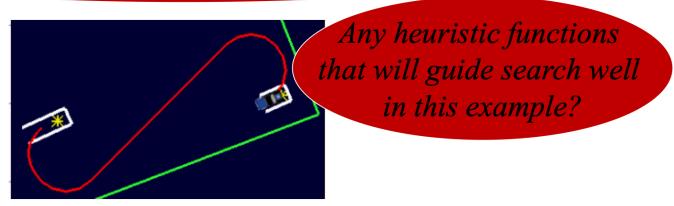
Any problems where it will be highly uninformative?

• For lattice-based 3D (x,y,Θ) navigation:



-2D(x,y) distance accounting for obstacles (single Dijkstra's on 2D grid cell starting at goalcell will give us these values)

Any problems where it will be highly uninformative?



• Arm planning in 3D:

Is admissibility always what we want?

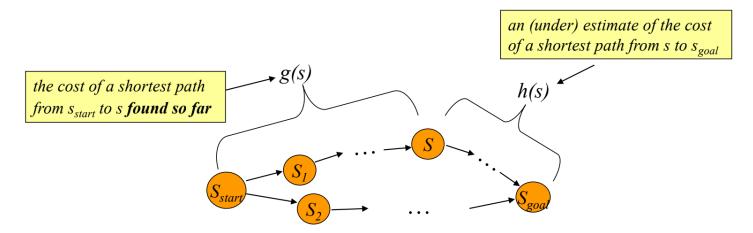


Can inadmissible heuristics help us with this tradeoff?

Solution
Quality

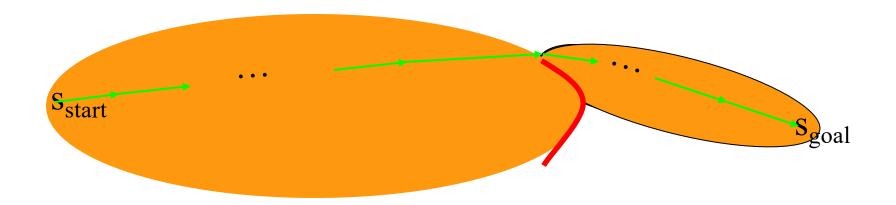
Number of states expanded

- A* Search: expands states in the order of f = g+h values
- Dijkstra's: expands states in the order of f = g values
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal



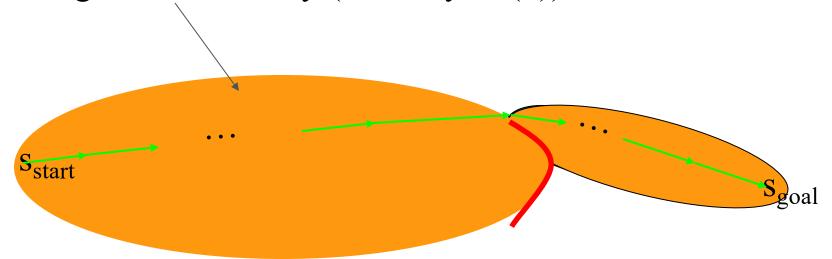
• Dijkstra's: expands states in the order of f = g values What are the states expanded? S_{start} S_{goal}

• A* Search: expands states in the order of f = g+h values



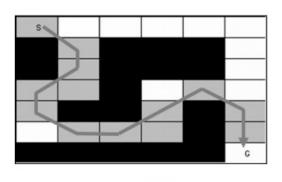
• A* Search: expands states in the order of f = g+h values

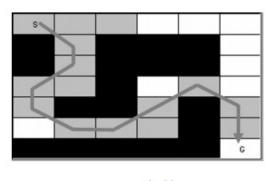
for large problems this results in A* quickly running out of memory (memory: O(n))

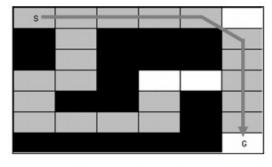


• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

solution is always ε -suboptimal: $cost(solution) \le \varepsilon \cdot cost(optimal solution)$







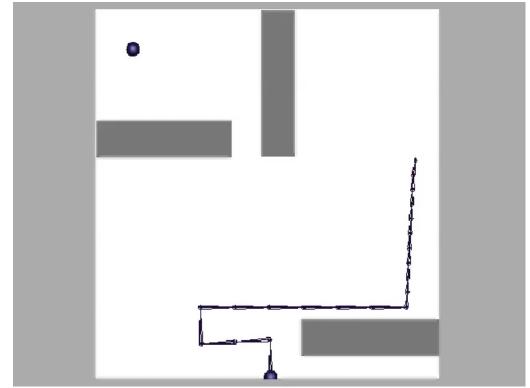
$$\epsilon = 2.5$$

$$\epsilon=1.5$$

 $\epsilon = 1.0$ (optimal search)

• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

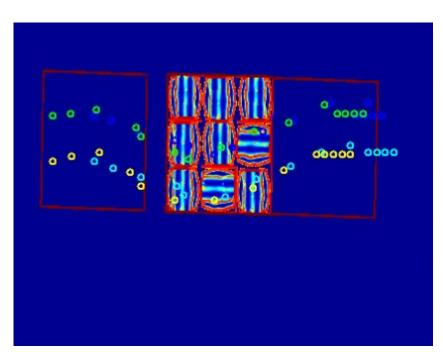
20DOF simulated robotic arm state-space size: over 10²⁶ states



planning with ARA* (anytime version of weighted A*)

Courtesy Max Likhachev

- planning in 8D (<x,y> for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds

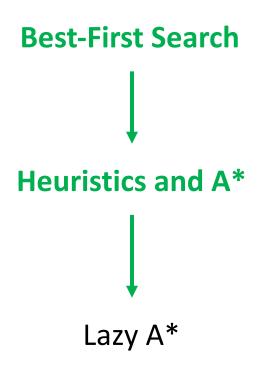


Uses R* - A randomized version of weighted A*

Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin Chitta,

Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

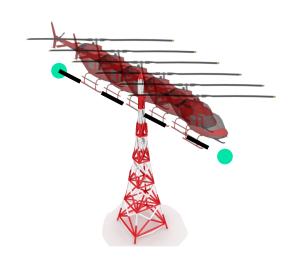
Lecture Outline



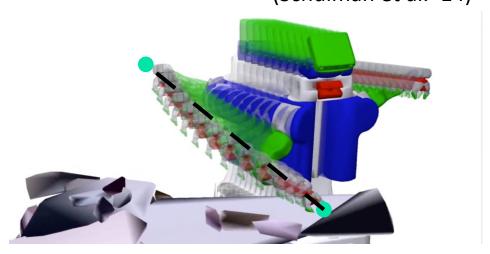
But is the number of expansions really what we want to minimize in motion planning?

What is the most expensive step?

Edge evaluation is expensive

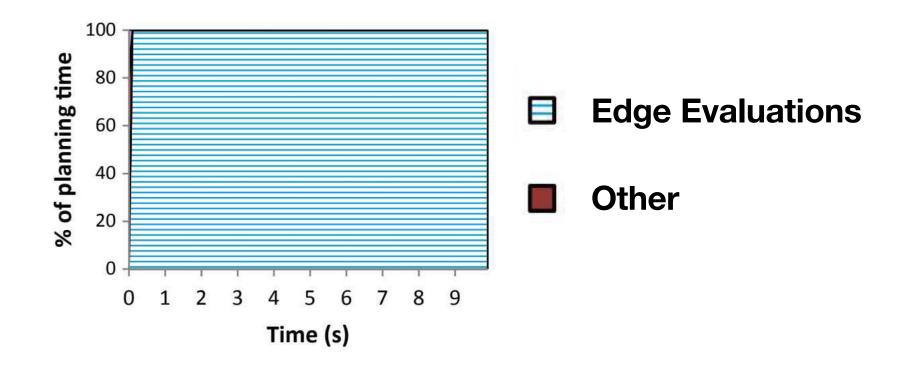


(Schulman et al. '14)



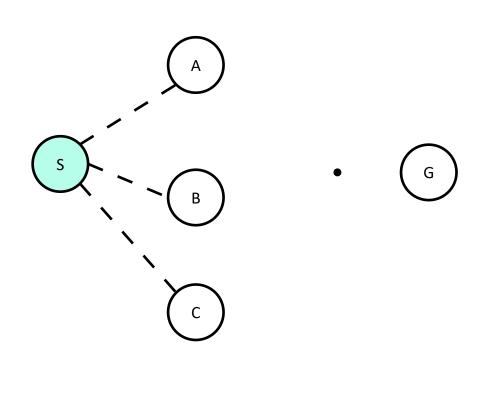
Check if helicopter intersects with tower Check if manipulator intersects with table

Edge evaluation dominates planning time



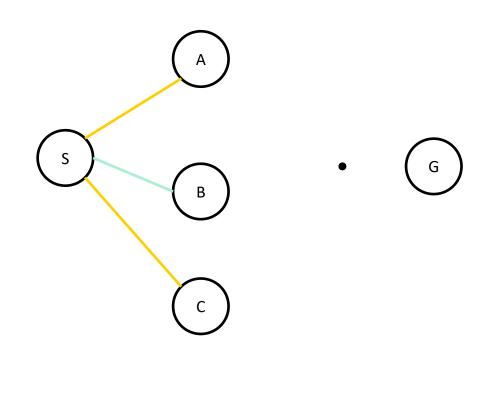
Let's revisit Best First Search

Element (Node)	Priority Value (f-value)
Node S	f(S)



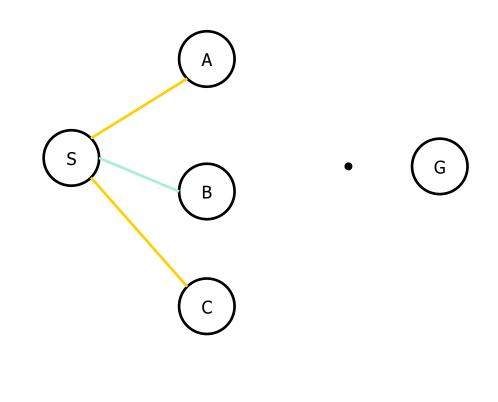
Let's revisit Best First Search

Element (Node)	Priority Value (f-value)
Node S	f(S)
Node A	f(A)
Node C	f(C)



What if we never use C? Wasted collision check!

Element (Node)	Priority Value (f-value)
Node S	f(S)
Node A	f(A)
Node C	f(C)



The provable virtue of laziness:

Take the thing that's expensive (collision checking)

and

procrastinate as long as possible till you have to evaluate it!

Lazy (weighted) A*

Cohen, Phillips, and Likhachev 2014

Key Idea:

 When expanding a node, don't collision check edge to successors (be optimistic and assume the edge will be valid)

2. When expanding a node, collision check the edge to parent (expansion means this node is good and worth the effort)

3. Important: OPEN list will have multiple copies of a node (multiple candidate parents since we haven't collision check)

Cohen, Phillips, and Likhachev 2014

Non lazy A*

while(s_{goal} is not expanded) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

```
insert s into CLOSED;

for every successor s' of s such

that s' not in CLOSED

if edge(s,s') in collision

c(s,s') = \infty

if g(s') > g(s) + c(s,s')

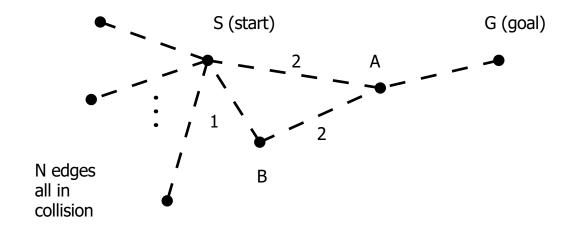
g(s') = g(s) + c(s,s');

insert s' into OPEN;
```

Lazy A*

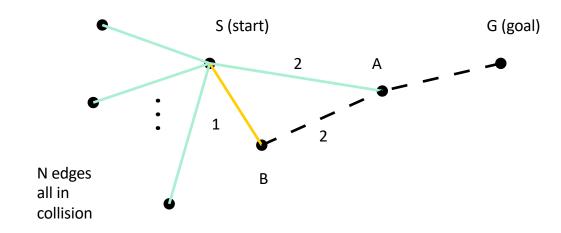
```
while (s_{aoal} is not expanded)
 remove s with the smallest
  [f(s) = g(s) + h(s)] from OPEN;
  if s is in CLOSED
     continue;
 if edge(parent(s), s) in collision
   continue;
 insert s into CLOSED;
 for every successor s' of s such
   that s' not in CLOSED
    no collision checking of edge
   if q(s') > q(s) + c(s,s')
     q(s') = q(s) + c(s,s');
      insert s' into OPEN; // multiple
                            copies
```


Let's say S-A is in collision and true shortest path is S-B-A-G



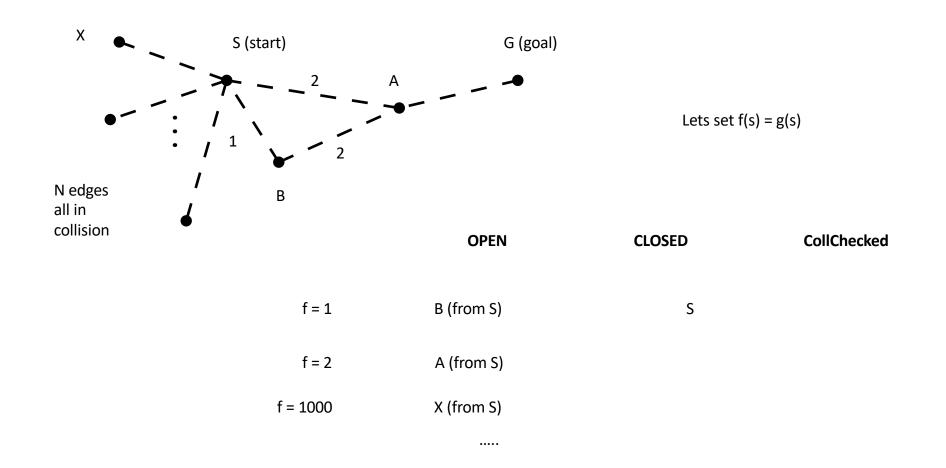
A*

Let's say S-A is in collision and true shortest path is S-B-A-G

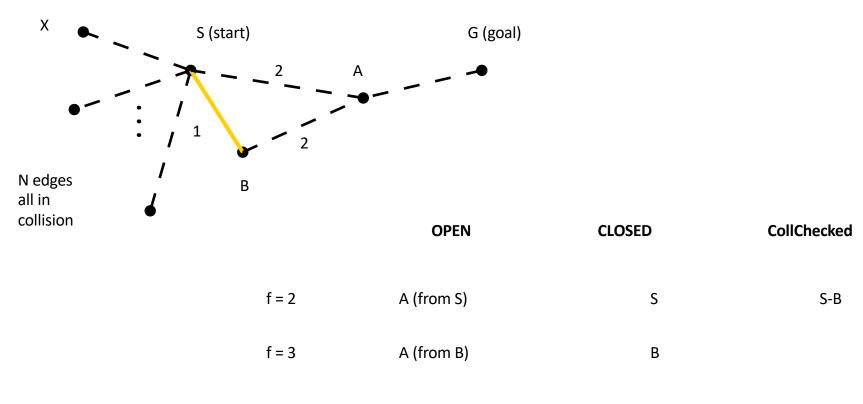


A* will collision check all N+2 edges!

Let's say S-A is in collision and true shortest path is S-B-A-G

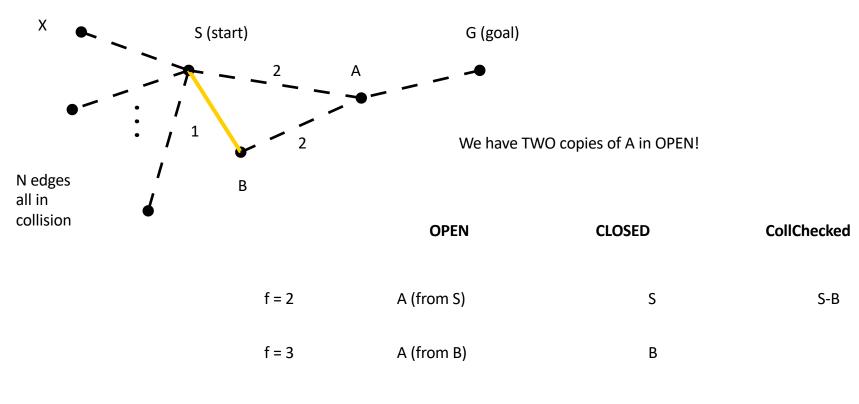


Let's say S-A is in collision and true shortest path is S-B-A-G



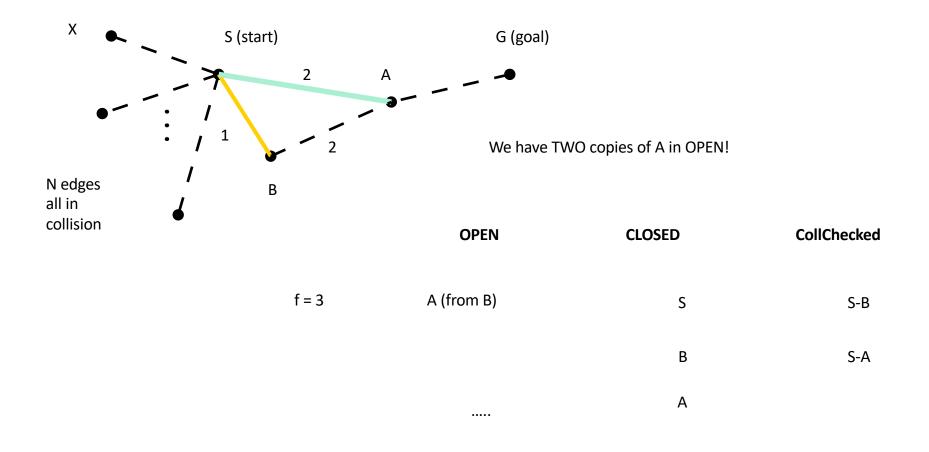
••••

Let's say S-A is in collision and true shortest path is S-B-A-G

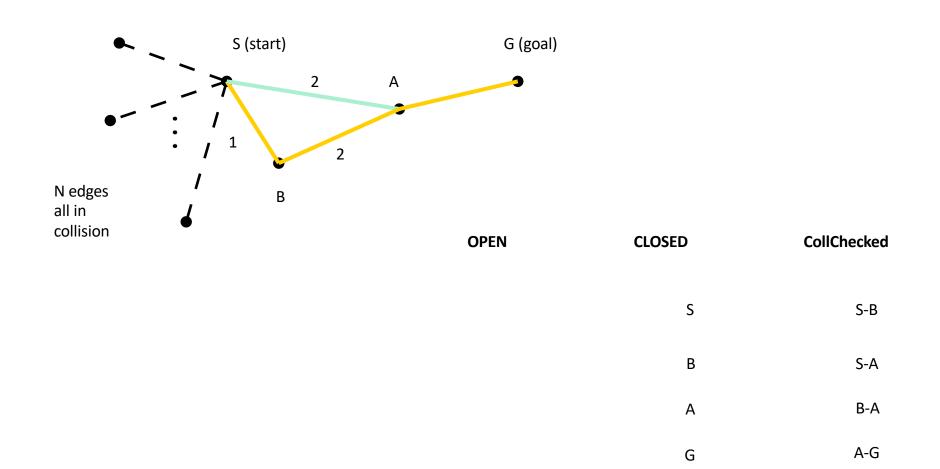


••••

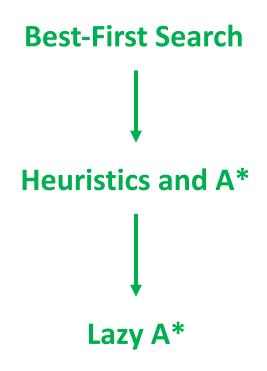
Let's say S-A is in collision and true shortest path is S-B-A-G



Let's say S-A is in collision and true shortest path is S-B-A-G



Lecture Outline



Class Outline

