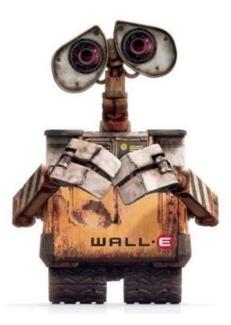


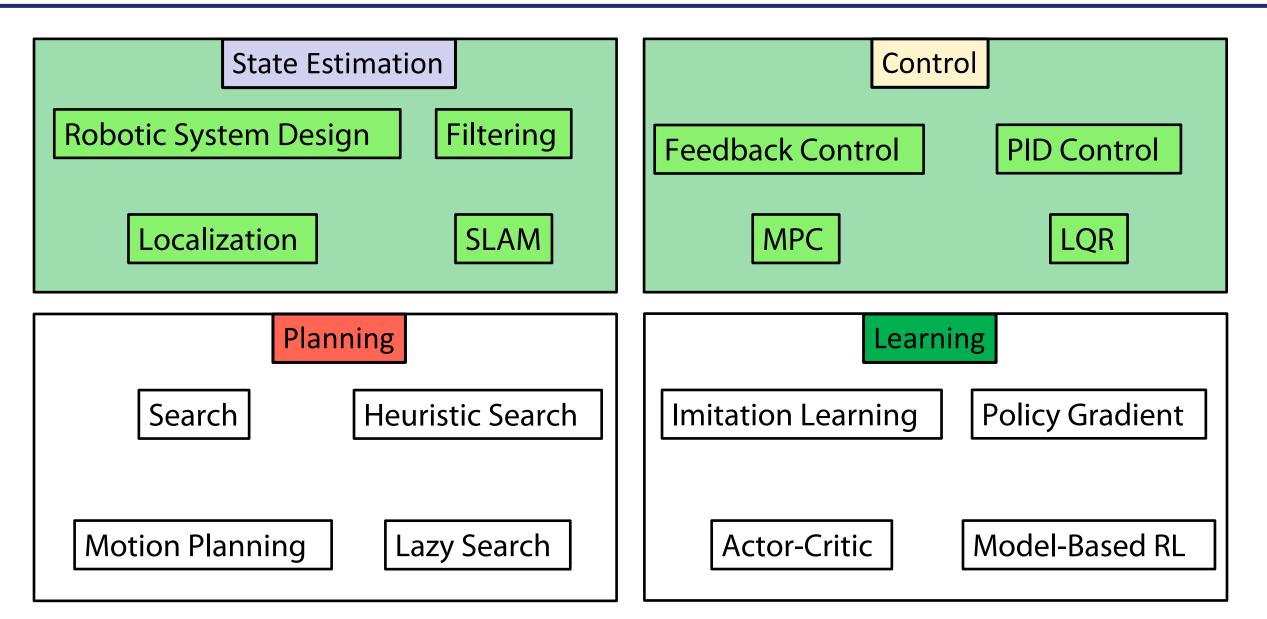
Autonomous Robotics

Winter 2025

Abhishek Gupta TAs: Carolina Higuera, Entong Su, Bernie Zhu



Class Outline

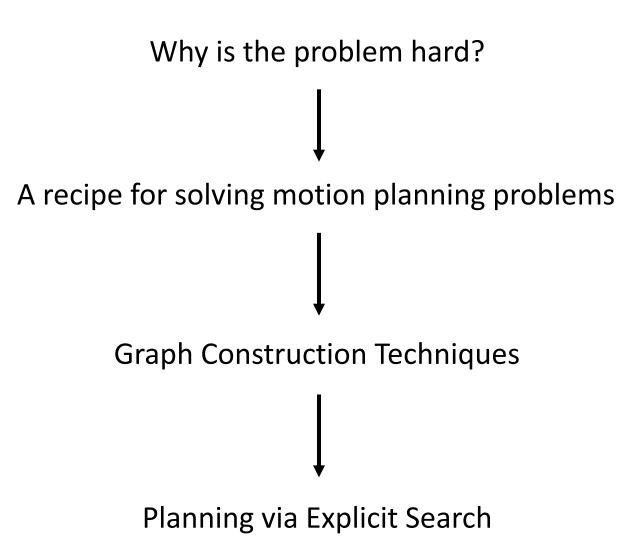


Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

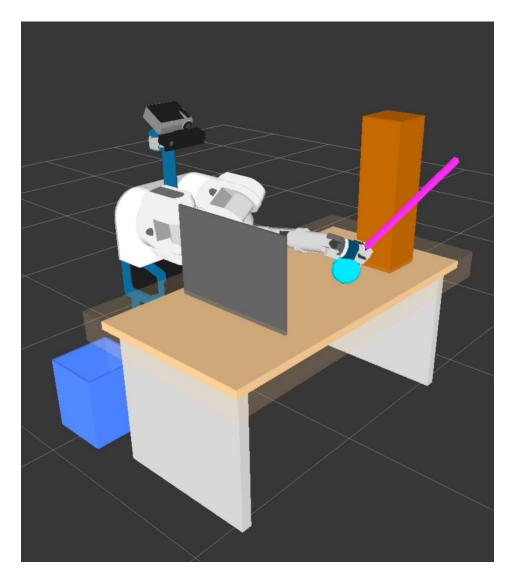
- HW4 now released
- Seeded discussion next Wednesday

- Post questions, discuss any issues you are having on Ed.
- Students with **no** access to 002, e-mail us with your student ID.
 Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Lecture Outline



Geometric Path Planning Problem



Also known as Piano Mover's Problem (Reif 79)

Given:

- 1. A workspace \mathcal{W} , where either $\mathcal{W} = \mathbb{R}^2$ or $\mathcal{W} = \mathbb{R}^3$.
- 2. An obstacle region $\mathcal{O} \subset \mathcal{W}$.
- 3. A robot defined in \mathcal{W} . Either a rigid body \mathcal{A} or a collection of m links: $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m$.
- 4. The configuration space C (C_{obs} and C_{free} are then defined).
- 5. An initial configuration $q_I \in C_{free}$.
- 6. A goal configuration $q_G \in C_{free}$. The initial and goal configuration are often called a query (q_I, q_G) .

Compute a (continuous) path, $\tau : [0,1] \to C_{free}$, such that $\tau(0) = q_I$ and $\tau(1) = q_G$.

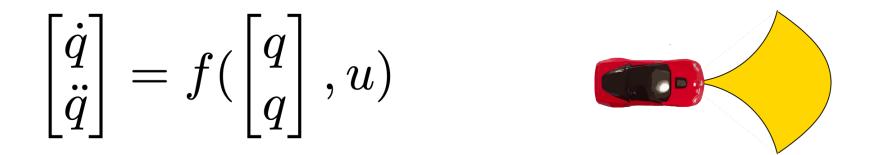
Also may want to minimize cost $\,c(au)\,$

Differential constraints

In geometric path planning, we were only dealing with C-space

 $q\in \mathcal{C}$

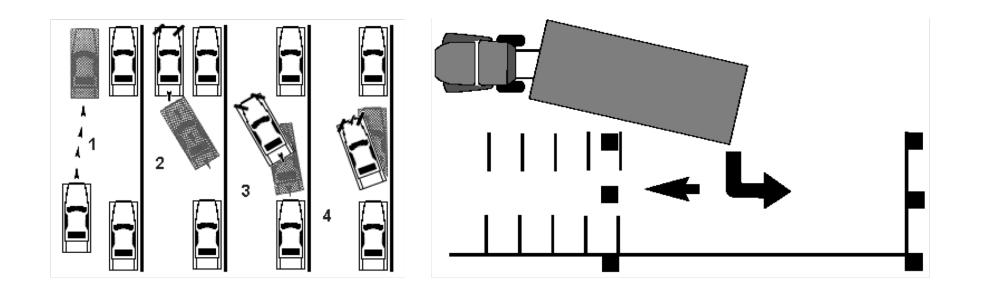
We now introduce differential constraints



Let the state space *x* be the following augmented C-space

$$x = (q, \dot{q})$$
 $\dot{x} = f(x, u)$

Differential constraints make things even harder

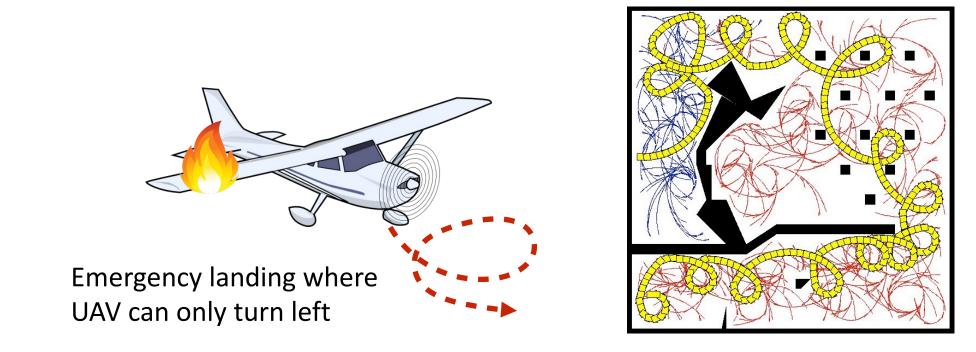


These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

Differential constraints make things even harder



"Left-turning-car"

These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

Motion planning under differential constraints

1. Given world, obstacles, C-space, robot geometry (same)

2. Introduce state space X. Compute free and obstacle state space.

3. Given an action space U

4. Given a state transition equations $\dot{x} = f(x, u)$

5. Given initial and final state, cost function $J(x(t), u(t)) = \int c(x(t), u(t)) dt$

6. Compute action trajectory that satisfies boundary conditions, stays in free state space and minimizes cost.

Challenges in Motion Planning

Computing configuration-space obstacles

Planning in continuous high-dimensional space

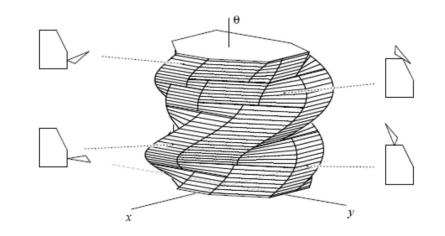
Underactuated dynamics/constrained system does not allow direct teleportation

Goal: tractable approximations with provable guarantees!

HARD!

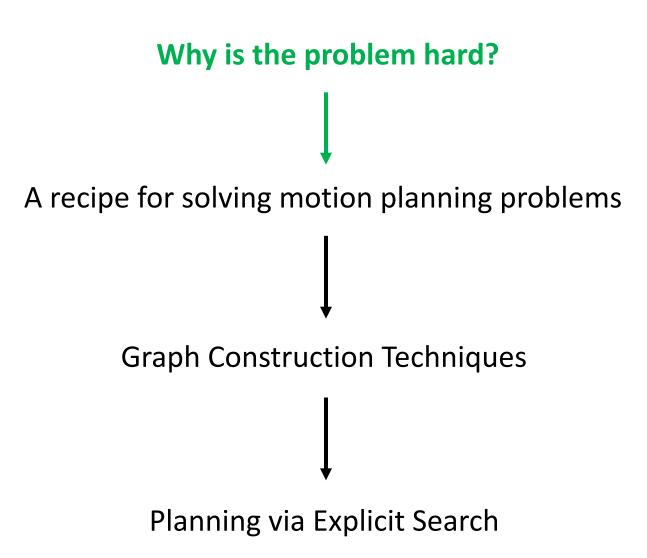
HARD!

HARD!



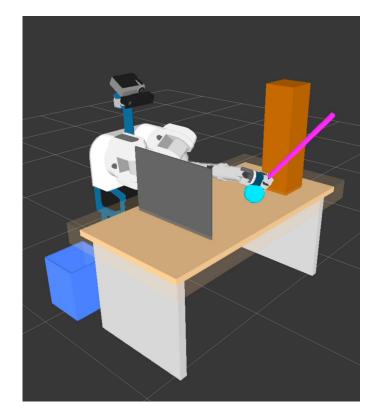
(EXAMPLE FROM HOWIE CHOSET)

Lecture Outline



How might we tackle this problem?

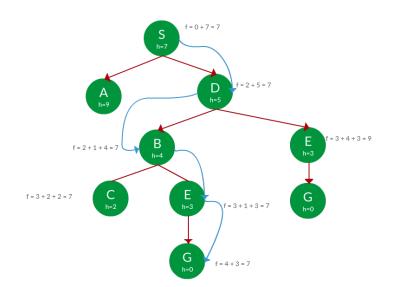
Lets use ideas from search!



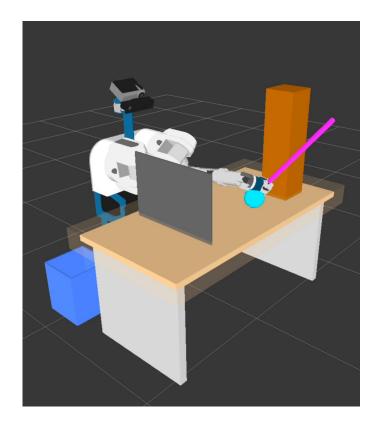
Given:

- 1. A workspace \mathcal{W} , where either $\mathcal{W} = \mathbb{R}^2$ or $\mathcal{W} = \mathbb{R}^3$.
- 2. An obstacle region $\mathcal{O} \subset \mathcal{W}$.
- 3. A robot defined in \mathcal{W} . Either a rigid body \mathcal{A} or a collection of m links: $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m$.
- 4. The configuration space C (C_{obs} and C_{free} are then defined).
- 5. An initial configuration $q_I \in C_{free}$.
- 6. A goal configuration $q_G \in C_{free}$. The initial and goal configuration are often called a query (q_I, q_G) .

Compute a (continuous) path, $\tau : [0,1] \to C_{free}$, such that $\tau(0) = q_I$ and $\tau(1) = q_G$.



How might we tackle this problem?



Given:

- 1. A workspace \mathcal{W} , where either $\mathcal{W} = \mathbb{R}^2$ or $\mathcal{W} = \mathbb{R}^3$.
- 2. An obstacle region $\mathcal{O} \subset \mathcal{W}$.
- 3. A robot defined in \mathcal{W} . Either a rigid body \mathcal{A} or a collection of m links: $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m$.
- 4. The configuration space C (C_{obs} and C_{free} are then defined).
- 5. An initial configuration $q_I \in C_{free}$.
- 6. A goal configuration $q_G \in C_{free}$. The initial and goal configuration are often called a query (q_I, q_G) .

Compute a (continuous) path, $\tau : [0,1] \to C_{free}$, such that $\tau(0) = q_I$ and $\tau(1) = q_G$.

Continuous space

Hard to characterize

obstacles

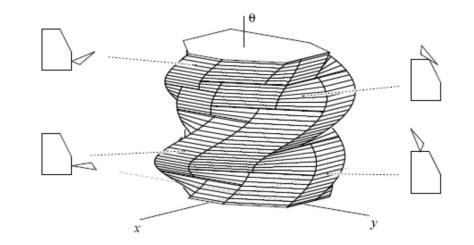
Sampling-Based Motion Planning

Computing configuration-space obstacles is hard

Use a collision checker instead!

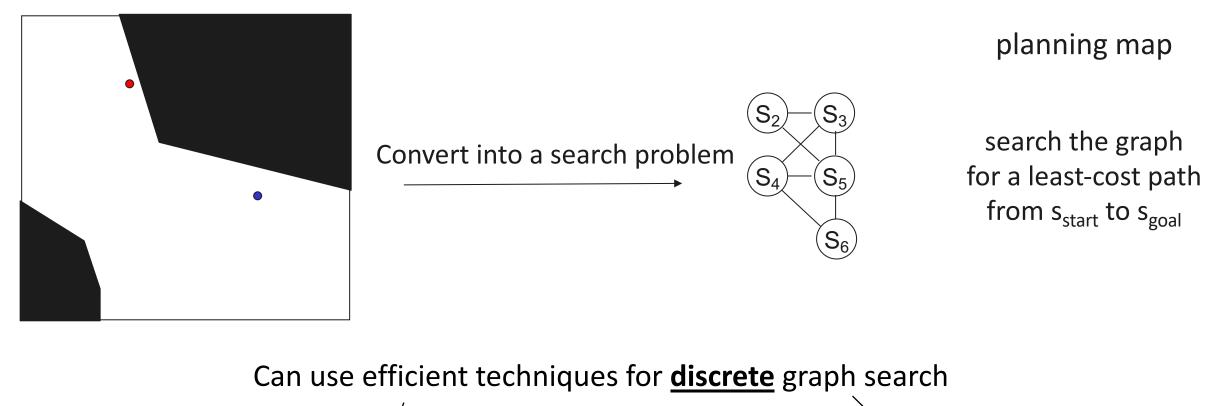
Planning in continuous high-dimensional space is hard

 Construct a discrete graph approximation of the continuous space!



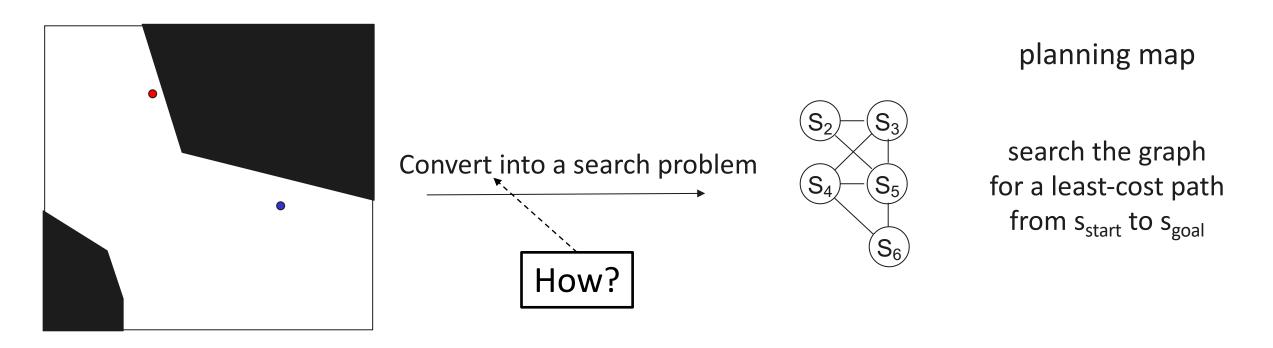
(EXAMPLE FROM HOWIE CHOSET)

Planning as Search



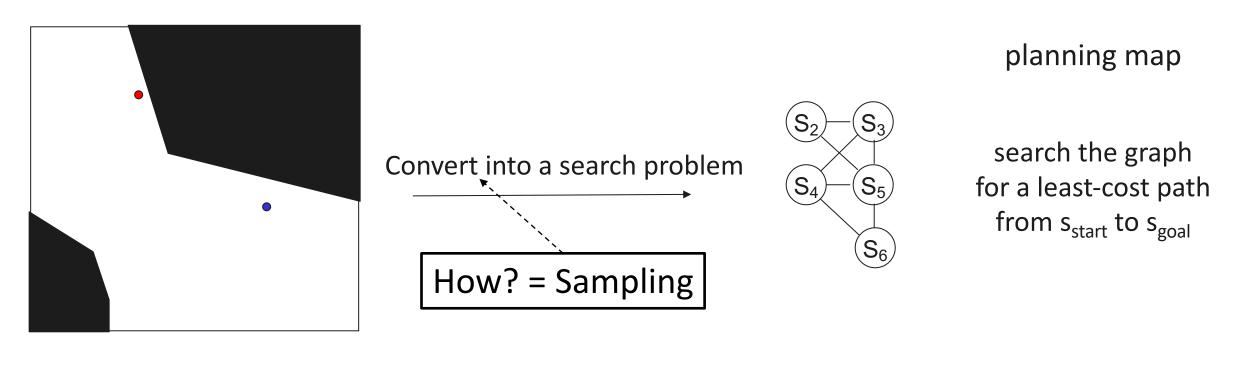
Explicit graph search Implicit sampling-based search

Recasting Planning as Search



Can use efficient techniques for <u>discrete</u> graph search

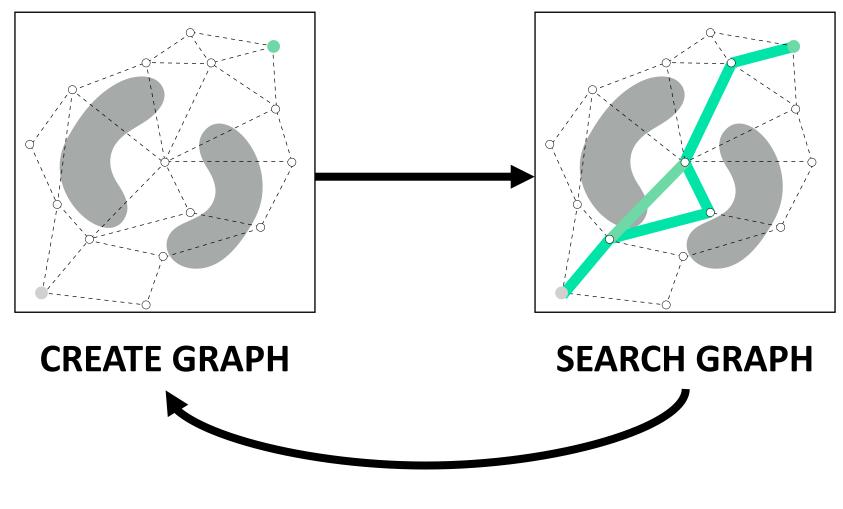
Recasting Planning as Search



Can use efficient techniques for discrete graph search

Which ones? = Best-first explicit search or Implicit sampling-based graph search

Sampling-Based Motion Planning

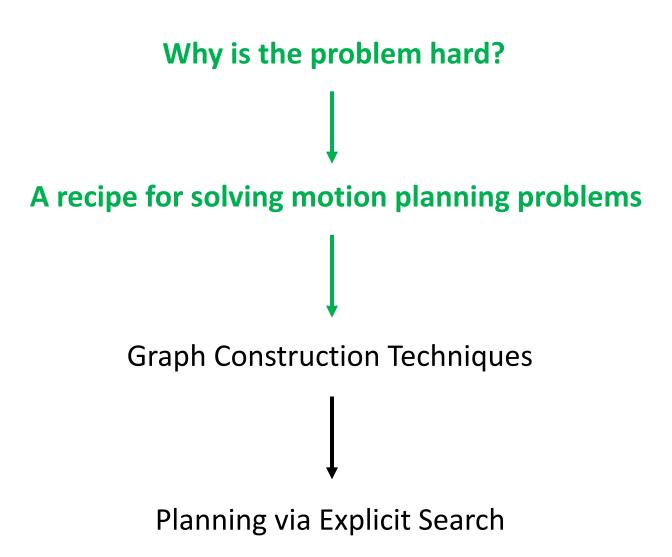


INTERLEAVE

Sampling-Based Motion Planning

NEW PLANNING
ALGORITHMGRAPH
CONSTRUCTIONFANCY SEARCH
ALGORITHM++ for efficiency

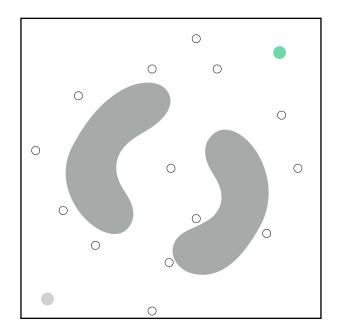
Lecture Outline

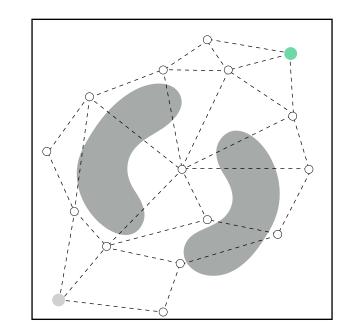


Creating a Graph

$$G = (V, E)$$

- 1. Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges

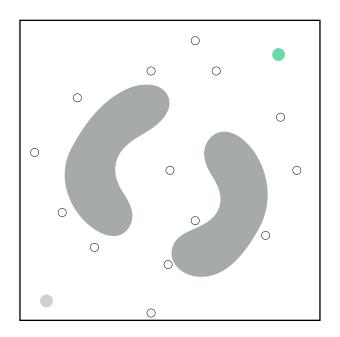




Creating a Graph

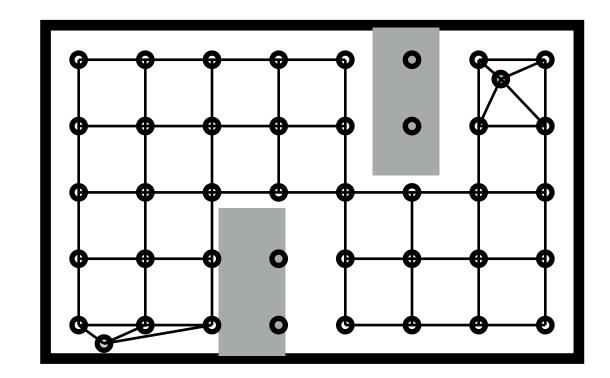
$$G = (V, E)$$

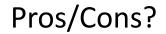
Sample collision-free configurations as vertices (including start and goal)
 Connect neighboring vertices with simple movements as edges



Strategy 1: Lattice Sampling / Discretization

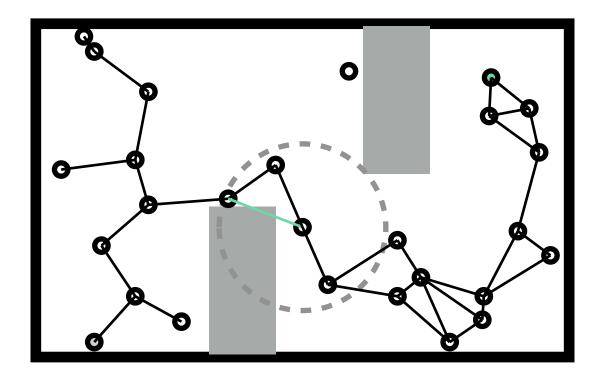
Main idea: create a grid, and connect neighboring points (4-conn, 8-conn, ...)





Strategy 2: Uniform Random Sampling

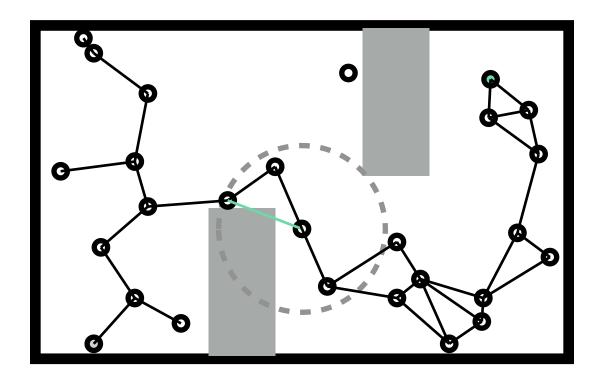
Main idea: sample uniformly between each dimension's lower/upper bounds Connect vertices within radius (r-disc) or k nearest neighbors



KAVRAKI ET AL., 1996

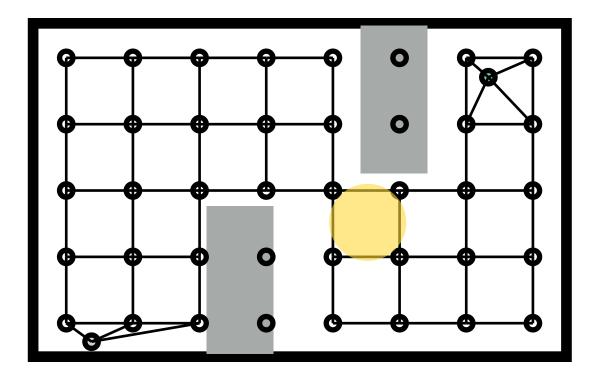
Probabilistic Roadmap (PRM)

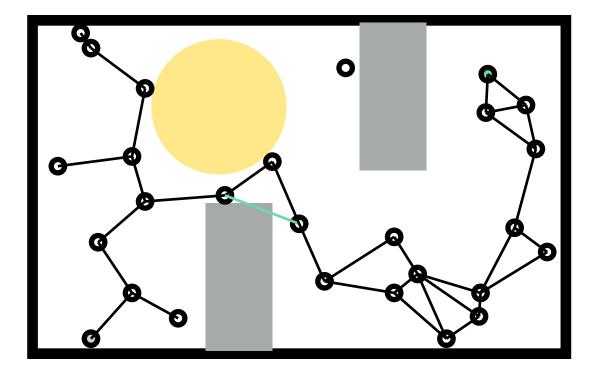
When should we collision-check edges? What is the optimal radius? (PRM with optimal radius = PRM*)



KAVRAKI ET AL., 1996

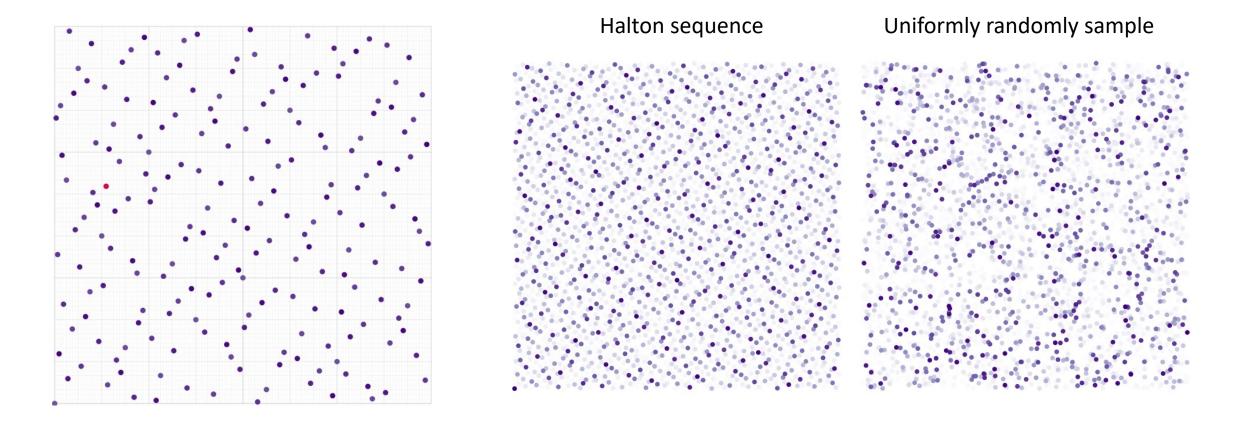
Alternatives to Random Sampling





Strategy 3: Low-Dispersion Sampling

Main idea: Halton sequence uniformly densifies the space



HTTPS://OBSERVABLEHQ.COM/@JRUS/HALTON

Detour: Van der Corput sequence

	Naive		Reverse	Van der	
i	Sequence	Binary	Binary	Corput	Points in $[0,1]/\sim$
1	0	.0000	.0000	0	• •
2	1/16	.0001	.1000	1/2	o0
3	1/8	.0010	.0100	1/4	o <u> o o o</u>
4	3/16	.0011	.1100	3/4	\circ
5	1/4	.0100	.0010	1/8	$\circ \bullet \circ \bullet$
6	5/16	.0101	.1010	5/8	$\circ \bullet \circ \bullet \bullet$
7	3/8	.0110	.0110	3/8	$\circ \bullet \bullet$
8	7/16	.0111	.1110	7/8	<u> </u>
9	1/2	.1000	.0001	1/16	000-0-0-0-0-0-0
10	9/16	.1001	.1001	9/16	000-0-0-000-0-0-0
11	5/8	.1010	.0101	5/16	000-000-000-0-0-0
12	11/16	.1011	.1101	13/16	000-000-000-0 0 0-0
13	3/4	.1100	.0011	3/16	000000000000000000000000000000000000000
14	13/16	.1101	.1011	11/16	0000000-0000000-0
15	7/8	.1110	.0111	7/16	000000000000000000000000000000000000000
16	15/16	.1111	.1111	15/16	000000000000000000000000000000000000000

Detour: Van der Corput sequence

	Naive		Reverse	Van der	
i	Sequence	Binary	Binary	Corput	Points in $[0,1]/\sim$
1	0	.0000	.0000	0	• •
2	1/16	.0001	.1000	1/2	oo
3	1/8	.0010	.0100	1/4	o oo
4	3/16	.0011	.1100	3/4	\sim
5	1/4	.0100	.0010	1/8	$\circ \bullet \circ \bullet$
6	5/16	.0101	.1010	5/8	○─○──○─ ○──○
7	3/8	.0110	.0110	3/8	~~~~
8	7/16	.0111	.1110	7/8	<u></u>
9	1/2	.1000	.0001	1/16	0 0 0-0-0-0-0-0-0-0
10	9/16	.1001	.1001	9/16	000-0-0-0 0 0-0-0-0
11	5/8	.1010	.0101	5/16	000-000-000-0-0-0
12	11/16	.1011	.1101	13/16	000-000-000-0 0 0-0
13	3/4	.1100	.0011	3/16	000000000000000000000000000000000000000
14	13/16	.1101	.1011	11/16	0000000-0000000-0
15	7/8	.1110	.0111	7/16	000000000000000000000000000000000000000
16	15/16	.1111	.1111	15/16	000000000000000000000000000000000000000

The *b*-ary representation of the positive integer $n \geq 1$ is

$$n \; = \; \sum_{k=0}^{L-1} d_k(n) b^k \; = \; d_0(n) b^0 + \dots + d_{L-1}(n) b^{L-1},$$

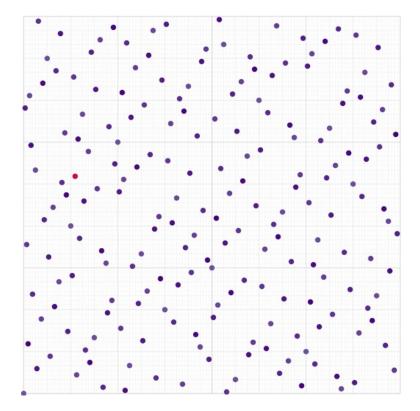
where b is the base in which the number n is represented, and $0 \le d_k(n) < b$; that is, the k-th digit in the b-ary expansion of n. The n-th number in the van der Corput sequence is

$$g_b(n) \;=\; \sum_{k=0}^{L-1} d_k(n) b^{-k-1} \;=\; d_0(n) b^{-1} + \cdots + d_{L-1}(n) b^{-L}$$

Whiteboard

Strategy 3: Low-Dispersion Sampling

Halton sequence – multi-dimensional van der corput sequence, co-prime bases



positional(1234, 10) $\rightarrow [1, 2, 3, 4]$ halton(1234, 10) $\rightarrow \frac{4}{10} + \frac{3}{100} + \frac{2}{1000} + \frac{1}{10000}$ positional(1234, 2) $\rightarrow [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0]$ halton(1234, 2) $\rightarrow \frac{1}{4} + \frac{1}{32} + \frac{1}{128} + \frac{1}{256} + \frac{1}{2048}$ positional(1234, 3) $\rightarrow [1, 2, 0, 0, 2, 0, 1]$ halton(1234, 3) $\rightarrow \frac{1}{3} + \frac{2}{27} + \frac{2}{729} + \frac{1}{2187}$ positional(0x4d2, 16) $\rightarrow [4, 13, 2]$ halton(0x4d2, 16) $\rightarrow \frac{2}{16} + \frac{13}{256} + \frac{4}{4096}$

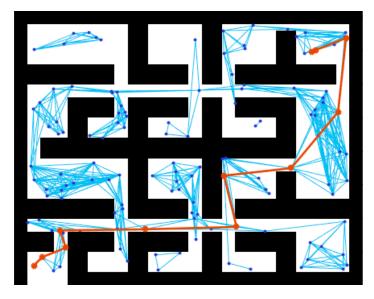
HTTPS://OBSERVABLEHQ.COM/@JRUS/HALTON

A good graph must be sparse (both in vertices and edges)

A good graph must have good free-space coverage For every configuration in the free space, there's a vertex in the graph that can be connected to it.

A good graph must have good free-space connectivity

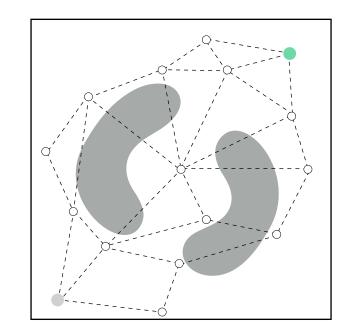
For every connected pair of points in the free space, there's a path on the graph between them.



Creating a Graph

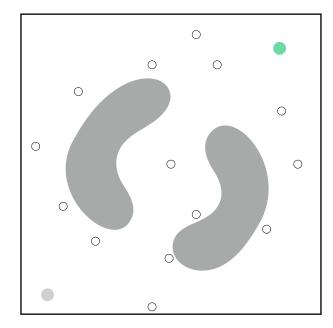
$$G = (V, E)$$

- 1. Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges

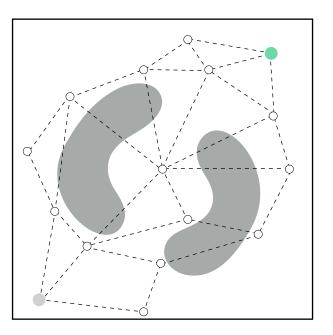


Creating a Graph

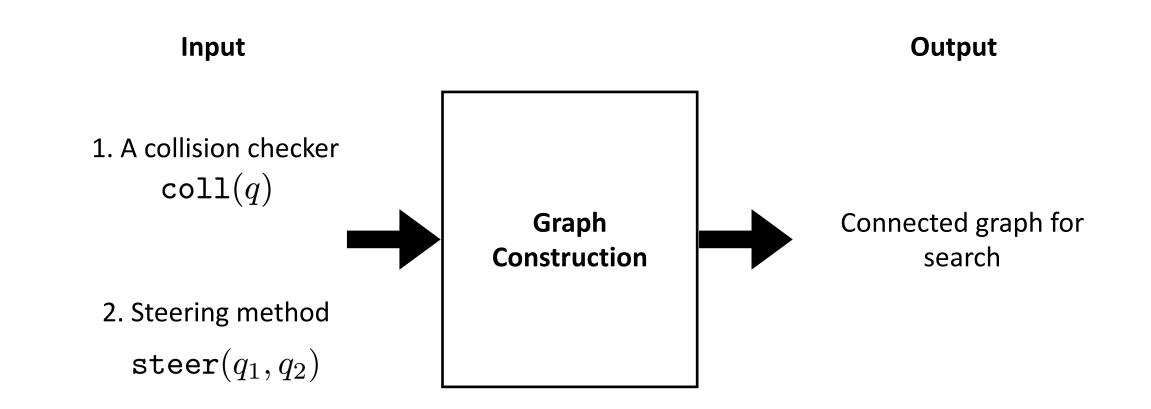
G = (V, E)



Connect collision free edges



API for Graph Construction



Let's take a look at the inputs

We need to give the planner a collision checker

$$\texttt{coll}(q) = \begin{cases} 0 & \text{in collision, i.e. } q \in \mathcal{C}_{obs} \\ 1 & \text{free, i.e. } q \in \mathcal{C}_{free} \end{cases}$$

What work does this function have to do?

Collision checking is expensive!

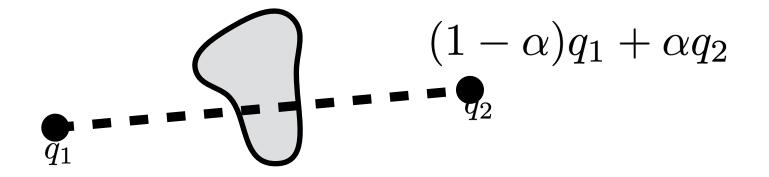
Let's take a look at the inputs

We need to give the planner a steer function

 $\mathtt{steer}(q_1, q_2)$

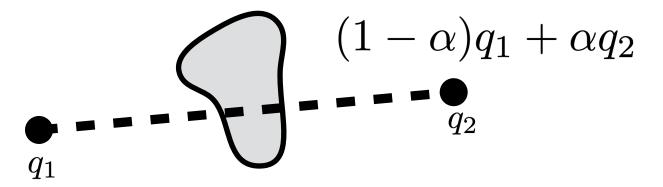
A steer function tries to join two configurations with a feasible path

Computes simple path, calls coll(q), and returns success if path is free



Example: Connect them with a straight line and check for feasibility

Can steer be smart about collision checking?



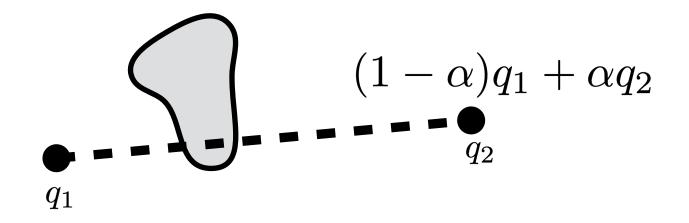
 $steer(q_1, q_2)$ has to assure us line is collision free (upto a resolution)

Things we can try:

- 1. Step forward along the line and check each point
- 2. Step backwards along the line and check each point

Can steer be smart about collision checking?

Say we chunk the line into 16 parts



Any collision checking strategy corresponds to sequence

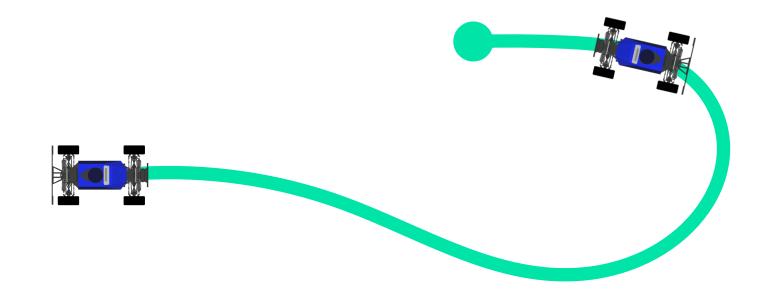
(Naive)
$$\alpha = 0, \frac{1}{16}, \frac{2}{16}, \frac{3}{16}, \cdots, \frac{15}{16}$$

(Bisection) $\alpha = 0, \frac{8}{16}, \frac{4}{16}, \frac{12}{16}, \cdots, \frac{15}{16}$

Ans: Van der Corput sequence

	Naive		Reverse	Van der	
i	Sequence	Binary	Binary	Corput	Points in $[0,1]/\sim$
1	0	.0000	.0000	0	• •
2	1/16	.0001	.1000	1/2	o0
3	1/8	.0010	.0100	1/4	o <u> o o o</u>
4	3/16	.0011	.1100	3/4	\circ
5	1/4	.0100	.0010	1/8	$\circ \bullet \circ \bullet$
6	5/16	.0101	.1010	5/8	$\circ \bullet \circ \bullet \bullet$
7	3/8	.0110	.0110	3/8	$\circ \bullet \bullet$
8	7/16	.0111	.1110	7/8	<u> </u>
9	1/2	.1000	.0001	1/16	000-0-0-0-0-0-0
10	9/16	.1001	.1001	9/16	000-0-0-000-0-0-0
11	5/8	.1010	.0101	5/16	000-0-000-0-0-0-0
12	11/16	.1011	.1101	13/16	000-000-000-0 0 0-0
13	3/4	.1100	.0011	3/16	000000000000000000000000000000000000000
14	13/16	.1101	.1011	11/16	0000000-0000000-0
15	7/8	.1110	.0111	7/16	000000000000000000000000000000000000000
16	15/16	.1111	.1111	15/16	000000000000000000000000000000000000000

Boundary Value Problem



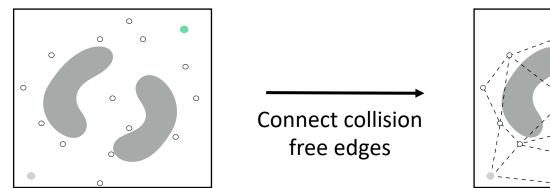
How can we move from one configuration to another? →Hard in general!

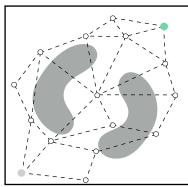
Define a steering function that is tasked with connecting two configurations \rightarrow Previously, steering function was trivial (straight line)

Differential Constraints on Graphs

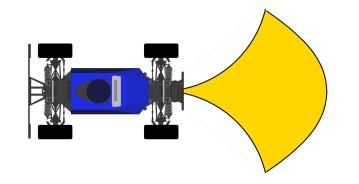
To construct a graph under differential constraints:

- 1. Sample collision free configuration states (check with collision checker)
- 2. Solve boundary-value problem to see if states can be connected
- 3. If connectable, add an edge, otherwise no edge
- 4. Benefit!





Solving the Boundary Value Problem



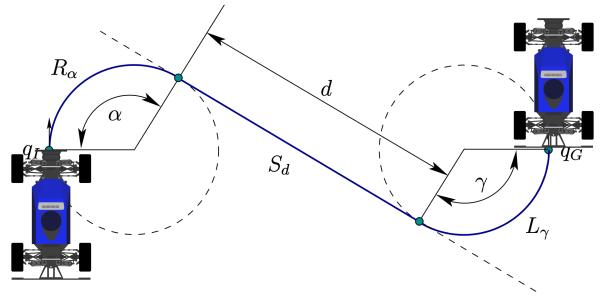
$$q_1 = (x_1, y_1, \theta_1)$$

 $q_2 = (x_2, y_2, \theta_2)$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \frac{v \tan \delta}{L} \end{bmatrix}$$

 $0 \le v \le v_{\max}, |\delta| \le \delta_{\max}$

Dubins Curves



Dubins showed that all solutions had to be one of six classes {*LRL*, *RLR*, *LSL*, *LSR*, *RSL*, *RSR*}

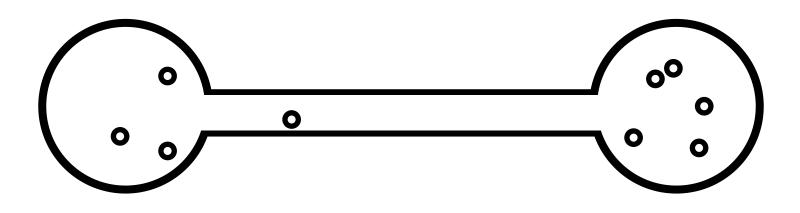
Given two configurations to connect, evaluate all six options, return shortest one

Car has fixed forward velocity; Reeds-Shepp curves may include backward velocity

 $R_{\alpha}S_{d}L_{\gamma}$

RIGHT-STRAIGHT-LEFT

What Environments Are Hard?



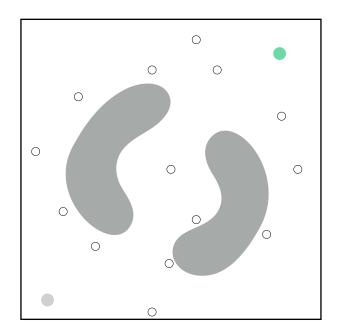
Sampling-based methods struggle with narrow passages Probability of sampling an edge in the passage is very small, so with a finite number of samples, the two halves of the roadmap may not be connected

<u>**Practical solutions:**</u> sample near obstacle surface, bridge test to add samples between two obstacles, train ML algorithm to detect narrow passages

Creating a Graph

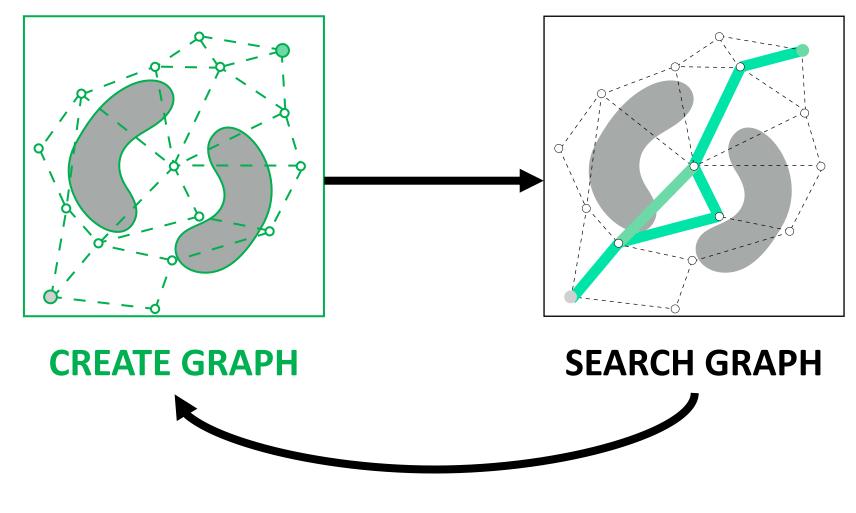
$$G = (V, E)$$

- **1.** Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges



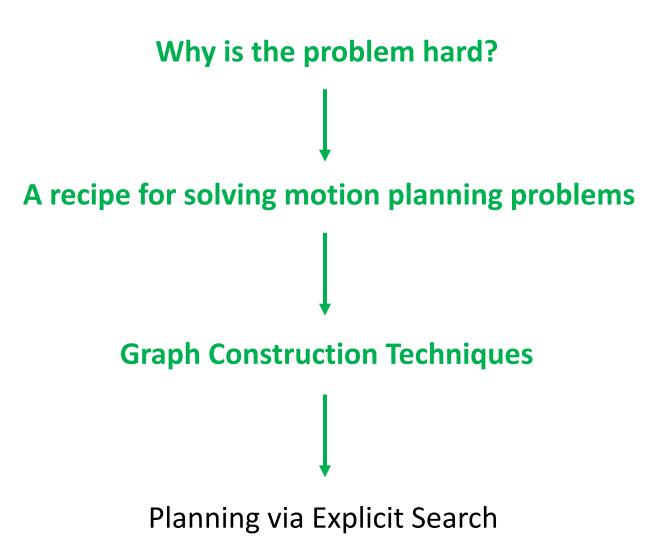


Sampling-Based Motion Planning



INTERLEAVE

Lecture Outline

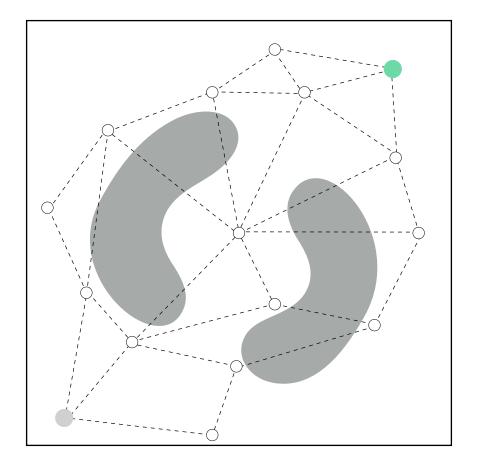


Minimal Cost Path on a Graph

START, GOAL

COST (E.G. LENGTH)

Minimal Cost Path on a Graph

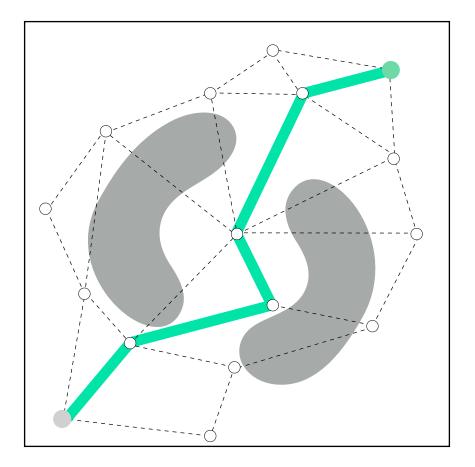


START, GOAL

COST (E.G. LENGTH)

GRAPH (VERTICES, EDGES)

Minimal Cost Path on a Graph

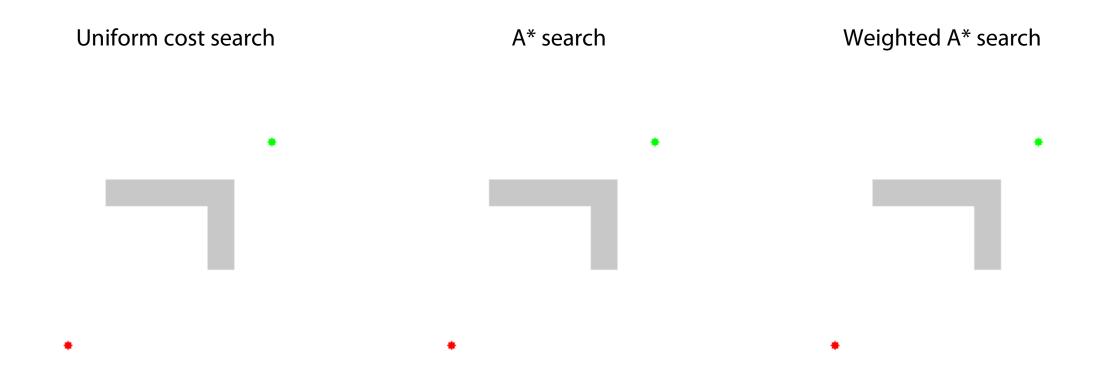


START, GOAL

COST (E.G. LENGTH)

GRAPH (VERTICES, EDGES)

Best-First Search Meta-Algorithm

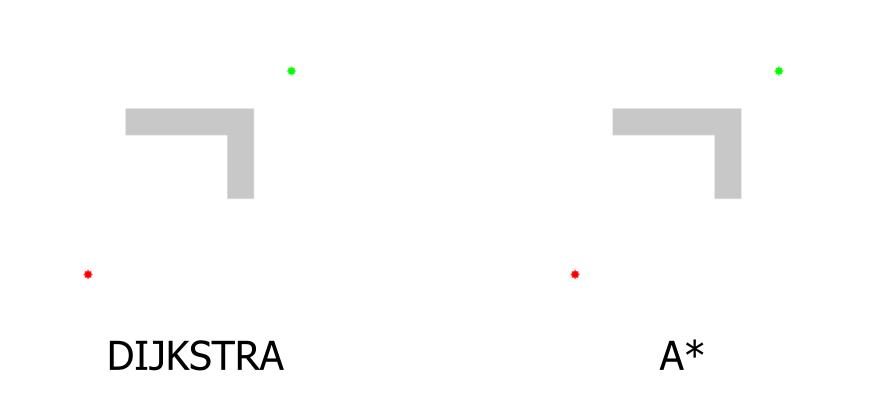


(WIKIPEDIA)

Key insight: maintain a priority queue of promising nodes, ranked by f(s)

- -Initialize queue with start node
- -While goal isn't reached
 - Pop the most promising node from the queue
 - If it's not the goal, enqueue its neighbors
- -When goal is reached, compute path by backtracking to the start

Best-First Search Meta-Algorithm



(WIKIPEDIA)

Inputs: graph G = (V, E); cost c(s, s') = c(e); start and goal Data structures maintained

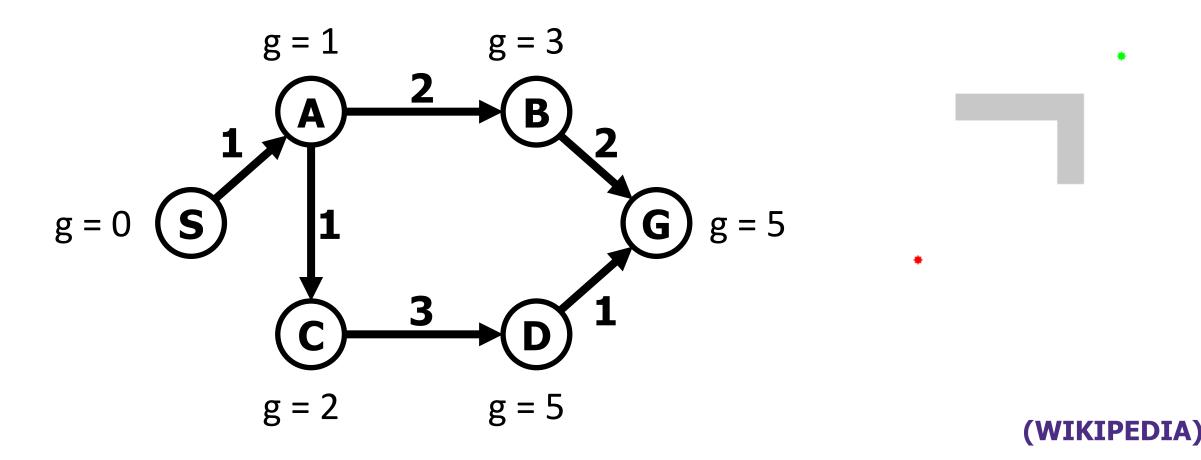
OPEN: priority queue of nodes that may be expanded (with priority f) CLOSED: set of nodes that have been expanded g(s): estimated minimum cost from start to node s ("cost-to-come")

```
Initialize g(start) = 0 and all other g-values to infinity
Insert start into OPEN
While goal not in CLOSED
Remove s with smallest f(s) from OPEN
Add s to CLOSED
For every neighbor s'
If g(s) + c(s, s') < g(s'), update g(s') and add s' to OPEN (with parent s)
```

Dijkstra's Shortest Path Algorithm

Best-first search with f(s) = g(s)

Only expands nodes with lower cost-to-come than goal!



Class Outline

