

Autonomous Robotics

Winter 2025

Abhishek Gupta TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

Seeded Paper Discussion 2 - Wed Feb 19 HW3 due Feb 20

- Post questions, discuss any issues you are having on Ed.
- Students with **no** access to 002, e-mail us with your student ID.
 Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

LQR Riccati Equations

$$K_{i} = -(R + B^{\top}P_{i-1}B)^{-1}B^{\top}P_{i-1}A$$
$$P_{i} = Q + K_{i}^{\top}RK_{i} + (A + BK_{i})^{\top}P_{i-1}(A + BK_{i})$$

$$u = K_i x, \ J_i(x) = x^\top P_i x$$

RUNTIME: $O(H(n^3 + m^3))$

Optimal controller is linear in x

Optimal cost is quadratic in x

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0: return 0, Q

else:

 $\begin{aligned} \mathsf{P}_{i-1} &= \mathsf{OptimalValueControl}(\mathsf{A}, \mathsf{B}, \mathsf{Q}, \mathsf{R}, \mathsf{time-to-go-1}) \\ K_i &= -(R + B^\top P_{i-1}B)^{-1}B^\top P_{i-1}A \\ P_i &= Q + K_i^\top RK_i + (A + BK_i)^\top P_{i-1}(A + BK_i) \\ \mathsf{return} \ \mathsf{K}_i, \mathsf{P}_i \end{aligned}$

Optimal controller is linear in x

Optimal cost is quadratic in x

$$\mathbf{x}^{\mathsf{T}} \begin{bmatrix} P_i = Q + K_i^{\top} R K_i + (A + B K_i)^{\top} P_{i-1} (A + B K_i) \end{bmatrix}_{\mathbf{X}}$$

Current state cost
Current action cost

LQR Ext1: non-linear systems

Nonlinear system: $x_{t+1} = f(x_t, u_t)$

We can keep the system at the state x^* iff $\exists u^* \text{s.t.} \quad x^* = f(x^*, u^*)$

Linearizing the dynamics around x^{*} gives:

$$\begin{aligned} x_{t+1} &\approx f(x^*, u^*) + \frac{\partial f}{\partial x}(x^*, u^*)(x_t - x^*) + \frac{\partial f}{\partial u}(x^*, u^*)(u_t - u^*) \\ \\ \text{Equivalently:} \qquad & \mathsf{A} \qquad & \mathsf{B} \end{aligned}$$

 $x_{t+1} - x^* \approx A(x_t - x^*) + B(u_t - u^*)$

Let $z_t = x_t - x^*$, let $v_t = u_t - u^*$, then: $z_{t+1} = Az_t + Bv_t$, $\text{cost} = z_t^\top Qz_t + v_t^\top Rv_t$ [=standard LQR] $v_t = Kz_t \Rightarrow u_t - u^* = K(x_t - x^*) \Rightarrow u_t = u^* + K(x_t - x^*)$

Lecture Outline

Why might this not be enough?

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$
Non-linear
s.t. $x_{t+1} = f(x_t, u_t)$
Non-quadratic

Use linear/quadratic Taylor expansion about current nominal states/actions

$$\sum_t x_t^\top Q x_t + u_t^\top R u_t$$

 $x_{t+1} = Ax_t + Bu_t$

Might be a poor, local approximation!

May not be able to incorporate constraints

Let's revisit ideas from Bayesian filtering

Linear Gaussian assumption

Sampling-based approximation

Filtering

Kalman Filtering

Particle Filtering

Control

LQR

Sampling based MPC

Solving Optimal Control with Sampling

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$

s.t.
$$x_{t+1} = f(x_t, u_t)$$

- 1. Sample a set of K action trajectories of T steps from start state
- 2. Evaluate each K step action sequence through the model and get per trajectory cost
- 3. Choose minimum trajectory cost trajectory
- 4. Execute lowest cost actions

Random Sampling

Can soften by taking softmin rather than argmin

Solving Optimal Control with Sampling – issues?

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$

s.t.
$$x_{t+1} = f(x_t, u_t)$$

- 1. Sample a set of K action trajectories of T steps from start state
- 2. Evaluate each K step action sequence through the model and get per trajectory cost
- 3. Choose minimum trajectory cost trajectory
- 4. Execute lowest cost actions

- 1. Open-loop controller may not be able to deal with unexpected events/divergences
- Computation of full controller can be expensive:
 → Do it on the fly!
- 3. Model might be wrong, errors may accumulate
- 4. ...

Why do we need to replan?

What happens if the controls are planned once and executed?

Why do we need to replan?

What happens if the controls are planned once and executed?

Solving Optimal Control with Sampling – issues?

s.t. $x_{t+1} = f(x_t, u_t)$

1. Plan with random shooting from s_t 2. Execute the first action a_0 and reach s_{t+1}

A stationary feedback controller may not be able to deal with unexpected events

Replanning can help with divergence

Model-Predictive/Receding Horizon Control

General Replanning Framework - MPC

Step 1: Solve optimization problem to a horizon

Step 2: Execute the first control

Step 3: Repeat!

How are the controls executed?

Step 1: Solve optimization problem to a horizon

How are the controls executed?

Step 1: Solve optimization problem to a horizon

Step 2: Execute the first control

How are the controls executed?

Step 1: Solve optimization problem to a horizon

Step 2: Execute the first control

Step 3: Repeat!

Does it work?

Why might this not work?

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$

s.t.
$$x_{t+1} = f(x_t, u_t)$$

- 1. Sample a set of K action trajectories of T steps from start state
- 2. Evaluate each K step action sequence through the model and get per trajectory cost
- 3. Choose minimum trajectory cost trajectory
- 4. Execute lowest cost actions

Planning with Shooting + MPC

Searching for a needle in a haystack by random shooting, high variance!

Better Sampling Techniques for MPC

Sampled from stationary uniform/gaussian distribution

$$\arg\min_{u_0, u_1, \dots, u_T} \sum_{t=1}^T c(x_t, u_t)$$
$$x_{t+1} = f(x_t, u_t)$$

Can we inform the sampling function with the cost function?

Idea: Iteratively upweight sampling distribution around the things that are lower cost

Better Sampling Techniques for Shooting - MPPI

Does it work?

Does it work?

Lecture Outline

What is stability?

So we want both $e(t) \to 0$ and $\dot{e}(t) \to 0$

Detour: How do we make a pendulum stable?

What control law should we use to stabilize the pendulum, i.e.

Choose
$$u=\pi(\theta,\dot{\theta})$$
 such that $\theta o 0$ $\dot{\theta} o 0$

How does the passive error dynamics behave?

$$e_1 = \theta - 0 = \theta \qquad \qquad e_2 = \dot{\theta} - 0 = \dot{\theta}$$

Set u=0. Dynamics is not stable.

How do we verify if a controller is stable?

$$ml^2\ddot{\theta} + mgl\sin\theta = u$$

Lets pick the following law:

 $u = -K\dot{\theta}$

Is this stable? How do we know?

We can simulate the dynamics from different start point and check.... but how many points do we check? what if we miss some points?

Key Idea: Think about energy!

Make energy decay to 0 and stay there

$$V(\theta, \dot{\theta}) = \frac{1}{2}ml^2\dot{\theta}^2 + mgl(1 - \cos\theta)$$

> 0

$$\begin{split} \dot{V}(\theta, \dot{\theta}) &= ml^2 \dot{\theta} \ddot{\theta} + mgl(\sin \theta) \dot{\theta} \\ &= \dot{\theta}(u - mgl\sin \theta) + mgl(\sin \theta) \dot{\theta} \\ &= \dot{\theta}u \end{split}$$

Choose a control law u=-k heta

$$\dot{V}(\theta,\dot{\theta}) = -k\dot{\theta}^2 < 0$$

Lyapunov function: A generalization of energy

Lyapunov function for a closed-loop system

1. Construct an energy function that is always positive

$$V(x) > 0, \forall x$$

Energy is only 0 at the origin, i.e. V(0)=0

2. Choose a control law such that this energy always decreases

$$\dot{V}(x) < 0, orall x$$
Energy rate is 0 at origin, i.e. $\dot{V}(0) = 0$

No matter where you start, energy will decay and you will reach 0!

Let's get provable control for our car!

Dynamics of the car

 $\dot{x} = V \cos \theta$ $\dot{y} = V \sin \theta$ $\dot{\theta} = \frac{V}{B} \tan u$

Let's get provable control for our car!

Let's define the following Lyapunov function

$$V(e_{ct}, \theta_e) = \frac{1}{2}k_1e_{ct}^2 + \frac{1}{2}\theta_e^2 > 0$$

Compute derivative

$$\dot{V}(e_{ct}, \theta_e) = k_1 e_{ct} \dot{e_{ct}} + \theta_e \dot{\theta_e}$$
$$\dot{V}(e_{ct}, \theta_e) = k_1 e_{ct} V \sin \theta_e + \theta_e \frac{V}{B} \tan u$$

Let's get provable control for our car!

$$\dot{V}(e_{ct}, \theta_e) = k_1 e_{ct} V \sin \theta_e + \theta_e \frac{V}{B} \tan u$$

Trick: Set u intelligently to get this term to always be negative

$$\theta_e \frac{V}{B} \tan u = -k_1 e_{ct} V \sin \theta_e - k_2 \theta_e^2$$

$$\tan u = -\frac{k_1 e_{ct} B}{\theta_e} \sin \theta_e - \frac{B}{V} k_2 \theta_e$$

$$u = \tan^{-1} \left(-\frac{k_1 e_{ct} B}{\theta_e} \sin \theta_e - \frac{B}{V} k_2 \theta_e \right)$$

So what's the point of Lyapunov theory?

Option 1:

Use Lyapunov theory to **<u>construct</u>** stable controllers

Option 2:

Use Lyapunov theory to verify controllers for stability

Lecture Outline

Class Outline

