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n Seeded Paper Discussion 2 - Wed Feb 19
n HW3 due Feb 20

n Post questions, discuss any issues you are having on Ed.
n Students with no access to 002, e-mail us with your student ID.
n Students that have not been added to the class, email 

abhgupta@cs.washington.edu with the subject-line “Waitlisted for 
CSE478”

Logistics

mailto:abhgupta@cs.Washington.edu


Recap



Controller Design Decisions

Option 1: 
Bang-bang control

Option 2: 
PID control

Option 3: 
Pure-pursuit control

Model Agnostic Very simplistic model

Very particular cost function 



n Minimize sum of costs, subject to dynamics and other constraints

Generalized Problem: Optimal Control

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds



Linear System

n Linear system (model)
n Quadratic cost function to 

minimize

(M x 1)(N x M)(N x 1)(N x N)(N x 1)

STATE → NEXT STATE CONTROL → NEXT STATE



How do we solve for controls?

T-1T-2T-3

Start from timestep T-1 and solve backwards

Dynamic programming to the rescue!
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Bellman Equation for Dynamic Programming

MINIMUM COST, 
STARTING FROM 

x_t

MINIMUM FUTURE 
COST, STARTING 
FROM x_t+_11

IMMEDIATE 
COST

n Linear system (model)
n Quadratic cost function to 

minimize



Start from the back: Time-to-go = 0

(whiteboard)



Start from the back: Time-to-go = 0

Minimized with u = 0

T-1

= 0
Note that the cost is quadratic in x



Take one step towards the start: Time-to-go = 1

Solve for control at timestep T-1, accounting 
for impact on the future, through dynamics 



Take one step towards the start: Time-to-go = 1

(Move to whiteboard)



Value Iteration (Horizon = 1)



Turns into a recursion at time-to-go = i

RUNTIME:

Optimal controller is linear in x

Optimal cost is quadratic in x



The LQR algorithm

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0:
return 0, Q

else:
Pi-1 = OptimalValueControl(A, B, Q, R, time-to-go - 1)

return Ki, Pi

Optimal controller is linear in x

Optimal cost is quadratic in x



Unpacking LQR intuitively



Unpacking LQR intuitively

Recall Kalman Filtering

Set A, B = I

Tradeoff between future cost Pi-1 and current cost R



Unpacking LQR intuitively

x^T x

Current state cost

Current action cost

Optimal cost in the future based on dynamics 



Linear Quadratic Regulator

n For linear systems with quadratic costs, we can write down 
very efficient algorithms that return the optimal sequence of 
actions!
n Special case where dynamic programming can be applied to 

continuous states and actions (typically only discrete states and 
actions)

n Many LQR extensions: non-linear systems, linear time-varying 
systems, trajectory following for non-linear systems, arbitrary 
costs, etc.



LQR in Action: Stanford Helicopter

HTTPS://YOUTU.BE/0JL04JJJOCCABBEEL ET AL., 2006



LQR in Action

Klemm et al 2020
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n Extensions make it more generally applicable:
n Affine systems

n Systems with stochasticity

n Non-linear systems

n Linear time varying (LTV) systems

n Trajectory following for non-linear systems

LQR assumptions revisited

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.



n Extensions make it more generally applicable:
n Affine systems

n Systems with stochasticity

n Non-linear systems

n Linear time varying (LTV) systems

n Trajectory following for non-linear systems

LQR assumptions revisited

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.



Nonlinear system:

We can keep the system at the state x* iff

Linearizing the dynamics around x* gives:

Equivalently:

Let zt = xt – x* , let vt = ut – u*, then:
[=standard LQR]

LQR Ext1: non-linear systems

A B



LQR Ext2: Linear Time Varying (LTV) Systems



LQR Ext2: Linear Time Varying (LTV) Systems



LQR Ext3: Trajectory Following for Non-Linear Systems

n A state sequence x0*, x1*, …, xH* is a feasible target trajectory if and only if

n Problem statement:

n Transform into linear time varying case (LTV):

At Bt



n Transformed into linear time varying case (LTV):

n Now we can run the standard LQR back-up iterations.

n Resulting policy at i time-steps from the end:

n The target trajectory need not be feasible to apply this technique, however, if it 
is infeasible then there will an offset term in the dynamics:

LQR Ext3: Trajectory Following for Non-Linear Systems



Iteratively Apply LQR
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Why might this not be enough?

Non-linear

Non-quadratic

Use linear/quadratic Taylor expansion 
about current nominal states/actions 

Might be a poor, local approximation!

May not be able to incorporate 
constraints



Let’s revisit ideas from Bayesian filtering 

Linear Gaussian assumption Sampling-based approximation

Filtering

Control

Kalman Filtering Particle Filtering

LQR Sampling based MPC



Solving Optimal Control with Sampling

Can soften by taking softmin rather than argmin

1. Sample a set of K action trajectories of T steps from start state
2. Evaluate each K step action sequence through the model and 

get per trajectory cost
3. Choose minimum trajectory cost trajectory
4. Execute lowest cost actions

Random Sampling



Solving Optimal Control with Sampling – issues?

1. Open-loop controller may not be able to deal 
with unexpected events/divergences

2. Computation of full controller can be expensive:
à Do it on the fly!

3. Model might be wrong, errors may accumulate
4. …

1. Sample a set of K action trajectories of T steps from start state
2. Evaluate each K step action sequence through the model and 

get per trajectory cost
3. Choose minimum trajectory cost trajectory
4. Execute lowest cost actions



Why do we need to replan?

What happens if the controls are planned once and executed?



What happens if the controls are planned once and executed?

Why do we need to replan?



Solving Optimal Control with Sampling – issues?

A stationary feedback controller may not be 
able to deal with unexpected events Replanning can help with divergence 

Model-Predictive/Receding Horizon Control

1. Plan with random shooting from st
2. Execute the first action a0 and reach st+1



General Replanning Framework - MPC

Step 3: Repeat!

Step 2: Execute the first control

Step 1: Solve optimization problem to a horizon



4
2

How are the controls executed?

Step 1: Solve optimization problem to a horizon



4
3

How are the controls executed?

Step 2: Execute the first control

Step 1: Solve optimization problem to a horizon



4
4

Step 3: Repeat!

Step 2: Execute the first control

Step 1: Solve optimization problem to a horizon

How are the controls executed?



Does it work?

Nagabandi et al



Why might this not work?

Searching for a needle in a 
haystack by random 

shooting, high variance!

Planning with Shooting + MPC

1. Sample a set of K action trajectories of T steps from start state
2. Evaluate each K step action sequence through the model and 

get per trajectory cost
3. Choose minimum trajectory cost trajectory
4. Execute lowest cost actions



Better Sampling Techniques for MPC
Sampled from stationary 

uniform/gaussian distribution
Can we inform the sampling 

function with the cost function?

Idea: Iteratively upweight sampling distribution 
around the things that are lower cost



Better Sampling Techniques for Shooting - MPPI
Idea: Iteratively upweight sampling 

distribution around the things that are 
lower costs

Sample trajectories using these action 
sequences with the model  

Sample N action sequences

Update action sampler by upweighting 
low cost actions

Referred to as MPPI, lower variance!



Does it work?

AutoRally



Does it work?
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