

Autonomous Robotics

Winter 2025

Abhishek Gupta TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

Seeded Paper Discussion 2 - Wed Feb 19 HW3 due Feb 20

- Post questions, discuss any issues you are having on Ed.
- Students with **no** access to 002, e-mail us with your student ID.
 Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Controller Design Decisions

Generalized Problem: Optimal Control

Minimize sum of costs, subject to dynamics and other constraints

Can be costs like smoothness, preferences, speed

Can be constraints like velocity/acceleration bounds

Linear System

- Linear system (model)
- Quadratic cost function to minimize

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t\\ \sum_t x_t^\top Q x_t + u_t^\top R u_t \end{aligned}$$

How do we solve for controls?

Dynamic programming to the rescue!

T-3

Start from timestep T-1 and solve backwards

T-2

T-1

Lecture Outline

Bellman Equation for Dynamic Programming

- Linear system (model)
- Quadratic cost function to minimize

$$x_{t+1} = Ax_t + Bu_t$$
$$\sum_t x_t^\top Q x_t + u_t^\top R u_t$$

$$J^*(x_t) = \min_{u_t} x_t^{\top} Q x_t + u_t^{\top} R u_t + J^*(x_{t+1})$$

MINIMUM COST, STARTING FROM \mathcal{X}_t IMMEDIATE COST

$\begin{array}{l} \textbf{MINIMUM FUTURE} \\ \textbf{COST, STARTING} \\ \textbf{FROM} \ \mathcal{X}_{t+1} \end{array}$

Start from the back: Time-to-go = 0

$$J_0(x) = \min_u x^\top Q x + u^\top R u$$

(whiteboard)

Start from the back: Time-to-go = 0

Take one step towards the start: Time-to-go = 1

$$J_0(x) = \min_u x^\top Q x + u^\top R u = x^\top Q x = x^\top P_0 x$$

$$J_1(x) = \min_u x^\top Q x + u^\top R u + J_0(A x + B u)$$

 x_{T-2} x_{T-1}

Solve for control at timestep T-1, accounting for impact on the future, through dynamics

Take one step towards the start: Time-to-go = 1

$$J_1(x) = \min_{u} x^\top Q x + u^\top R u + J_0(Ax + Bu)$$
(Move to whiteboard)

Value Iteration (Horizon = 1)

$$J_{1}(x) = \min_{u} \left[x^{\top}Qx + u^{\top}Ru + (Ax + Bu)^{\top}P_{0}(Ax + Bu) \right]$$
$$\nabla_{u}[\cdot] = 2Ru + 2B^{\top}P_{0}(Ax + Bu) = 0$$
$$u = -(R + B^{\top}P_{0}B)^{-1}B^{\top}P_{0}Ax$$

 $J_1(x) = x^{\top} P_1 x$ $P_1 = Q + K_1^{\top} R K_1 + (A + B K_1)^{\top} P_0 (A + B K_1)$ $K_1 = -(R + B^{\top} P_0 B)^{-1} B^{\top} P_0 A$

Turns into a recursion at time-to-go = i

$$K_{i} = -(R + B^{\top}P_{i-1}B)^{-1}B^{\top}P_{i-1}A$$
$$P_{i} = Q + K_{i}^{\top}RK_{i} + (A + BK_{i})^{\top}P_{i-1}(A + BK_{i})$$

$$u = K_i x, \ J_i(x) = x^\top P_i x$$

RUNTIME: $O(H(n^3 + m^3))$

Optimal controller is linear in x

Optimal cost is quadratic in x

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0: return 0, Q

else:

 $\begin{aligned} \mathsf{P}_{i-1} &= \mathsf{OptimalValueControl}(\mathsf{A}, \mathsf{B}, \mathsf{Q}, \mathsf{R}, \mathsf{time-to-go-1}) \\ K_i &= -(R + B^\top P_{i-1}B)^{-1}B^\top P_{i-1}A \\ P_i &= Q + K_i^\top RK_i + (A + BK_i)^\top P_{i-1}(A + BK_i) \\ \mathsf{return} \ \mathsf{K}_i, \mathsf{P}_i \end{aligned}$

Optimal controller is linear in x

Optimal cost is quadratic in x

Unpacking LQR intuitively

$$K_{i} = -(R + B^{\top}P_{i-1}B)^{-1}B^{\top}P_{i-1}A$$
$$P_{i} = Q + K_{i}^{\top}RK_{i} + (A + BK_{i})^{\top}P_{i-1}(A + BK_{i})$$
$$u = K_{i}x, \ J_{i}(x) = x^{\top}P_{i}x$$

Unpacking LQR intuitively

$$K_{i} = -(R + B^{\top} P_{i-1} B)^{-1} B^{\top} P_{i-1} A$$

Recall Kalman Filtering

Set A, B = I

$$\frac{P_{i-1}}{R+P_{i-1}}$$

$$\mathbf{x}^{\mathsf{T}} \begin{bmatrix} P_i = Q + K_i^{\top} R K_i + (A + B K_i)^{\top} P_{i-1} (A + B K_i) \end{bmatrix}_{\mathbf{X}}$$

Current state cost
Current action cost

Linear Quadratic Regulator

- For linear systems with quadratic costs, we can write down very efficient algorithms that return the optimal sequence of actions!
 - Special case where dynamic programming can be applied to continuous states and actions (typically only discrete states and actions)
- Many LQR extensions: non-linear systems, linear time-varying systems, trajectory following for non-linear systems, arbitrary costs, etc.

LQR in Action: Stanford Helicopter

ABBEEL ET AL., 2006

HTTPS://YOUTU.BE/0JL04JJJOCC

LQR in Action

Klemm et al 2020

Lecture Outline

LQR assumptions revisited

$$\begin{array}{rcl} x_{t+1} &=& Ax_t + Bu_t \\ g(x_t, u_t) &=& x_t^\top Q x_t + u_t^\top R u_t \end{array}$$

= for keeping a linear system at the all-zeros state while preferring to keep the control input small.

- Extensions make it more generally applicable:
 - Affine systems
 - Systems with stochasticity
 - Non-linear systems
 - Linear time varying (LTV) systems
 - Trajectory following for non-linear systems

LQR assumptions revisited

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t \\ g(x_t, u_t) &= x_t^\top Q x_t + u_t^\top R u_t \end{aligned}$$

= for keeping a linear system at the all-zeros state while preferring to keep the control input small.

- Extensions make it more generally applicable:
 - Affine systems
 - Systems with stochasticity
 - Non-linear systems
 - Linear time varying (LTV) systems

Trajectory following for non-linear systems

LQR Ext1: non-linear systems

Nonlinear system: $x_{t+1} = f(x_t, u_t)$

We can keep the system at the state x^* iff $\exists u^* \text{s.t.} \quad x^* = f(x^*, u^*)$

Linearizing the dynamics around x^{*} gives:

$$\begin{aligned} x_{t+1} &\approx f(x^*, u^*) + \frac{\partial f}{\partial x}(x^*, u^*)(x_t - x^*) + \frac{\partial f}{\partial u}(x^*, u^*)(u_t - u^*) \\ \\ \text{Equivalently:} \qquad & \mathsf{A} \qquad & \mathsf{B} \end{aligned}$$

 $x_{t+1} - x^* \approx A(x_t - x^*) + B(u_t - u^*)$

Let $z_t = x_t - x^*$, let $v_t = u_t - u^*$, then: $z_{t+1} = Az_t + Bv_t$, $\text{cost} = z_t^\top Qz_t + v_t^\top Rv_t$ [=standard LQR] $v_t = Kz_t \Rightarrow u_t - u^* = K(x_t - x^*) \Rightarrow u_t = u^* + K(x_t - x^*)$

LQR Ext2: Linear Time Varying (LTV) Systems

$$\begin{aligned} x_{t+1} &= A_t x_t + B_t u_t \\ g(x_t, u_t) &= x_t^\top Q_t x_t + u_t^\top R_t u_t \end{aligned}$$

LQR Ext2: Linear Time Varying (LTV) Systems

Set
$$P_0 = 0$$
.
for $i = 1, 2, 3, ...$
 $K_i = -(R_{H-i} + B_{H-i}^{\top} P_{i-1} B_{H-i})^{-1} B_{H-i}^{\top} P_{i-1} A_{H-i}$
 $P_i = Q_{H-i} + K_i^{\top} R_{H-i} K_i + (A_{H-i} + B_{H-i} K_i)^{\top} P_{i-1} (A_{H-i} + B_{H-i} K_i)$

The optimal policy for a *i*-step horizon is given by:

$$\pi(x) = K_i x$$

The cost-to-go function for a *i*-step horizon is given by:

$$J_i(x) = x^\top P_i x.$$

LQR Ext3: Trajectory Following for Non-Linear Systems

- A state sequence x₀*, x₁*, ..., x_H* is a feasible target trajectory if and only if
- Problem statement: $\exists u_0^*, u_1^*, \dots, u_{H-1}^* : \forall t \in \{0, 1, \dots, H-1\} : x_{t+1}^* = f(x_t^*, u_t^*)$

$$\min_{u_0, u_1, \dots, u_{H-1}} \sum_{t=0}^{H-1} (x_t - x_t^*)^\top Q(x_t - x_t^*) + (u_t - u_t^*)^\top R(u_t - u_t^*)$$

s.t. $x_{t+1} = f(x_t, u_t)$

Transform into linear time varying case (LTV):

$$\begin{aligned} x_{t+1} &\approx f(x_t^*, u_t^*) + \frac{\partial f}{\partial x} (x_t^*, u_t^*) (x_t - x_t^*) + \frac{\partial f}{\partial u} (x_t^*, u_t^*) (u_t - u_t^*) \\ & \mathsf{A}_{\mathsf{t}} \\ x_{t+1} - x_{t+1}^* &\approx A_t (x_t - x_t^*) + B_t (u_t - u_t^*) \end{aligned}$$

LQR Ext3: Trajectory Following for Non-Linear Systems

Transformed into linear time varying case (LTV):

$$\min_{u_0, u_1, \dots, u_{H-1}} \sum_{t=0}^{H-1} (x_t - x_t^*)^\top Q(x_t - x_t^*) + (u_t - u_t^*)^\top R(u_t - u_t^*)$$

s.t.
$$x_{t+1} - x_{t+1}^* = A_t(x_t - x_t^*) + B_t(u_t - u_t^*)$$

- Now we can run the standard LQR back-up iterations.
- Resulting policy at i time-steps from the end:

$$u_{H-i} - u_{H-i}^* = K_i (x_{H-i} - x_{H-i}^*)$$

The target trajectory need not be feasible to apply this technique, however, if it is infeasible then there will an offset term in the dynamics:

$$x_{t+1} - x_{t+1}^* = f(x_t, u_t) - x_{t+1}^* + A_t(x_t - x_t^*) + B_t(u_t - u_t^*)$$

Iteratively Apply LQR

Initialize the algorithm by picking either (a) A control policy $\pi^{(0)}$ or (b) A sequence of states $x_0^{(0)}, x_1^{(0)}, \ldots, x_H^{(0)}$ and control inputs $u_0^{(0)}, u_1^{(0)}, \ldots, u_H^{(0)}$. With initialization (a), start in Step (1). With initialization (b), start in Step (2). Iterate the following:

- (1) Execute the current policy $\pi^{(i)}$ and record the resulting state-input trajectory $x_0^{(i)}, u_0^{(i)}, x_1^{(i)}, u_1^{(i)}, \dots, x_H^{(i)}, u_H^{(i)}$.
- (2) Compute the LQ approximation of the optimal control problem around the obtained state-input trajectory by computing a first-order Taylor expansion of the dynamics model, and a second-order Taylor expansion of the cost function.
- (3) Use the LQR back-ups to solve for the optimal control policy $\pi^{(i+1)}$ for the LQ approximation obtained in Step (2).

(4) Set
$$i = i + 1$$
 and go to Step (1).

Lecture Outline

Why might this not be enough?

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$
Non-linear
s.t. $x_{t+1} = f(x_t, u_t)$
Non-quadratic

Use linear/quadratic Taylor expansion about current nominal states/actions

$$\sum_t x_t^\top Q x_t + u_t^\top R u_t$$

 $x_{t+1} = Ax_t + Bu_t$

Might be a poor, local approximation!

May not be able to incorporate constraints

Let's revisit ideas from Bayesian filtering

Linear Gaussian assumption

Sampling-based approximation

Filtering

Kalman Filtering

Particle Filtering

Control

LQR

Sampling based MPC

Solving Optimal Control with Sampling

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$

s.t.
$$x_{t+1} = f(x_t, u_t)$$

- 1. Sample a set of K action trajectories of T steps from start state
- 2. Evaluate each K step action sequence through the model and get per trajectory cost
- 3. Choose minimum trajectory cost trajectory
- 4. Execute lowest cost actions

Random Sampling

Can soften by taking softmin rather than argmin

Solving Optimal Control with Sampling – issues?

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$

s.t.
$$x_{t+1} = f(x_t, u_t)$$

- 1. Sample a set of K action trajectories of T steps from start state
- 2. Evaluate each K step action sequence through the model and get per trajectory cost
- 3. Choose minimum trajectory cost trajectory
- 4. Execute lowest cost actions

- 1. Open-loop controller may not be able to deal with unexpected events/divergences
- Computation of full controller can be expensive:
 → Do it on the fly!
- 3. Model might be wrong, errors may accumulate
- 4. ...

Why do we need to replan?

What happens if the controls are planned once and executed?

Why do we need to replan?

What happens if the controls are planned once and executed?

Solving Optimal Control with Sampling – issues?

s.t. $x_{t+1} = f(x_t, u_t)$

1. Plan with random shooting from s_t 2. Execute the first action a_0 and reach s_{t+1}

A stationary feedback controller may not be able to deal with unexpected events

Replanning can help with divergence

Model-Predictive/Receding Horizon Control

General Replanning Framework - MPC

Step 1: Solve optimization problem to a horizon

Step 2: Execute the first control

Step 3: Repeat!

How are the controls executed?

Step 1: Solve optimization problem to a horizon

How are the controls executed?

Step 1: Solve optimization problem to a horizon

Step 2: Execute the first control

How are the controls executed?

Step 1: Solve optimization problem to a horizon

Step 2: Execute the first control

Step 3: Repeat!

Does it work?

Why might this not work?

$$\min_{u_{1:T}} \sum_{t=1}^{T} c(x_t, u_t)$$

s.t.
$$x_{t+1} = f(x_t, u_t)$$

- 1. Sample a set of K action trajectories of T steps from start state
- 2. Evaluate each K step action sequence through the model and get per trajectory cost
- 3. Choose minimum trajectory cost trajectory
- 4. Execute lowest cost actions

Planning with Shooting + MPC

Searching for a needle in a haystack by random shooting, high variance!

Better Sampling Techniques for MPC

Sampled from stationary uniform/gaussian distribution

$$\arg\min_{u_0, u_1, \dots, u_T} \sum_{t=1}^T c(x_t, u_t)$$
$$x_{t+1} = f(x_t, u_t)$$

Can we inform the sampling function with the cost function?

Idea: Iteratively upweight sampling distribution around the things that are lower cost

Better Sampling Techniques for Shooting - MPPI

Does it work?

Does it work?

Lecture Outline

Class Outline

