w Autonomous Robotics

Winter 2025

Abhishek Gupta
TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

State Estimation Control
Robotic System Design AitErig Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

Logistics

m Reading discussions due Wed Feb 12
m Seeded Paper Discussion 2 Monday Feb 17 — emails sent

m Post questions, discuss any issues you are having on Ed.
m Students with no access to 002, e-mail us with your student ID.
m Students that have not been added to the class, email

abhgupta@cs.washington.edu with the subject-line “Waitlisted for
CSE478”

mailto:abhgupta@cs.Washington.edu

Recap

Different Control Laws

Proportional-integral-derivative (PID) control

Pure-pursuit control

Model-predictive control (MPC)

Linear-quadratic regulator (LQR)

And many many more!

PID Intuition

U = — erct+ -+

PROPORTIONAL INTEGRAL
(PRESENT) (PAST)

Proportional: minimize the current error!
ntegral: if I'm accumulating error, try harder!

Derivative: if I'm going to overshoot, slow down!

Kdéct

DERIVATIVE
(FUTURE)

Pure Pursuit Controller

s Assume the car is moving with
fixed steering angle

COULTER, 1992

Pure pursuit: Keep chasing looakahead

1. Find a lookahead and compute arc

2. Move along the arc

3.Gotostep 1

Equations of Motion RECALL

r = vcost
Yy =vsinf
\ (9': N E: vtan o
R L

Computing the Arc Radius

(erefa yref)

Computing the Arc Radius

20

_a- _LIZ’) _a;_
_— R(L 9) ref e
b _yref } Y
Different than cross-track error

(this is ref. position in robot frame;
vice versa for cross-track error) == (z,y,0)

(xrefa yref)

Question: How do | choose L?

Controller Design Decisions

1. Get a reference path/trajectory to track

2. Pick a reference state from the reference path/trajectory
3. Compute error to reference state

4. Compute control law to minimize error

S | g

Option 1: Option 2: Option 3:
Bang-bang control PID control Pure-pursuit control

Are we done?

Lecture Outline

Recap of Pure Pursuit

\4

From tracking to optimal control

\4

Linear Quadratic Regulator

Controller Design Decisions

Very particular cost function

_

Option 1: Option 2: Option 3:
Bang-bang control PID control Pure-pursuit control

\/

Model Agnostic Very simplistic model

Control as an Optimization Problem

= For asequence of H control actions
1. Use model to predict consequence of actions (i.e., H future states)
2. Evaluate the cost function

= Compute optimal sequence of H control actions (minimizes
cost)

Generalized Problem: Optimal Control

= Minimize sum of costs, subject to dynamics and other constraints
T

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds

Linear Quadratic Regulator

= Linear system (model) Li4+1 = Az + Buy

. : o T
= Quadratic cost function to Zt Ly th + Uy Ruy
minimize

Linear System

= Linear system (model) Lt+1 — A-It =+ But

= Quadratic cost function to Zt ZU;F Qry + U;r Ruy
minimize
Tir1 = A Lt et B uy
(Nx1) (NXxN)(Nx1) (NxM)(Mx 1)

STATE — NEXT STATE CONTROL — NEXT STATE

Example: Inverted Pendulum (Linear System)

mgl sin @ + 7 = ml*0

0= Isinf+ Tz~ 960+

ml?

1 i _Ot_ _At_ le

Quadratic Cost Function

= Linear system (model) Li4+1 = Az + Buy

= Quadratic cost function to Zt ZC; Qai‘t == U;r Ruy
minimize
x| Qxy u, Ruy
(1 XN)(NxN)(Nx1) (1xMMxM(Mx1)

STATE COST CONTROL COST

Example: Inverted Pendulum (State Cost)

x| Qxy (QUADRATIC FORM)

_QQG QQ@'- _Qt_
0] [Qpg ol |0

= Qpo0? + 2Q,;0:0; + Q ;467

Q=0+ 2"Qz>0, Vz#0

Example: Inverted Pendulum (Control Cost)

u, Ruy (QUADRATIC FORM)
Tt Tt
— T 5 RTT D)
le [] le

R>=0+2"Rz>0,Vz#0

Example: Inverted Pendulum

How do we solve for controls?

Dynamic programming to the rescue!

Start from timestep T-1 and solve backwards

- Bellman Equation for Dynamic Programming

= Linear system (model) Li4+1 = Az + Buy

. : o T
= Quadratic cost function to Zt Ly th + Uy Ruy
minimize

J*(x¢) = minx, Qzy + u, Ruy + J* (x441)

Ut

MINIMUM COST, IMMEDIATE MINIMUM FUTURE

STARTING FROM COST COST, STARTING
Tt FROM L¢41

Start from the back: Time-to-go =0

JO (.ﬂl}) — mln ZETQ.CU _|_ UTRU (whiteboard)
u

Start from the back: Time-to-go =0

Jo(z) =minz' Qr+u' ' Ru=2'Qr =z' Pyx

’ ~ |

, Minimized with u=0 Py = Q

Lref=0

Note that the cost is quadratic in x

Take one step towards the start: Time-to-go =1

Jo(z) =minz' Qr+u' ' Ru=2'Qr =z' Pyx

u

Ji(z) =minz' Qr +u' Ru+ Jo(Azx + Bu)

\I Solve for control at timestep T-1, accounting
| ® Lref

for impact on the future, through dynamics

Take one step towards the start: Time-to-go =1

Ji(x) = mm ' Qr+u' Ru+ Jo(Azx + Bu)

(Move to whiteboard)

Value lteration (Horizon = 1)

Ji(z) =min [z' Qr +u' Ru+ (Az + Bu)' Py(Az + Bu)]

u

Vul] =2Ru+2B" Py(Ax + Bu) =0

uw=—(R+ B'PyB) " 'B'PyAx

Ji(z) =z Pz
Pi=Q+ K, RK; + (A+ BK,)' Py(A+ BK;)
Ki=—(R+B'P,B)"'B'"PA

Turns into a recursion at time-to-go = |

Ki=—(R+B'P_1B)"'B'P_,A
P,=Q+ K,'RK; + (A+ BK;)' Pi_1(A + BK;)

u= K;x, Ji(r) =x P

Optimal controller is linear in x

Optimal cost is quadratic in x RUNTIME: O(H(n3 =+ 7713))

The LQR algorithm

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0:
return 0, Q

else:
P..1 = OptimalValueControl(A, B, Q, R, time-to-go - 1)

Ki=—(R+B'P_1B)"'B"P,_,A
P,=Q+ K, RK; + (A+ BK;)' P,_,(A + BK;)

return Ki, P;

Optimal controller is linear in x

Optimal cost is quadratic in x

Unpacking LQOR intuitively

Ki=—(R+B'P,_1B)"'B'P_,A
P,=Q+ K, RK; + (A + BK;)' P_(A+ BK;)
u= Kz, J;(xr) = ' Px

Unpacking LQOR intuitively

Ki=—(R+B'P,_1B)"'B'P_,A
Recall Kalman Filtering
BT'P,_1A
R+ BTP,_B

Set A, B =1

Pi_q
R+ P4

Tradeoff between future cost P, ; and current cost R

Unpacking LQOR intuitively

XAT

P,=Q+ K, RK; + (A+ BK;)' Pi_1(A+ BK;)| 4

—

l

Current state cost

—

Current action cost

Optimal cost in the future based on dynamics

Linear Quadratic Regulator

= For linear systems with quadratic costs, we can write down
very efficient algorithms that return the optimal sequence of
actions!

= Special case where dynamic programming can be applied to
continuous states and actions (typically only discrete states and
actions)
= Many LQR extensions: non-linear systems, linear time-varying
systems, trajectory following for non-linear systems, arbitrary

Costs, etc.

LQR in Action: Stanford Helicopter

ABBEEL ET AL., 2006 HTTPS://YOUTU.BE/0JL0413JOCC

LQR In Action

Overcoming challenging
Indoor environements.

Klemm et al 2020

Class Outline

State Estimation Control
Robotic System Design AitErig Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

