
Autonomous Robotics
Winter 2025
Abhishek Gupta

TAs: Carolina Higuera, Entong Su, Bernie Zhu



Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient



n Reading discussions due Wed Feb 12
n Seeded Paper Discussion 2 Monday Feb 17 – emails sent

n Post questions, discuss any issues you are having on Ed.
n Students with no access to 002, e-mail us with your student ID.
n Students that have not been added to the class, email 

abhgupta@cs.washington.edu with the subject-line “Waitlisted for 
CSE478”

Logistics

mailto:abhgupta@cs.Washington.edu


Recap



Different Control Laws

n Proportional-integral-derivative (PID) control

n Pure-pursuit control

n Model-predictive control (MPC)

n Linear-quadratic regulator (LQR)

n And many many more!



PID Intuition

PROPORTIONAL
(PRESENT)

INTEGRAL
(PAST)

DERIVATIVE
(FUTURE)

n Proportional: minimize the current error!
n Integral: if I’m accumulating error, try harder!
n Derivative: if I’m going to overshoot, slow down!



Pure Pursuit Controller

n Assume the car is moving with 
fixed steering angle

COULTER, 1992



Pure pursuit: Keep chasing looakahead

1. Find a lookahead and compute arc

2. Move along the arc

3. Go to step 1



Equations of Motion RECALL



Computing the Arc Radius



Computing the Arc Radius

Different than cross-track error
(this is ref. position in robot frame;
vice versa for cross-track error)



Question: How do I choose L?

1
2



Controller Design Decisions

1. Get a reference path/trajectory to track
2. Pick a reference state from the reference path/trajectory
3. Compute error to reference state
4. Compute control law to minimize error

Option 1: 
Bang-bang control

Option 2: 
PID control

Option 3: 
Pure-pursuit control

Are we done?



Lecture Outline

Recap of Pure Pursuit

From tracking to optimal control

Linear Quadratic Regulator



Controller Design Decisions

Option 1: 
Bang-bang control

Option 2: 
PID control

Option 3: 
Pure-pursuit control

Model Agnostic Very simplistic model

Very particular cost function 



Control as an Optimization Problem

n For a sequence of H control actions
1. Use model to predict consequence of actions (i.e., H future states)
2. Evaluate the cost function

n Compute optimal sequence of H control actions (minimizes 
cost)



n Minimize sum of costs, subject to dynamics and other constraints

Generalized Problem: Optimal Control

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds



Linear Quadratic Regulator

n Linear system (model)
n Quadratic cost function to 

minimize



Linear System

n Linear system (model)
n Quadratic cost function to 

minimize

(M x 1)(N x M)(N x 1)(N x N)(N x 1)

STATE → NEXT STATE CONTROL → NEXT STATE



Example: Inverted Pendulum (Linear System)



Quadratic Cost Function

(N x 1)(N x N)

STATE COST CONTROL COST

(1 x N) (M x 1)(M x M)(1 x M)

n Linear system (model)
n Quadratic cost function to 

minimize



Example: Inverted Pendulum (State Cost)

(QUADRATIC FORM)



Example: Inverted Pendulum (Control Cost)

(QUADRATIC FORM)



Example: Inverted Pendulum



How do we solve for controls?

T-1T-2T-3

Start from timestep T-1 and solve backwards

Dynamic programming to the rescue!



Bellman Equation for Dynamic Programming

MINIMUM COST, 
STARTING FROM 

x_t

MINIMUM FUTURE 
COST, STARTING 
FROM x_t+_11

IMMEDIATE 
COST

n Linear system (model)
n Quadratic cost function to 

minimize



Start from the back: Time-to-go = 0

(whiteboard)



Start from the back: Time-to-go = 0

Minimized with u = 0

T-1

= 0
Note that the cost is quadratic in x



Take one step towards the start: Time-to-go = 1

Solve for control at timestep T-1, accounting 
for impact on the future, through dynamics 



Take one step towards the start: Time-to-go = 1

(Move to whiteboard)



Value Iteration (Horizon = 1)



Turns into a recursion at time-to-go = i

RUNTIME:

Optimal controller is linear in x

Optimal cost is quadratic in x



The LQR algorithm

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0:
return 0, Q

else:
Pi-1 = OptimalValueControl(A, B, Q, R, time-to-go - 1)

return Ki, Pi

Optimal controller is linear in x

Optimal cost is quadratic in x



Unpacking LQR intuitively



Unpacking LQR intuitively

Recall Kalman Filtering

Set A, B = I

Tradeoff between future cost Pi-1 and current cost R



Unpacking LQR intuitively

x^T x

Current state cost

Current action cost

Optimal cost in the future based on dynamics 



Linear Quadratic Regulator

n For linear systems with quadratic costs, we can write down 
very efficient algorithms that return the optimal sequence of 
actions!
n Special case where dynamic programming can be applied to 

continuous states and actions (typically only discrete states and 
actions)

n Many LQR extensions: non-linear systems, linear time-varying 
systems, trajectory following for non-linear systems, arbitrary 
costs, etc.



LQR in Action: Stanford Helicopter

HTTPS://YOUTU.BE/0JL04JJJOCCABBEEL ET AL., 2006



LQR in Action

Klemm et al 2020



Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient


