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n Reading discussions due Wed Feb 12
n Seeded Paper Discussion 2 Monday Feb 17 – emails sent

n Post questions, discuss any issues you are having on Ed.
n Students with no access to 002, e-mail us with your student ID.
n Students that have not been added to the class, email 

abhgupta@cs.washington.edu with the subject-line “Waitlisted for 
CSE478”

Logistics

mailto:abhgupta@cs.Washington.edu


Recap



Different Control Laws

n Proportional-integral-derivative (PID) control

n Pure-pursuit control

n Model-predictive control (MPC)

n Linear-quadratic regulator (LQR)

n And many many more!



PID Intuition

PROPORTIONAL
(PRESENT)

INTEGRAL
(PAST)

DERIVATIVE
(FUTURE)

n Proportional: minimize the current error!
n Integral: if I’m accumulating error, try harder!
n Derivative: if I’m going to overshoot, slow down!



Pure Pursuit Controller

n Assume the car is moving with 
fixed steering angle

COULTER, 1992



Pure pursuit: Keep chasing looakahead

1. Find a lookahead and compute arc

2. Move along the arc

3. Go to step 1



Equations of Motion RECALL



Computing the Arc Radius



Computing the Arc Radius

Different than cross-track error
(this is ref. position in robot frame;
vice versa for cross-track error)



Question: How do I choose L?

1
2



Controller Design Decisions

1. Get a reference path/trajectory to track
2. Pick a reference state from the reference path/trajectory
3. Compute error to reference state
4. Compute control law to minimize error

Option 1: 
Bang-bang control

Option 2: 
PID control

Option 3: 
Pure-pursuit control

Are we done?



Lecture Outline

Recap of Pure Pursuit

From tracking to optimal control

Linear Quadratic Regulator



Controller Design Decisions

Option 1: 
Bang-bang control

Option 2: 
PID control

Option 3: 
Pure-pursuit control

Model Agnostic Very simplistic model

Very particular cost function 



Control as an Optimization Problem

n For a sequence of H control actions
1. Use model to predict consequence of actions (i.e., H future states)
2. Evaluate the cost function

n Compute optimal sequence of H control actions (minimizes 
cost)



n Minimize sum of costs, subject to dynamics and other constraints

Generalized Problem: Optimal Control

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds



Linear Quadratic Regulator

n Linear system (model)
n Quadratic cost function to 

minimize



Linear System

n Linear system (model)
n Quadratic cost function to 

minimize

(M x 1)(N x M)(N x 1)(N x N)(N x 1)

STATE → NEXT STATE CONTROL → NEXT STATE



Example: Inverted Pendulum (Linear System)



Quadratic Cost Function

(N x 1)(N x N)

STATE COST CONTROL COST

(1 x N) (M x 1)(M x M)(1 x M)

n Linear system (model)
n Quadratic cost function to 

minimize



Example: Inverted Pendulum (State Cost)

(QUADRATIC FORM)



Example: Inverted Pendulum (Control Cost)

(QUADRATIC FORM)



Example: Inverted Pendulum



How do we solve for controls?

T-1T-2T-3

Start from timestep T-1 and solve backwards

Dynamic programming to the rescue!



Bellman Equation for Dynamic Programming

MINIMUM COST, 
STARTING FROM 

x_t

MINIMUM FUTURE 
COST, STARTING 
FROM x_t+_11

IMMEDIATE 
COST

n Linear system (model)
n Quadratic cost function to 

minimize



Start from the back: Time-to-go = 0

(whiteboard)



Start from the back: Time-to-go = 0

Minimized with u = 0

T-1

= 0
Note that the cost is quadratic in x



Take one step towards the start: Time-to-go = 1

Solve for control at timestep T-1, accounting 
for impact on the future, through dynamics 



Take one step towards the start: Time-to-go = 1

(Move to whiteboard)



Value Iteration (Horizon = 1)



Turns into a recursion at time-to-go = i

RUNTIME:

Optimal controller is linear in x

Optimal cost is quadratic in x



The LQR algorithm

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0:
return 0, Q

else:
Pi-1 = OptimalValueControl(A, B, Q, R, time-to-go - 1)

return Ki, Pi

Optimal controller is linear in x

Optimal cost is quadratic in x



Unpacking LQR intuitively



Unpacking LQR intuitively

Recall Kalman Filtering

Set A, B = I

Tradeoff between future cost Pi-1 and current cost R



Unpacking LQR intuitively

x^T x

Current state cost

Current action cost

Optimal cost in the future based on dynamics 



Linear Quadratic Regulator

n For linear systems with quadratic costs, we can write down 
very efficient algorithms that return the optimal sequence of 
actions!
n Special case where dynamic programming can be applied to 

continuous states and actions (typically only discrete states and 
actions)

n Many LQR extensions: non-linear systems, linear time-varying 
systems, trajectory following for non-linear systems, arbitrary 
costs, etc.



LQR in Action: Stanford Helicopter

HTTPS://YOUTU.BE/0JL04JJJOCCABBEEL ET AL., 2006



LQR in Action

Klemm et al 2020
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