

Autonomous Robotics

Winter 2025

Abhishek Gupta TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

HW3 out now

Reading discussions due Wed Feb 12

Post questions, discuss any issues you are having on Ed.

 Students with **no** access to 002, e-mail us with your student ID.
 Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

The Sense-Plan-Act Paradigm

Solved over last 3 weeks

Assume to be solved for now

Feedback Control

- 1. Measure error between reference and current state.
- 2. Take actions to minimize this error.

Controller Design Decisions

- 1. Get a reference path/trajectory to track
- 2. Pick a reference state from the reference path/trajectory
- 3. Compute error to reference state
- 4. Compute control law to minimize error

Step 4: Compute control law

We will only control steering angle; fixed constant speed As a result, no real control for along-track error Some control laws will only minimize cross-track error, others will also minimize heading

Step 4: Compute control law

Compute control action based on instantaneous error

$$u = K(\mathbf{x}, e)$$

control

state error

(steering angle, speed)

Apply control action, robot moves a bit, compute new error, repeat

Different laws have different trade-offs

Proportional-integral-derivative (PID) control

Pure-pursuit control

Model-predictive control (MPC)

Linear-quadratic regulator (LQR)

And many many more!

Lecture Outline

Bang-bang control

Simple control law - choose between hard left and hard right

Bang-bang control

What happens when we run this control?

Need to adapt the magnitude of control proportional to the error ...

This clearly sucks! How can we do better?

Lecture Outline

PID controllers

Used widely in industrial control from 1900s

Regulate temp, press, speed etc

Do not try this with PID!!!

PID control overview

Select a control law that tries to drive error to zero (and keep it there)

PID Intuition

Proportional: minimize the current error!

Integral: if I'm accumulating error, try harder!

Derivative: if I'm going to overshoot, slow down!

Proportional Control

$$u = -\frac{K_p e_{\rm ct}}{K_p e_{\rm ct}}$$

The proportional gain matters!

What happens when gain is low?

What happens when gain is high?

Proportional term

What happens when gain is too high?

Proportional Integral (PI) Control

Proportional Integral (PI) Control

$$u = -\left(\frac{K_p e_{\rm ct}}{K_i} + K_i \int e_{\rm ct} dt\right)$$

Integral control gets rid of this term since the integral keeps growing

Proportional Derivative (PD) Control

Apply the brakes when moving too fast! \rightarrow converge to the steady state

How do you evaluate the derivative term?

Terrible way: Numerically differentiate error. Why is this a bad idea?

Smart way: Analytically compute the derivative of the cross track error

$$e_{ct} = -\sin(\theta_{ref})(x - x_{ref}) + \cos(\theta_{ref})(y - y_{ref})$$

$$\dot{e}_{ct} = -\sin(\theta_{ref})\dot{x} + \cos(\theta_{ref})\dot{y}$$
$$= -\sin(\theta_{ref})V\cos(\theta) + \cos(\theta_{ref})V\sin(\theta)$$
$$= V\sin(\theta - \theta_{ref}) = V\sin(\theta_e)$$

New control law! Penalize error in cross track and in heading $u = -(K_p e_{ct} + K_d V \sin \theta_e)$

Challenges with using the derivative term

Noise can lead to wildly changing derivatives – leading to huge control variations

PID Intuition

Proportional: minimize the current error!

Integral: if I'm accumulating error, try harder!

Derivative: if I'm going to overshoot, slow down!

Tuning PID controllers

How do you set the K_p , K_i , K_d constants for a particular system?

Tuning PID controllers: Ziegler-Nichols

$$u = -\left(K_p e_{\rm ct} + K_i \int e_{\rm ct} dt + K_d \dot{e}_{\rm ct}\right)$$

See how the system responds to proportional gain

1/

1/

Adjust integral and proportional accordingly

Lecture Outline

Pure Pursuit Control

Aerial combat in which aircraft pursues another aircraft by pointing its nose directly towards it Similar to carrot on a stick!

Rationale: Controller should leverage model!

$$\dot{x} = v \cos \theta$$
$$\dot{y} = v \sin \theta$$
$$\dot{\theta} = \omega = \frac{v}{R} = \frac{v \tan \delta}{L}$$

PID control doesn't directly utilize the fact that we know the kinematic car model

Key Idea:

The car is always moving in a circular arc

Pure Pursuit Controller

Assume the car is moving with fixed steering angle

Consider a reference at a lookahead distance

Problem: Can we solve for a steering angle that guarantees that the car will pass through the reference?

Solution: Compute a circular arc

We can always solve for a arc that passes through a lookahead point

Note: As the car moves forward, the point keeps moving

Pure pursuit: Keep chasing looakahead

1. Find a lookahead and compute arc

- 2. Move along the arc
- 3. Go to step 1

Equations of Motion RECALL

Kinematic Car Model

RECALL

Computing the Arc Radius

Computing the Arc Radius

$$R_{\rm pp} = \frac{a^2 + b^2}{2b}$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = R(-\theta) \left(\begin{bmatrix} x_{\rm ref} \\ y_{\rm ref} \end{bmatrix} - \begin{bmatrix} x \\ y \end{bmatrix} \right)$$

$$R_{\rm pp}$$

$$R_{\rm pp}$$

$$(x_{\rm ref}, y_{\rm ref})$$

$$b \qquad \ell$$

$$(x, y, \theta)$$

Computing the Steering Angle

Question: How do I choose L?

Controller Design Decisions

- **1**. Get a reference path/trajectory to track
- 2. Pick a reference state from the reference path/trajectory
- 3. Compute error to reference state
- 4. Compute control law to minimize error

Option 1:

Bang-bang control

Option 2: PID control Option 3: Pure-pursuit control

Are we done?

Class Outline

