

# Autonomous Robotics Winter 2025

Tyler Westenbroek

TAs: Carolina Higuera, Entong Su, Bernie Zhu



## Class Outline





Search Heuristic Search

Motion Planning Lazy Search



# Recap

## What is Control?

"PLAN" — CONTROL — ACTUATOR COMMANDS

#### What is a Plan?



Can express this problem as tracking a reference trajectory

$$x(t), y(t), \theta(t)$$

# Why Feedback Control?



What if we send out controls  $\,u(t)$  from kinematic car model?

Open-loop control leads to accumulating errors!

## Feedback Control



- 1. Measure error between reference and current state.
- 2. Take actions to minimize this error.



## Controller Design Decisions

- 1. Get a reference path/trajectory to track
- 2. Pick a reference state from the reference path/trajectory
- 3. Compute error to reference state
- 4. Compute control law to minimize error

These design decisions are <u>extremely</u> coupled — there's never one right answer!

# Basic idea scale to complicated systems!



## Step 2: Pick a reference (desired) state





Along-track error  $e_{\mathrm{at}}$ 

Cross-track error  $e_{\mathrm{ct}}$ 

Heading error  $\theta_{\epsilon}$ 



## Aside: Rotation Matrices (Plane)



$$R = R(\theta) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \underbrace{R(\theta)}_{AR} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\begin{bmatrix} A \\ B \\ W.r.t \\ A \end{pmatrix}$$
(rotation of B w.r.t A)





Position in frame A

$$A_e = \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix}$$



We want position in frame B

$$^{B}e=_{A}^{B}R^{A}e=R(- heta_{ref})\left(\begin{bmatrix}x\\y\end{bmatrix}-\begin{bmatrix}x_{ref}\\y_{ref}\end{bmatrix}\right)^{\frac{(rotation\ of\ A\ w.r.t\ B)}{A\ w.r.t\ B)}}$$



We want position in frame B

$$B_{e} = \begin{bmatrix} e_{at} \\ e_{ct} \end{bmatrix} = \begin{bmatrix} \cos(\theta_{ref}) & \sin(\theta_{ref}) \\ -\sin(\theta_{ref}) & \cos(\theta_{ref}) \end{bmatrix} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix} \end{pmatrix}$$



 $\theta_e = \theta - \theta_{ref}$ 

#### state



(Along-track) 
$$e_{at}=\cos(\theta_{ref})(x-x_{ref})+\sin(\theta_{ref})(y-y_{ref})$$
 (Cross-track) 
$$e_{ct}=-\sin(\theta_{ref})(x-x_{ref})+\cos(\theta_{ref})(y-y_{ref})$$
 (Heading) 
$$\theta_e=\theta-\theta_{ref}$$

## Step 4: Compute control law

We will only control steering angle; fixed constant speed As a result, no real control for along-track error Some control laws will only minimize cross-

track error, others will also minimize heading



$$u = K(e)$$

The more things you want to control the more complicated it gets!

# Basic idea scale to complicated systems!



#### Step 4: Compute control law

Compute control action based on instantaneous error

$$u = K(\mathbf{x}, e)$$

(steering angle, speed)

Apply control action, robot moves a bit, compute new error, repeat

Different laws have different trade-offs

#### Different Control Laws

Proportional-integral-derivative (PID) control

Pure-pursuit control

Model-predictive control (MPC)

Linear-quadratic regulator (LQR)

And many many more!

## Bang-bang control

Simple control law - choose between hard left and hard right



$$u = \begin{cases} u_{max} & \text{if } e_{ct} < 0\\ -u_{max} & \text{otherwise} \end{cases}$$

## Bang-bang control

What happens when we run this control?



Need to adapt the magnitude of control proportional to the error ...

This clearly sucks! How can we do better?

## PID controllers



Used widely in industrial control from 1900s

Regulate temp, press, speed etc



Do not try
this
with PID!!!

#### PID control overview

Select a control law that tries to drive error to zero (and keep it there)



$$u = -\left(\frac{K_p e_{\rm ct}}{K_p e_{\rm ct}} + \frac{K_i \int e_{\rm ct} dt}{K_i \int e_{\rm ct} dt} + \frac{K_d \dot{e}_{\rm ct}}{K_d \dot{e}_{\rm ct}}\right)$$
(PRESENT)
(PAST)
(PAST)

#### PID Intuition

$$u = -\left(\frac{K_p e_{\mathrm{ct}}}{K_p e_{\mathrm{ct}}} + \frac{1}{K_i} \int e_{\mathrm{ct}} dt + \frac{1}{K_d \dot{e}_{\mathrm{ct}}} \right)$$

PROPORTIONAL INTEGRAL DERIVATIVE (PAST) (FUTURE)

Proportional: minimize the current error!

Integral: if I'm accumulating error, try harder!

Derivative: if I'm going to overshoot, slow down!

# Proportional Control



$$u = -K_p e_{ct}$$

## The proportional gain matters!



What happens when gain is low?

What happens when gain is high?

# Proportional term

What happens when gain is too high?



## Proportional Integral (PI) Control



$$u = -\left(\frac{K_p e_{\rm ct}}{K_p e_{\rm ct}} + K_i \int e_{\rm ct} dt\right)$$

## Proportional Integral (PI) Control

$$u = -\left(\frac{K_p e_{\text{ct}}}{E_{\text{ct}}} + K_i \int e_{\text{ct}} dt\right)$$

Integral control gets rid of this term since the integral keeps growing



# Proportional Derivative (PD) Control

Apply the brakes when moving too fast! ? converge to the steady state



$$u = -\left(K_p e_{\rm ct} + K_d \dot{e}_{\rm ct}\right)$$

## Challenges with using the derivative term

Noise can lead to wildly changing derivatives – leading to huge control variations



$$y = f(t) + \sin(\omega t)$$



$$y' = f'(t) + \omega \cos(\omega t)$$

## How do you evaluate the derivative term?

Terrible way: Calculate  $\dot{e}_{ct}$  by measuring x,y and numerically differentiating to estimate  $\dot{x},\dot{y}$ 

Smart way: Analytically compute the derivative of the cross track error

$$e_{ct} = -\sin(\theta_{ref})(x - x_{ref}) + \cos(\theta_{ref})(y - y_{ref})$$

$$\dot{e}_{ct} = -\sin(\theta_{ref})\dot{x} + \cos(\theta_{ref})\dot{y}$$

$$= -\sin(\theta_{ref})V\cos(\theta) + \cos(\theta_{ref})V\sin(\theta)$$

$$= V\sin(\theta - \theta_{ref}) = V\sin(\theta_{e})$$



$$\dot{y} \qquad \dot{x} = V \cos(\theta)$$

$$\dot{x} \qquad \dot{y} = V \sin(\theta)$$

$$u = -\left(K_p e_{ct} + K_d V \sin \theta_e\right)$$

#### PID Intuition

$$u = -\left(\frac{K_p e_{\mathrm{ct}}}{K_p e_{\mathrm{ct}}} + \frac{1}{K_i} \int e_{\mathrm{ct}} dt + \frac{1}{K_d \dot{e}_{\mathrm{ct}}} \right)$$

PROPORTIONAL INTEGRAL DERIVATIVE (PAST) (FUTURE)

Proportional: minimize the current error!

Integral: if I'm accumulating error, try harder!

Derivative: if I'm going to overshoot, slow down!

## Tuning PID controllers



How do you set the K<sub>p</sub>, K<sub>i</sub>, K<sub>d</sub> constants for a particular system?

## Tuning PID controllers: Ziegler-Nichols

Heuristic/empirical method for computing K<sub>p</sub>, K<sub>i</sub>, K<sub>d</sub>

$$u = -\left(K_p e_{\rm ct} + K_i \int e_{\rm ct} dt + K_d \dot{e}_{\rm ct}\right)$$



See how the system responds to proportional gain

Adjust integral and proportional accordingly