w Autonomous Robotics

Winter 2025

Abhishek Gupta
TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

State Estimation Control
Robotic System Design Filtering Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

Logistics

m HW2 Due Tue Feb 4
m HW3 out Wed Feb 5
m Reading discussions due a week from Monday on EdStem

m Post questions, discuss any issues you are having on Ed.

m Students with no access to 002, e-mail us with your student ID.

m Students that have not been added to the class, email
abhgupta@cs.washington.edu with the subject-line “Waitlisted for
CSE478"

mailto:abhgupta@cs.Washington.edu

Recap

Original Kalman Filter Algorithm

Initial Prior

p(fCo)

P

\ 4

Estimate B—el(ﬂft+1) A

Dynamics/Prediction P(eg1|uoi11, Z0:) = N (Apigjorr + Buegr, ASo A" + Qupa)
(given some u)

_ J

4)
Estimate Bel (CCt_|_1)

Measurement/Correction

p($t+1 |U0:t+1> zO:t—l—l)

_ = N(pet110:¢ + Ker1(2e41 — Cpiggajone), (I — Ker1C) X 4100:4) y

(given some z)

EKF Algorithm — linearize non-linear functions

Initial Prior 1 (Linearize dynamics

p(zo) J

ag('xt? ut)

Tir1 = 9(T,ur) + €6~ gpe, ue) +
8$t

(p — 1) + €

Tt=HUt

Dynamics/Prediction Estimate Bel(xt)

(given some u) p(xt—|—1 |Z0:t7 uO:t) ~ N (g(pe, ut), Gzt|0:tGT + Q¢)

8h(£l?t)
3xt

zi = h(xy) + 6 =~ h(in) +

Estimate Bel(x;)

P(xt+1 |ZO!75—|-17 UO:t) = N(Mt+1|o:t + K1 (ze01 — h(jie), (I — Kt+1H>Et+1|0:t)

Measurement/Correction
(given some z)

[Linearize measurement

. —— —— =5

Ok so what have we learned

Bayesian Filtering!

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xy_1)

Step 1: Prediction - push belief through dynamics given action

bel(z;) = Z P(x¢|ug, zp—1)bel(xi—1)

Step 2: Correction - apply Bayes rule given measurement

bel(zy) = nP(z|x¢)bel(xy)

Motion and Measurement Model

Linear Gaussian
— Kalman Filter

Nonlinear Gaussian
— Extended Kalman Filter

Nonlinear non-gaussian
— Particle Filter

What if we didn‘t know the map?

" So far, the maps have been assumed to be known = often untrue - SLAM problem

" Avrobotis exploring an unknown, static environment. Se—

Given:
The robot’s controls (u)

Observations of nearby features (z)

Estimate:
Map of features (x)
Path of the robot (x)

Why is SLAM difficult?

= Localization assumed map was perfectly known in the
sensor/motion

= Mapping assumes position is fully known

= Doing both jointly is hard!

Mapping Localization

SLAM Applications

Undersea

o=

Definition of the SLAM Problem

Given

= Therobot's controls

Ur.-T — {ul,u2,u;3, “ .. ,’LLT}

= Observations
21T — {21, KDy B3y e ooy ZT}

Wanted

= Map of the environment m

= Path of therobot zo.7 = {z0,z1,22,..., 27}
Courtesy: Cyrill Stachniss

Bayes Filter

Recursive filter with prediction and correction step

Prediction
Bel(xy) = /p(xt|xt_1,ut_l)Bel(xt_1)dxt_1

Correction

Bel(xt) = np(z¢|z:) Bel (x;)

EKF Slam sets x to be (position of robot, position of landmarks)

EKF SLAM

Application of the EKF to SLAM

Estimate robot’s pose and locations of landmarks in the
environment

Assumption: known correspondences

State space (for the 2D plane) is

o T
Ty = (:E,y,H 7m1,x7m1,y7'"7mn,a:7mn,y)
robot’s pose landmark 1 landmark n

Courtesy: Cyrill Stachniss

EKF SLAM: Filter Cycle

State prediction
Measurement prediction
Measurement + Data Association

Update

Courtesy: Cyrill Stachniss

Why is this useful - SLAM

Pointcloud-Map

Lecture Outline

Where does control fit in the roadmap

v

Why control problems are hard

v
How to formulate control problems

Let’s zoom back out

Our knowledge of how the Helicopter
world works (Modeling) Models
World R _
Model Planning

How do we decide
where we are in the
world? (Estimation)

Sensors

-

Robot interacts with

How do we decide
how to act to
accomplish task?
(PIanning/ControI.—

A

environment

A

The Sense-Plan-Act Paradigm

@
9

Control robot to
follow plan
\ 1 1 | l |

Solved over last 4 weeks Assume to be solved for now 77

From perception to control ...

A

|

4
>

When | think about control ...

London Bus Museum o oo 22

- o londonbusmuseum com

What is Control?

“"PLAN” ===elp [CONTROL m—- ég-ll\-dul\?:ﬁgs

What is a Plan?

ts, (T3,Y3,03)

th(x()ayOaHO) -4 3 Q t27(x27y2792)

Can express this problem as tracking a reference trajectory

z(t),y(t),0(t)

Why Feedback Control?

N
..-—'

What if we send out controls u(t)from kinematic car model?

Open-loop control leads to accumulating errors!

Feedback Control

1. Measure error between reference and current state.

2. Take actions to minimize this error.

. Useful to think of control laws as vector fields .

ST T
"
-----------)3
RSN
—_—

s this still a research problem?

wiD1080i.de

https://www.youtube.com/watch?v=]_80nDsQVZE&t=315s

Assumptions made by such controllers

1. Fully actuated: There exists an inverse mapping from reference to control actions

o(t) — u(t)

2. Almost no execution error or state estimation error

3. Enough control authority to clamp down errors / overcome disturbances

https://www.youtube.com/watch?v=fRj3404hN4I

Challenge 1: Underactuated systems

Fully actuated: There exists an inverse mapping from reference to control actions

o(t

(t)

We don’t have full authority to move the system along arbitrary trajectories

Challenge 1: Underactuated systems

What affects the error between robot state and reference?

Some
initial Whole lot of gravity!
motor

thrust ... Whole lot of momentum!

... Some precise
control adjustments

Question:
If we know the model of our robot, can’t we solve a
huge optimization problem to figure out control?

Doing backilips with a helicopter

Redbull Eurocopter BO-105 https://www.youtube.com/watch?v=RGu45s1_QPU

And what is this model ?!?

_ Unpredictable drag forces!

Nothing
countering
gravity!

Chaotic vortex around blades!

Hopeless to assume we know exactly how the helicopter
will behave upside down...

Challenge 2: Choosing good closed-loop models

Closed-loop system =
Point mass

with a planar

thrust vector

Chaotic . Feedback Well-behaved

dynamics control law ~ system

Challenge 3: Model changing on the fly!

Run real-time estimators for wheel characteristics

Need control laws for all possible model parameters

Undamaged robot
controlled with

classic tripod gait

Ok let’s control racecars!

Reference Parameterizations

to

Option 1: Time-parameterized trajectory

Pro: Useful if we want the robot to respect time constraints
Con: Sometimes we only care about deviation from reference

Reference Parameterizations

Option 2: Index-parameterized geometric path (untimed)

Pro: Useful for conveying shape for the robot to follow
Con: Can’t control when robot will reach a point

Controller Design Decisions

. Get a reference path/trajectory to track
. Pick a reference state from the reference path/trajectory
. Compute error to reference state

. Compute control law to minimize error

Step 2: Pick a reference (desired) state

Lref
o Yref
Y _eref .
€T

How do we choose a reference state?

CC<7-ref)
y(Tref)
Q(Tref)
U(Tref)
o
For an index-parameterized path, Y
there are multiple options. e
, . T T
Closest point Tyef = argmin || |z y| — |z(7) y(7)]
T

How do we choose a reference state?

C13(7-1‘ef)
y(Tref)
H(Tref)
U(Tref)
o
For an index-parameterized path, Y
there are multiple options. e

2
Lookahead Trof = arg mTin (|| K y]T — |z(7) y(’i')]T | — Z)

Step 3: Compute error to reference state

Cat {

Along-track error €4¢

Cross-track error €t

Heading error (96

Step 3: Compute error to reference state

;1; _eat_
Y — Cct
6 G _6)6 d ref

Aside: Rotation Matrices (Plane)

YL
Z X {Adﬁ
{A}v\/

cos 6 sin 0

Step 3: Compute error to reference state

Step 3: Compute error to reference state

......
N
N
~
~

Position in frame A A X xref

Step 3: Compute error to reference state

We want position in frame B

- _xre _
Be :i R Ae — R(_eref) (— !)

(rotation of (rotation of
A w.r.t B) A w.r.t B)

Step 3: Compute error to reference state

......
N
N
~
~

We want position in frame B

e =[]l miy el (-6

5

Step 3: Compute error to reference state

......
N
N
~
~

Heading error

Step 3: Compute error to reference state

(Along-track) €qt = COS(Oref) (T — Zref) + SIN(Oref) (Y — Yres)

(Cross-track) €.t = — Sin(eref)(x — xref) =+ COS(Href)(y — yref)

(Heading) 0. =0 — Href

Step 4: Compute control law

We will only control steering angle;

fixed constant speed

As a result, no real control for along-track
error

Some control laws will only minimize cross-
track error, others will also minimize heading

Different Control Laws

Proportional-integral-derivative (PID) control
Pure-pursuit control

Model-predictive control (MPC)
Linear-quadratic regulator (LQR)

And many many more!

Bang-bang control

Simple control law - choose between hard left and hard right

Umax if e.; <O

—Umae Otherwise

Bang-bang control

What happens when we run this control?

Error does not stay 0!

Need to adapt the magnitude of control proportional to the error ...

This clearly sucks! Come back on
Monday to find out more

Class Outline

State Estimation Control
Robotic System Design AitErig Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

