

Autonomous Robotics Winter 2025

Abhishek Gupta

TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

Logistics

- HW2 Due Tue Feb 4
- HW3 out Wed Feb 5
- Reading discussions due a week from Monday on EdStem

- Post questions, discuss any issues you are having on Ed.
- Students with no access to 002, e-mail us with your student ID.
- Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Recap

Original Kalman Filter Algorithm

Dynamics/Prediction (given some u)

Measurement/Correction (given some z)

Estimate
$$Bel(x_{t+1})$$

$$p(x_{t+1}|u_{0:t+1}, z_{0:t+1})$$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

EKF Algorithm – linearize non-linear functions

Initial Prior $p(x_0)$

Linearize dynamics

$$x_{t+1} = g(x_t, u_t) + \epsilon_t \approx g(\mu_t, u_t) + \frac{\partial g(x_t, u_t)}{\partial x_t} \Big|_{x_t = \mu_t} (x_t - \mu_t) + \epsilon_t$$

Dynamics/Prediction (given some u)

Estimate $\overline{Bel}(x_t)$

$$p(x_{t+1}|z_{0:t}, u_{0:t}) \sim \mathcal{N}(g(\mu_t, u_t), G\Sigma_{t|0:t}G^T + Q_t)$$

Linearize measurement

$$z_t = h(x_t) + \delta_t \approx h(\bar{\mu}_t) + \frac{\partial h(x_t)}{\partial x_t} \bigg|_{x_t = \bar{\mu}_t} (x_t - \bar{\mu}_t) + \delta_t$$

Measurement/Correction (given some z)

Estimate $Bel(x_t)$

$$p(x_{t+1}|z_{0:t+1},u_{0:t}) = \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - h(\bar{\mu}_t), (I - K_{t+1}H)\Sigma_{t+1|0:t}))$$

Ok so what have we learned

Bayesian Filtering!

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u_t}, x_{t-1}) bel(x_{t-1})$$

Step 2: Correction - apply Bayes rule given measurement

$$bel(x_t) = \eta P(z_t|x_t)\overline{bel}(x_t)$$

Motion and Measurement Model

Linear Gaussian

– Kalman Filter

Nonlinear Gaussian

– Extended Kalman Filter

Nonlinear non-gaussian

– Particle Filter

What if we didn't know the map?

- So far, the maps have been assumed to be known \rightarrow often untrue \rightarrow SLAM problem
- A robot is exploring an unknown, static environment.

Given:

The robot's controls (u)

Observations of nearby features (z)

Estimate:

Map of features (x)

Path of the robot (x)

Why is SLAM difficult?

- Localization assumed map was perfectly known in the sensor/motion
- Mapping assumes position is fully known
- Doing both jointly is hard!

Mapping

Localization

SLAM Applications

Definition of the SLAM Problem

Given

The robot's controls

$$u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$$

Observations

$$z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$$

Wanted

Map of the environment m

Courtesy: Cyrill Stachniss

Bayes Filter

Recursive filter with prediction and correction step

Prediction

$$\overline{Bel}(x_t) = \int p(x_t|x_{t-1}, u_{t-1})Bel(x_{t-1})dx_{t-1}$$

Correction

$$Bel(x_t) = \eta p(z_t|x_t)\overline{Bel}(x_t)$$

EKF Slam sets x to be (position of robot, position of landmarks)

EKF SLAM

- Application of the EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- Assumption: known correspondences
- State space (for the 2D plane) is

$$x_t = (\underbrace{x, y, \theta}_{\text{robot's pose}}, \underbrace{m_{1,x}, m_{1,y}, \dots, \underbrace{m_{n,x}, m_{n,y}}}_{\text{landmark n}})^T$$

EKF SLAM: Filter Cycle

- State prediction
- 2. Measurement prediction
- 3. Measurement + Data Association
- 4. Update

Courtesy: Cyrill Stachniss

Why is this useful - SLAM

Lecture Outline

Where does control fit in the roadmap

Why control problems are hard

How to formulate control problems

Let's zoom back out

The Sense-Plan-Act Paradigm

Estimate robot state

Assume to be solved for now

Plan sequence of motions

Control robot to follow plan

Solved over last 4 weeks

55

From perception to control ...

When I think about control ...

What is Control?

What is a Plan?

Can express this problem as tracking a reference trajectory

$$x(t), y(t), \theta(t)$$

Why Feedback Control?

What if we send out controls u(t) from kinematic car model?

Open-loop control leads to accumulating errors!

Feedback Control

- 1. Measure error between reference and current state.
- Take actions to minimize this error.

Useful to think of control laws as vector fields

Is this still a research problem?

Industrial robots hard at work

https://www.youtube.com/watch?v=J_8OnDsQVZE&t=315s

Assumptions made by such controllers

1. Fully actuated: There exists an inverse mapping from reference to control actions

$$\sigma(t) \to u(t)$$

2. Almost no execution error or state estimation error

3. Enough control authority to clamp down errors / overcome disturbances

The Atlas robot hard at ... play?

https://www.youtube.com/watch?v=fRj34o4hN4I

Challenge 1: Underactuated systems

Fully actuated: There exists an inverse mapping from reference to control actions

We don't have full authority to move the system along arbitrary trajectories

Challenge 1: Underactuated systems

What affects the error between robot state and reference?

Some

initial

motor

thrust ...

Whole lot of gravity!

Whole lot of momentum!

... some precise control adjustments

Question:

If we know the model of our robot, can't we solve a huge optimization problem to figure out control?

Doing backflips with a helicopter

And what is this model ?!?

Chaotic vortex around blades!

Hopeless to assume we know exactly how the helicopter will behave upside down...

Challenge 2: Choosing good closed-loop models

Chaotic dynamics

Feedback control law Well-behaved system

Challenge 3: Model changing on the fly!

Run real-time estimators for wheel characteristics

Need control laws for all possible model parameters

Ok let's control racecars!

Reference Parameterizations

Option 1: **Time**-parameterized trajectory

Pro: Useful if we want the robot to respect time constraints

Con: Sometimes we only care about deviation from reference

Reference Parameterizations

Option 2: Index-parameterized geometric path (untimed)

Pro: Useful for conveying shape for the robot to follow

Con: Can't control when robot will reach a point

Controller Design Decisions

- 1. Get a reference path/trajectory to track
- 2. Pick a reference state from the reference path/trajectory
- 3. Compute error to reference state
- 4. Compute control law to minimize error

Step 2: Pick a reference (desired) state

How do we choose a reference state?

Closest point
$$\tau_{\mathrm{ref}} = \arg\min_{\tau} \| \begin{bmatrix} x & y \end{bmatrix}^{\top} - \begin{bmatrix} x(\tau) & y(\tau) \end{bmatrix}^{\top} \|$$

How do we choose a reference state?

For an **index**-parameterized path, there are multiple options.

Lookahead
$$au_{\mathrm{ref}} = \arg\min_{ au} \left(\| \begin{bmatrix} x & y \end{bmatrix}^{ op} - \begin{bmatrix} x(au) & y(au) \end{bmatrix}^{ op} \| - \ell \right)^2$$

Along-track error $\,e_{
m at}$

Cross-track error $e_{
m ct}$

Heading error θ_{ϵ}

Aside: Rotation Matrices (Plane)

$$R = R_z(\theta) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

Position in frame A

$$\begin{bmatrix} A e = \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix}$$

We want position in frame B

$$Be = \underset{\text{A w.r.t B)}}{B} R \quad Ae = R(-\theta_{ref}) \left(\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix} \right)$$

We want position in frame B

$$B_{e} = \begin{bmatrix} e_{at} \\ e_{ct} \end{bmatrix} = \begin{bmatrix} \cos(\theta_{ref}) & \sin(\theta_{ref}) \\ -\sin(\theta_{ref}) & \cos(\theta_{ref}) \end{bmatrix} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix} \end{pmatrix}$$

$$\theta_e = \theta - \theta_{ref}$$

(Along-track)
$$e_{at}=\cos(\theta_{ref})(x-x_{ref})+\sin(\theta_{ref})(y-y_{ref})$$
 (Cross-track)
$$e_{ct}=-\sin(\theta_{ref})(x-x_{ref})+\cos(\theta_{ref})(y-y_{ref})$$
 (Heading)
$$\theta_e=\theta-\theta_{ref}$$

Step 4: Compute control law

We will only control steering angle; fixed constant speed
As a result, no real control for along-track error

error
Some control laws will only minimize crosstrack error, others will also minimize heading

$$u = K(e)$$

Different Control Laws

Proportional-integral-derivative (PID) control

Pure-pursuit control

Model-predictive control (MPC)

Linear-quadratic regulator (LQR)

And many many more!

Bang-bang control

Simple control law - choose between hard left and hard right

$$u = \begin{cases} u_{max} & \text{if } e_{ct} < 0\\ -u_{max} & \text{otherwise} \end{cases}$$

Bang-bang control

What happens when we run this control?

Need to adapt the magnitude of control proportional to the error ...

This clearly sucks! Come back on Monday to find out more

Class Outline

