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Logistics

m Seeded paper discussion groups sent out, will be on Friday.

m Post questions, discuss any issues you are having on Ed.

m Students with no access to 002, e-mail us with your student ID.

m Students that have not been added to the class, email
abhgupta@cs.washington.edu with the subject-line “Waitlisted for
CSE478"



mailto:abhgupta@cs.Washington.edu

Recap



Important Identities: Gaussians

[ X ~N(p,X)
Forward propagation ! Y=AX+B+e — YNN(A,LL+B,AEAT+Q)
e ~N(0,Q)

\

(X ~ N(p, %)
Conditioning Y =CX+B4+5§ — XY =yo~N(u+ K(yo— Cu),(I — KC)X)
5~ N0, R)

= Marginalization and conditioning in Gaussians results in Gaussians

= We stay in the “Gaussian world” as long as we start with Gaussians and perform
only linear transformations.



Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models

Lt—1 Tt Lt4+1




Discrete Kalman Filter: Matrix Version

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Lt — Ail?t_l -+ But —+ €4
e ~ N(0,Q) \
with a measurement Linear Gaussian

Zt:CfEt—|—5t ‘ /

575 NN(O,R)




" Goal of the Kalman Filter: Same as Bayes Filter

Belief

O @ @ s

|dea: recursive update

_ L
Lt—1 Lt t+1 ocp(zt’ajt)/p(fb‘t‘ilﬁt_l,Ut)p(xt—l‘fzo:t—lauO:t—l)

}
1 3 Measurement
@ @ @ Dynamics
Recursive Belief

2 step process:

= Dynamics update (incorporate action)

= Measurement update (incorporate sensor reading)



Bayes Filters

Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

bel :Bt ZP wt|ut,$t 1)561(5’% 1)

Linear Gaussian

Step 2: Correction - apply Bayes rule given

bel(x) = nP(z|z:)bel(x;)



Linear Gaussian Systems: Initialization

= Initial belief is normally distributed:
Bel(ili()) — N(/LQ, ZO)

= Bel(x;) atany step tis: N (f¢)0.¢, 2¢(0:t)

= Bel(x;) atany step tis: N(:ut|0:t—17 Z15|():15—1)



Linear Gaussian Systems: Prediction

Integrate the effect of one action under the dynamics, before measurement comes in

Ti+1 = Axy + Bug1 + €141

p(xeat|re, uer1) = N(Azy + Bugyr, Qeyn)

B—fil(ilft+1) Bel (xt)

€rr1 ~ N(0,Qi41)

p($t+1|20:tauozt+1) — /P(SUt’UO:t,Zozt)p(33t+1‘ut+1,fl3t)dﬂ3t

-

1

B

Y =AX +B+e¢ = Y ~N(Au+ B, ASA” + Q)
GNN(O7Q)

J

Gaussian, easy!



Linear Gaussian Systems: Prediction

Integrate the effect of one action under the dynamics, before measurement comes in

g A
p<xt‘u0:ta Zo:t) — N(:ut|0:t7 Z1&|0:t) rX ~ N(/L, E)
Tip1 = Axy + Bugyr + €441 (Y =AX+B+e = Y ~N(Au+ B,ASAT + Q)
€41~ N(0,Qey1) e~ N(0,C)

\_

J

Previous belief p(xt ’UO:t, Zo;t) = N(/Ltyo;t, Et\ozt)

Belief Update (@1 |uoe41, 20:4) = N(Aut|o:t + Bugy1, A2t|0:tAT + Q1)

Intuition: Scale and shift the mean according to dynamics, uncertainty grows quadratically!



Intuition Behind Prediction Step

Previous belief p(xe|uo:t, 20:¢) = N (thejo:4, Dejo:t)
Belief Update P(Tiy1|vot41, 20:4) = N(A/Lﬂo;t + Bugy1, Azt|0:tAT + Qt11)

Intuition: Scale and shift the mean according to dynamics, uncertainty grows!

o‘ﬁ T T T T L} O'E

Belief at x; Belief post dynamics = shifted mean, scaled and shifted variance



Linear Gaussian Systems: Observations

= Integrate the effect of an observation using sensor model, after dynamics

zt41 = Cwppq +0pp1

5t—|—1 ™~ N(07 Rt—|—1)

P(zeg1|Tis1) = N(Crpqr, Riyr)

Bel(zi11)

B—el(azH_l)

p($t+1 |U0:t+17 Zo:t+1) X p(zt+1 \$t+1)p($t+1 \uozt+1, Zo:t)

-

Conditioning

\_

(X~ N(p, %)

5~ N(0,R)

K=xctczct +Rr)™

~

Y =CX+B+6 = X|Y=yo~Np+K(y—Cup),I - KC)X)

J




Linear Gaussian Systems: Observations

= Integrate the effect of an observation using sensor model, after dynamics

p(Tes1|Uot+1, 20:) = N(Mt+1|o:t, Yit41]0:) C (X ~ N(u, X) )

zt41 = Cwpyr + 041 lY=CX+B+6§ — XIY=y~Np+ Ky —Cn),(I-KC))
K=xct(czct + rR)™

6t41 ~ N(0, Ryp1) L |0 ~N(0,R) ( +R) )

Previous belief p(xt+1 |u0;t+1, Zo;t) = N(Mt_|_1‘0:t, Zt+1|0:t) Computed from dynamics step

Updated belief P(Teg1|®0t41,5 20:t41)
= N (110t + Ki41(2e41 — Clig1jo:e)s (I — K1 C)Xi1110:t)

K = Et—|—1|0:tCT(Czt+1|0:tCT + R)_l




Linear Gaussian Systems: Observations

Previous belief p(:l?t+1 |u0;t+1, ZO:t) = N(Nt+1|0:t7 Et—|—1|0:t) Computed from dynamics step
Updated belief P(T41|U0:t41, 20:4+1)
= N(Mt+1|0:t + Kit1(ze41 — C,ut—l—1|0:t)a (- Kt+10)2t+1|0:t)

Intuition: Correct the update linearly according to measurement error from expectation,
shrink uncertainty accordingly

estimatc L
mpr estimate 2

\mw covayiance




Intuition Behind Correction Step

0z T T T T T Az

B Previous belief ]

ok

New Measurement

Q05 -

0

P(Te41|U0:t41, 20:041) = N(Mt+1|o:t + Kip1(2e41 — Cﬂt+1|0:t)7 (I - Kt+1c>zt+1|0:t> oz
K11 = 541110:C" (C8i41)04C" + R) ™!

For the sake of simplicity, let's say C = |

| “
Et—l—l|0:t a1l !
Kiiq =

Yir1)0:¢ T R \
Corrects belief based on measurement ) | | ~

- Average between mean and measurement based on K T
—> Scale down uncertainty based on K T




Unpacking the Kalman Gain

Previous belief p(:l?t+1 \u0:t+1, Zo;t) = N(Mt+1|0:t; Zt+1|0:t) Computed from dynamics step

Updated belief P(T41|U0:t41, 20:441)
- N(:U’t—i—1|0:t + Kt—l—l(zt—{—l - C/JJt—i—1|O:t)7 (I - Kt—}—lc)zt—l—lm:t)

K11 = 2111)0:4C" (Cp41)02C" + R) ™!

Case 1: Very noisy sensor, R>>%

For the sake of simplicity, let's say C = |

Kt—l—l — Case 2: Deterministic sensor, R=0



Kalman Filter Algorithm

Initial Prior

p(CCO)

A

\ 4

Estimate B—el(ﬂft+1) A

Dynamics/Prediction P(eg1|uoi11, Z0:) = N (Apigjorr + Buegr, ASo A" + Qupa)
(given some u)

\_ J

4 )
Estimate Bel (CCt_|_1 )

Measurement/Correction

P($t+1 |U0:t+1> Zo:t+1)

_ = N(pet110:¢ + Ker1(2e41 — Cpiggajone), (I — Ker1C) X 4100:4) y

(given some z)




Kalman Filter in Action

Thrust Intensities Centroidal Momentum
Left Arm Right Arm Linear x Component Linear y Component Linear z Component
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Kalman Filter Summary

= Highly efficient: Polynomial in measurement
dimensionality k and state dimensionality n:
0(k2.376 + n2)

Matrix Inversion (Correction) Matrix Multiplication (Prediction)

Kyl = Et+1|0:tCT(Cthuuo:tCT + Rt—i—l)_l P(Tp41|20:45 Voit41) ~ N(A,Utm:t + Buy, A2t|0:tAT + Q)

s Optimal for linear Gaussian systems!

= Most robotics systems are nonlinear!



Why should we care?

Still a very widely used technique for estimation/localization/mapping in real problems




Lecture Outline

Kalman Filtering

\/
Extended Kalman Filtering

SLAM as a filtering problem



Can | reuse Kalman Filter math for non-linear
systems?



Nonlinear Dynamic Systems

= Most realistic robotic problems involve nonlinear functions

Ti+1 — g(l‘t,ut) €t

Non-linear system

Lt = h(iﬁt) -+ (575

€+ NN(()?Q) . (‘j\
Additive Gaussian noise Q‘x -

6 ~N(0,R) | ? ‘
L ‘

More reasonable assumption than linear Gaussian. More on non-Gaussian systems next time



How do we deal with non-linearity?

= Differentiable non-linear functions can be
expressed via their Taylor expansion

f'(a) /" (a) " (a)
f(@)=fla)+ —-@-a+——@-a + ——(z—-a) +--,
f'(a)
€Tr) ~ a €T — Q Dropping higher order terms, when x-a is small enough
+ T
Linear function in x f(a) + f(a)(x—a)

o o g f(x)
Pretend that your function is linear in this neighborhood .
—> Reapprox in a new neighborhood - <

a X




EKF Linearization: First Order Taylor Series Expansion

ldea behind EKF: Linearize the dynamics and measurement
around current p,

Dynamics Model (linearize around previous belief):

0
9z, ur) (T — pe) + €
8$t Lt—Mt

= g, ue) + G(xy — pg) + €

Ty = g(Te,ur) + € ~ g e, ug) +

Measurement Model (linearize around post dynamics belief):

(9h(:vt)
(9:1:',5

Zt — ]’L(CCt) -+ 5t ~ h(,at) + (xt - /jt) + 0 &~ h(ﬂt) + H(azt — ,at) -+ (575

Tt=¢

Now everything is linear = back to Kalman filtering!



Modified System under EKF Linearization

Start by linearizing dynamics model under current belief

Dynamics Model (linearize around previous belief):

ag(xtv ut)

Tir1 = g(2¢, ur) + € ~ g, ) +
aZEt

(e — pt) + €

Tt= ¢

Perform dynamics update

Linearize measurement around post dynamics belief

Oh
A — h([Ct) -+ 5t ~ h(ﬂt) + aiit) (ZCt — ,L_Lt) + 0 =~ h(,at) —+ H(th — ,at) —+ 515

Tt=[bt

Perform measurement update

Repeat



Original Kalman Filter Algorithm

Initial Prior

p(fCo)

P

\ 4

Estimate B—el(ﬂft+1) A

Dynamics/Prediction P(eg1|uoi11, Z0:) = N (Apigjorr + Buegr, ASo A" + Qupa)
(given some u)

\_ J

4 )
Estimate Bel (CCt_|_1 )

Measurement/Correction

p($t+1 |U0:t+1> zO:t—l—l)

_ = N(pet110:¢ + Ker1(2e41 — Cpiggajone), (I — Ker1C) X 4100:4) y

(given some z)




EKF Algorithm — linearize non-linear functions

Initial Prior 1 (Linearize dynamics

p(zo) J

ag('xt? ut)

Tir1 = 9(T,ur) + €6~ gpe, ue) +
8$t

(p — 1) + €

Tt=HUt

Dynamics/Prediction Estimate Bel(xt)

(given some u) p(xt—|—1 |Z0:t7 uO:t) ~ N (g(pe, ut), Gzt|0:tGT + Q¢)

8h(£l?t)
3xt

zi = h(xy) + 6 =~ h(in) +

Estimate Bel(x;)

P(xt+1 |ZO!75—|-17 UO:t) = N(Mt+1|o:t + K1 (ze01 — h(jie), (I — Kt+1H>Et+1|0:t)

Measurement/Correction
(given some z)

[ Linearize measurement

. —— —— =5




Why might we still want to use particle filters?

® Non-linear functions

® Non-Gaussian functions «—— EKFs still require Gaussian Distributions

Py)
— Gaussian of p{y)

— EFK Gaussian

0 0204 06 0.8

6
4
2
0
2
4



Ok so what have we learned

Bayesian Filtering!

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xy_1)

Step 1: Prediction - push belief through dynamics given action

bel(z;) = Z P(x¢|ug, zp—1)bel(xi—1)

Step 2: Correction - apply Bayes rule given measurement

bel(zy) = nP(z|x¢)bel(xy)

Motion and Measurement Model

Linear Gaussian
— Kalman Filter

Nonlinear Gaussian
— Extended Kalman Filter

Nonlinear non-gaussian
— Particle Filter




Why is this useful - Localization

Thrust Intensities

Centroidal Momentum

Linear y Component

Linear z Component

Left Arm Right Arm Linear x Component
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Why is this useful - Localization
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Kalman Filtering

v
Extended Kalman Filtering
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SLAM as a filtering problem



Why is this useful - SLAM

" So far, the maps have been assumed to be known = often untrue - SLAM problem

" Avrobotis exploring an unknown, static environment. Se—

Given:
The robot’s controls (u)

Observations of nearby features (z)

Estimate:
Map of features (x)
Path of the robot (x)




The SLAM Problem

A robot is exploring an
unknown, static environment.

Given:

= Therobot's controls

s Observations of nearby features

Estimate:

= Map of features
= Path of the robot

37



Why is SLAM difficult?

= Localization assumed map was perfectly known in the
sensor/motion

= Mapping assumes position is fully known

= Doing both jointly is hard!

Mapping Localization



SLAM Applications

Undersea

o=




lllustration of SLAM without Landmarks

With only dead reckoning, vehicle
‘A4 . . h
\ <@ pose uncertainty grows without
Iy A

v bound

Courtesy J. Leonard



lllustration of SLAM without Landmarks

A vA¢
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> s s

/@ With only dead reckoning, vehicle
Yo ose uncertainty grows without
W <A> P u Yd

v bound

Courtesy J. Leonard



lllustration of SLAM without Landmarks

With only dead reckoning, vehicle
pose uncertainty grows without

bound

Courtesy J. Leonard



lllustration of SLAM without Landmarks

/@ With only dead reckoning, vehicle

N . pose uncertainty grows without
ah bound

Courtesy J. Leonard



lllustration of SLAM without Landmarks

/@ With only dead reckoning, vehicle

N . pose uncertainty grows without
ah bound

Courtesy J. Leonard



lllustration of SLAM without Landmarks

VA Q vy
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N . pose uncertainty grows without
ah bound

Courtesy J. Leonard



Mapping with Raw Odometry




Repeat, with Measurements of Landmarks

= First position: two features
observed

Courtesy J. Leonar d



lllustration of SLAM with Landmarks

= Second position: two new features
observed

Courtesy J. Leonar d



lllustration of SLAM with Landmarks

s Re-observation of first two features
results in improved estimates for
poth vehicle and feature

Courtesy J. Leonard



lllustration of SLAM with Landmarks

= Third position: two additional
features added to map

Courtesy J. Leonar d



lllustration of SLAM with Landmarks

/—

Sh

N

s Re-observation of first four features
results in improved location estimates
for vehicle and all features

Courtesy J. Leonard



lllustration of SLAM with Landmarks
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s Process continues as the vehicle
moves through the environment

X

Courtesy J. Leonar d



SLAM Using Landmarks

Odometry Profile of the Robot Locations

140} s
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End Point
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Courtesy J. Leonard



Test Environment (Point Landmarks)

Courtesy J. Leonard



View from Vehicle

Courtesy J. Leonard



Comparison with Ground Truth

QOdometry Profile of the Robot Locations

1ol T

120

100

-60 -50 -40

SLAM result

Courtesy J. Leonard



Simultaneous Localization and Mapping (SLAM)

= Building a map and locating the robot in the map at the same time

s Chicken-and-egg problem

Courtesy: Cyrill Stachniss



Definition of the SLAM Problem

Given

= Therobot's controls
Ui-T — {ul, Ug2,U3, ... ,UT}

= Observations
21T — {Zl, KDy B3y e ooy ZT}

Wanted

= Map of the environment m

= Path of therobot zo.7 = {z0,z1,22,..., 27}
Courtesy: Cyrill Stachniss



Bayes Filter

Recursive filter with prediction and correction step

Prediction
Bel(xy) = /p(xt|xt_1,ut_l)Bel(xt_1)dxt_1

Correction

Bel(xt) = np(z¢|z:) Bel (x;)

EKF Slam sets x to be (position of robot, position of landmarks)



EKF SLAM

Application of the EKF to SLAM

Estimate robot’s pose and locations of landmarks in the
environment

Assumption: known correspondences

State space (for the 2D plane) is

o T
Ty = ( :E,y,H 7m1,x7m1,y7'"7mn,a:7mn,y)
robot’s pose landmark 1 landmark n

Courtesy: Cyrill Stachniss



EKF SLAM: State Representation

= Map with n landmarks: (3+2n)-dimensional Gaussian

= Belief is represented by

A { s Ozy Ozo S i o G S \
y O-yw O-yy O-ye O-yml T O-yml,y O-mn x O-mn Yy
0 o Ooy 066  O6my. Tom, ., TOman . TOman.,
ml,.’l? Uml z O-ml,my go O-ml,:cml,m O-ml,a:ml,y O-ml,a:mn T O-ml,mmn Y
WL gy Omiyz  Omayy 06 Omi,ymi e Omy,ymi,y Omi,yMn,x Omi,ymn,y
mTL’x O-mn,wx O-mn,wy 0-0 O-mn,:cml,:c Umn,wml,y O-mn,wmn 4B O-mn,:rmn,y
\ Map,y / \ Omp,yz  Omy,yy g6 Omp,ymi,e  Tmn ymiy O, yMn,o Mp,yMn,y )
_J/ _/
7! by

Courtesy: Cyrill Stachniss



EKF SLAM: State Representation

= More compactly

LR Za:Ra:R Z:cle Za:Rmn
i Emla:R Zmlml Zmlmn
ez Zmna:R Zmnfml Z'mnmn

Courtesy: Cyrill Stachniss



EKF SLAM: State Representation

= Even more compactly (note: xp — )
L Za:x Zzz:m
T Zm:c me

Courtesy: Cyrill Stachniss



EKF SLAM: Filter Cycle

State prediction
Measurement prediction
Measurement + Data Association

Update

Courtesy: Cyrill Stachniss



Why is this useful - SLAM

Pointcloud-Map
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