

Autonomous Robotics Winter 2025

Abhishek Gupta

TAs: Carolina Higuera, Entong Su, Bernie Zhu

Class Outline

Logistics

Seeded paper discussion groups sent out, will be on Friday.

- Post questions, discuss any issues you are having on Ed.
- Students with **no** access to 002, e-mail us with your student ID.
- Students that have not been added to the class, email <u>abhgupta@cs.washington.edu</u> with the subject-line "Waitlisted for CSE478"

Recap

Important Identities: Gaussians

Forward propagation
$$\left\{ \begin{array}{l} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = AX + B + \epsilon \\ \epsilon \sim \mathcal{N}(0, Q) \end{array} \right. \implies Y \sim \mathcal{N}(A\mu + B, A\Sigma A^T + Q)$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = CX + B + \delta \\ \delta \sim \mathcal{N}(0, R) \end{cases} \implies X|Y = y_0 \sim \mathcal{N}(\mu + K(y_0 - C\mu), (I - KC)\Sigma)$$

- Marginalization and conditioning in Gaussians results in Gaussians
- We stay in the "Gaussian world" as long as we start with Gaussians and perform only linear transformations.

Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models

Discrete Kalman Filter: Matrix Version

Estimates the state **x** of a discrete-time controlled process that is governed by the linear stochastic difference equation

$$x_t = Ax_{t-1} + Bu_t + \epsilon_t$$
 $\epsilon_t \sim \mathcal{N}(0,Q)$ with a measurement $z_t = Cx_t + \delta_t$ $\delta_t \sim \mathcal{N}(0,R)$

Goal of the Kalman Filter: Same as Bayes Filter

2 step process:

- Dynamics update (incorporate action)
- Measurement update (incorporate sensor reading)

Bayes Filters

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given action

Linear Gaussian Systems: Initialization

Initial belief is normally distributed:

$$Bel(x_0) = \mathcal{N}(\mu_0, \Sigma_0)$$

- $Bel(x_t)$ at any step t is: $\mathcal{N}(\mu_{t|0:t}, \Sigma_{t|0:t})$
- $lacksquare \overline{Bel}(x_t)$ at any step t is: $\mathcal{N}(\mu_{t|0:t-1}, \Sigma_{t|0:t-1})$

Linear Gaussian Systems: Prediction

Integrate the effect of one action under the dynamics, before measurement comes in

$$x_{t+1} = Ax_t + Bu_{t+1} + \epsilon_{t+1} \qquad \epsilon_{t+1} \sim \mathcal{N}(0, Q_{t+1})$$
$$p(x_{t+1}|x_t, u_{t+1}) = \mathcal{N}(Ax_t + Bu_{t+1}, Q_{t+1})$$

$$\overline{Bel}(x_{t+1}) \qquad Bel(x_t)
p(x_{t+1}|z_{0:t}, u_{0:t+1}) = \int p(x_t|u_{0:t}, z_{0:t}) p(x_{t+1}|u_{t+1}, x_t) dx_t$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = AX + B + \epsilon \implies Y \sim \mathcal{N}(A\mu + B, A\Sigma A^T + Q) \\ \epsilon \sim \mathcal{N}(0, Q) \end{cases}$$

Gaussian, easy!

Linear Gaussian Systems: Prediction

Integrate the effect of one action under the dynamics, before measurement comes in

$$p(x_t|u_{0:t}, z_{0:t}) = \mathcal{N}(\mu_{t|0:t}, \Sigma_{t|0:t})$$

$$x_{t+1} = Ax_t + Bu_{t+1} + \epsilon_{t+1}$$

$$\epsilon_{t+1} \sim \mathcal{N}(0, Q_{t+1})$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = AX + B + \epsilon \implies Y \sim \mathcal{N}(A\mu + B, A\Sigma A^T + Q) \\ \epsilon \sim \mathcal{N}(0, C) \end{cases}$$

Previous belief
$$p(x_t|u_{0:t},z_{0:t}) = \mathcal{N}(\mu_{t|0:t},\Sigma_{t|0:t})$$

Belief Update
$$p(x_{t+1}|u_{0:t+1},z_{0:t}) = \mathcal{N}(A\mu_{t|0:t} + Bu_{t+1},A\Sigma_{t|0:t}A^T + Q_{t+1})$$

Intuition: Scale and shift the mean according to dynamics, uncertainty grows quadratically!

Intuition Behind Prediction Step

Previous belief

$$p(x_t|u_{0:t}, z_{0:t}) = \mathcal{N}(\mu_{t|0:t}, \Sigma_{t|0:t})$$

Belief Update

$$p(x_{t+1}|u_{0:t+1}, z_{0:t}) = \mathcal{N}(A\mu_{t|0:t} + Bu_{t+1}, A\Sigma_{t|0:t}A^T + Q_{t+1})$$

Intuition: Scale and shift the mean according to dynamics, uncertainty grows!

Belief at x_t

Belief post dynamics → shifted mean, scaled and shifted variance

Linear Gaussian Systems: Observations

Integrate the effect of an observation using sensor model, after dynamics

$$z_{t+1} = Cx_{t+1} + \delta_{t+1} \qquad \delta_{t+1} \sim \mathcal{N}(0, R_{t+1})$$
$$p(z_{t+1}|x_{t+1}) = \mathcal{N}(Cx_{t+1}, R_{t+1})$$

$$\frac{Bel(x_{t+1})}{p(x_{t+1}|u_{0:t+1},z_{0:t+1})} \propto p(z_{t+1}|x_{t+1})p(x_{t+1}|u_{0:t+1},z_{0:t})$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = CX + B + \delta \implies X | Y = y_0 \sim \mathcal{N}(\mu + K(y_0 - C\mu), (I - KC)\Sigma) \\ \delta \sim \mathcal{N}(0, R) \end{cases}$$

$$K = \Sigma C^T (C\Sigma C^T + R)^{-1}$$

Linear Gaussian Systems: Observations

Integrate the effect of an observation using sensor model, after dynamics

$$p(x_{t+1}|u_{0:t+1}, z_{0:t}) = \mathcal{N}(\mu_{t+1|0:t}, \Sigma_{t+1|0:t})$$

$$z_{t+1} = Cx_{t+1} + \delta_{t+1}$$

$$\delta_{t+1} \sim \mathcal{N}(0, R_{t+1})$$

$$p(x_{t+1}|u_{0:t+1}, z_{0:t}) = \mathcal{N}(\mu_{t+1|0:t}, \Sigma_{t+1|0:t})$$

$$z_{t+1} = Cx_{t+1} + \delta_{t+1}$$

$$\delta_{t+1} \sim \mathcal{N}(0, R_{t+1})$$

$$\begin{cases} X \sim \mathcal{N}(\mu, \Sigma) \\ Y = CX + B + \delta \\ \delta \sim \mathcal{N}(0, R) \end{cases} \Rightarrow X|Y = y_0 \sim \mathcal{N}(\mu + K(y_0 - C\mu), (I - KC)\Sigma)$$

$$K = \Sigma C^T (C\Sigma C^T + R)^{-1}$$

Previous belief
$$p(x_{t+1}|u_{0:t+1},z_{0:t}) = \mathcal{N}(\mu_{t+1|0:t},\Sigma_{t+1|0:t}) \quad \text{Computed from dynamics step}$$
 Updated belief
$$p(x_{t+1}|u_{0:t+1},z_{0:t+1}) \\ = \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t}) \\ K_{t+1} = \Sigma_{t+1|0:t}C^T(C\Sigma_{t+1|0:t}C^T + R)^{-1}$$

Linear Gaussian Systems: Observations

Previous belief $p(x_{t+1}|u_{0:t+1},z_{0:t})=\mathcal{N}(\mu_{t+1|0:t},\Sigma_{t+1|0:t})$ Computed from dynamics step

Updated belief $p(x_{t+1}|u_{0:t+1},z_{0:t+1})$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

Intuition: Correct the update linearly according to measurement error from expectation, shrink uncertainty accordingly

Intuition Behind Correction Step

- Previous belief
- New Measurement

$$p(x_{t+1}|u_{0:t+1}, z_{0:t+1}) = \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

$$K_{t+1} = \Sigma_{t+1|0:t}C^{T}(C\Sigma_{t+1|0:t}C^{T} + R)^{-1}$$

For the sake of simplicity, let's say C = I

$$K_{t+1} = \frac{\sum_{t+1|0:t}}{\sum_{t+1|0:t} + R}$$

Corrects belief based on measurement

- → Average between mean and measurement based on K
- → Scale down uncertainty based on K

Unpacking the Kalman Gain

Previous belief
$$p(x_{t+1}|u_{0:t+1},z_{0:t})=\mathcal{N}(\mu_{t+1|0:t},\Sigma_{t+1|0:t})$$
 Computed from dynamics step

Updated belief
$$p(x_{t+1}|u_{0:t+1}, z_{0:t+1})$$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

$$K_{t+1} = \Sigma_{t+1|0:t} C^T (C \Sigma_{t+1|0:t} C^T + R)^{-1}$$

Case 1: Very noisy sensor, $R >> \Sigma$

For the sake of simplicity, let's say C = I

$$K_{t+1} = \frac{\sum_{t+1|0:t}}{\sum_{t+1|0:t} + R}$$

Case 2: Deterministic sensor, R = 0

Kalman Filter Algorithm

Dynamics/Prediction (given some u)

Measurement/Correction (given some z)

Estimate
$$Bel(x_{t+1})$$

$$p(x_{t+1}|u_{0:t+1}, z_{0:t+1})$$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

Kalman Filter in Action

Kalman Filter Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: $O(k^{2.376} + n^2)$

Matrix Inversion (Correction)

Matrix Multiplication (Prediction)

$$K_{t+1} = \Sigma_{t+1|0:t} C^T (C \Sigma_{t+1|0:t} C^T + R_{t+1})^{-1} \qquad p(x_{t+1}|z_{0:t}, u_{0:t+1}) \sim \mathcal{N}(A\mu_{t|0:t} + Bu_t, A\Sigma_{t|0:t} A^T + Q_t)$$

- Optimal for linear Gaussian systems!
- Most robotics systems are nonlinear!

Why should we care?

Still a very widely used technique for estimation/localization/mapping in real problems

Lecture Outline

Extended Kalman Filtering

SLAM as a filtering problem

Can I reuse Kalman Filter math for non-linear systems?

Nonlinear Dynamic Systems

Most realistic robotic problems involve nonlinear functions

$$x_{t+1} = g(x_t, u_t) + \epsilon_t$$

$$z_t = h(x_t) + \delta_t$$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

$$\delta_t \sim \mathcal{N}(0,R)$$

Non-linear system

Additive Gaussian noise

More reasonable assumption than linear Gaussian. More on non-Gaussian systems next time

How do we deal with non-linearity?

 Differentiable non-linear functions can be expressed via their Taylor expansion

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots,$$

$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) \qquad \text{Dropping higher order terms, when x-a is small enough}$$

Linear function in x

Pretend that your function is linear in this neighborhood

→ Reapprox in a new neighborhood

EKF Linearization: First Order Taylor Series Expansion

- Idea behind EKF: Linearize the dynamics and measurement around current μ_t
- Dynamics Model (linearize around previous belief):

$$x_{t+1} = g(x_t, u_t) + \epsilon_t \approx g(\mu_t, u_t) + \frac{\partial g(x_t, u_t)}{\partial x_t} \Big|_{x_t = \mu_t} (x_t - \mu_t) + \epsilon_t$$
$$= g(\mu_t, u_t) + G(x_t - \mu_t) + \epsilon_t$$

Measurement Model (linearize around post dynamics belief):

$$z_t = h(x_t) + \delta_t \approx h(\bar{\mu}_t) + \frac{\partial h(x_t)}{\partial x_t} \bigg|_{x_t = \bar{\mu}_t} (x_t - \bar{\mu}_t) + \delta_t \approx h(\bar{\mu}_t) + H(x_t - \bar{\mu}_t) + \delta_t$$

Modified System under EKF Linearization

- Start by linearizing dynamics model under current belief
- Dynamics Model (linearize around previous belief):

$$x_{t+1} = g(x_t, u_t) + \epsilon_t \qquad \approx g(\mu_t, u_t) + \frac{\partial g(x_t, u_t)}{\partial x_t} \bigg|_{x_t = \mu_t} (x_t - \mu_t) + \epsilon_t$$

- Perform dynamics update
- Linearize measurement around post dynamics belief

$$z_t = h(x_t) + \delta_t \approx h(\bar{\mu}_t) + \frac{\partial h(x_t)}{\partial x_t} \bigg|_{x_t = \bar{\mu}_t} (x_t - \bar{\mu}_t) + \delta_t \approx h(\bar{\mu}_t) + H(x_t - \bar{\mu}_t) + \delta_t$$

- Perform measurement update
- Repeat

Original Kalman Filter Algorithm

Dynamics/Prediction (given some u)

Measurement/Correction (given some z)

Estimate
$$Bel(x_{t+1})$$

$$p(x_{t+1}|u_{0:t+1}, z_{0:t+1})$$

$$= \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - C\mu_{t+1|0:t}), (I - K_{t+1}C)\Sigma_{t+1|0:t})$$

EKF Algorithm – linearize non-linear functions

Initial Prior $p(x_0)$

Linearize dynamics

$$x_{t+1} = g(x_t, u_t) + \epsilon_t \approx g(\mu_t, u_t) + \frac{\partial g(x_t, u_t)}{\partial x_t} \Big|_{x_t = \mu_t} (x_t - \mu_t) + \epsilon_t$$

Dynamics/Prediction (given some u)

Estimate $\overline{Bel}(x_t)$

$$p(x_{t+1}|z_{0:t}, u_{0:t}) \sim \mathcal{N}(g(\mu_t, u_t), G\Sigma_{t|0:t}G^T + Q_t)$$

Linearize measurement

$$z_t = h(x_t) + \delta_t \approx h(\bar{\mu}_t) + \frac{\partial h(x_t)}{\partial x_t} \bigg|_{x_t = \bar{\mu}_t} (x_t - \bar{\mu}_t) + \delta_t$$

Measurement/Correction (given some z)

Estimate $Bel(x_t)$

$$p(x_{t+1}|z_{0:t+1},u_{0:t}) = \mathcal{N}(\mu_{t+1|0:t} + K_{t+1}(z_{t+1} - h(\bar{\mu}_t), (I - K_{t+1}H)\Sigma_{t+1|0:t}))$$

Why might we still want to use particle filters?

- Non-linear functions
- Non-Gaussian functions ← EKFs still require Gaussian Distributions

Ok so what have we learned

Bayesian Filtering!

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u_t}, x_{t-1}) bel(x_{t-1})$$

Step 2: Correction - apply Bayes rule given measurement

$$bel(x_t) = \eta P(z_t|x_t)\overline{bel}(x_t)$$

Motion and Measurement Model

Linear Gaussian

– Kalman Filter

Nonlinear Gaussian

– Extended Kalman Filter

Nonlinear non-gaussian

– Particle Filter

Why is this useful - Localization

Why is this useful - Localization

Lecture Outline

SLAM as a filtering problem

Why is this useful - SLAM

- So far, the maps have been assumed to be known \rightarrow often untrue \rightarrow SLAM problem
- A robot is exploring an unknown, static environment.

Given:

The robot's controls (u)

Observations of nearby features (z)

Estimate:

Map of features (x)

Path of the robot (x)

The SLAM Problem

A robot is exploring an unknown, static environment.

Given:

- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot

Why is SLAM difficult?

- Localization assumed map was perfectly known in the sensor/motion
- Mapping assumes position is fully known
- Doing both jointly is hard!

Mapping

Localization

SLAM Applications

Mapping with Raw Odometry

Repeat, with Measurements of Landmarks

SLAM Using Landmarks

Test Environment (Point Landmarks)

View from Vehicle

Comparison with Ground Truth

Simultaneous Localization and Mapping (SLAM)

- Building a map and locating the robot in the map at the same time
- Chicken-and-egg problem

Definition of the SLAM Problem

Given

The robot's controls

$$u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$$

Observations

$$z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$$

Wanted

lacktriangle Map of the environment m

• Path of the robot $x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$

Bayes Filter

Recursive filter with prediction and correction step

Prediction

$$\overline{Bel}(x_t) = \int p(x_t|x_{t-1}, u_{t-1})Bel(x_{t-1})dx_{t-1}$$

Correction

$$Bel(x_t) = \eta p(z_t|x_t)\overline{Bel}(x_t)$$

EKF Slam sets x to be (position of robot, position of landmarks)

EKF SLAM

- Application of the EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- Assumption: known correspondences
- State space (for the 2D plane) is

$$x_t = (\underbrace{x, y, \theta}_{\text{robot's pose}}, \underbrace{m_{1,x}, m_{1,y}, \dots, \underbrace{m_{n,x}, m_{n,y}}}_{\text{landmark n}})^T$$

EKF SLAM: State Representation

- Map with n landmarks: (3+2n)-dimensional Gaussian
- Belief is represented by

EKF SLAM: State Representation

More compactly

EKF SLAM: State Representation

• Even more compactly (note: $x_R \to x$)

EKF SLAM: Filter Cycle

- State prediction
- 2. Measurement prediction
- 3. Measurement + Data Association
- 4. Update

Why is this useful - SLAM

Class Outline

