

Autonomous Robotics Winter 2024

Abhishek Gupta TAs: Karthikeya Vemuri, Arnav Thareja Marius Memmel, Yunchu Zhang

Slides borrowed from many sources – Sidd Srinivasa, Sanjiban Choudhury, Russ Tedrake

Class Outline

HW 2 due on Feb 2

- Reading responses due on Ed by Monday Jan 29
- Start hardware HW early!
- Suggest guest lectures early ③

Lecture Outline

Let's zoom back out

The Sense-Plan-Act Paradigm

Solved over last 3 weeks

Assume to be solved for now

From perception to control ...

When I think about control ...

What is Control?

What is a Plan?

Can express this problem as tracking a reference trajectory

 $x(t), y(t), \theta(t)$

Why Feedback Control?

What if we send out controls u(t) from kinematic car model?

Open-loop control leads to **accumulating errors**!

Feedback Control

- 1. Measure error between reference and current state.
- 2. Take actions to minimize this error.

Useful to think of control laws as vector fields

Is this still a research problem?

Industrial robots hard at work

https://www.youtube.com/watch?v=J_8OnDsQVZE&t=315s

Assumptions made by such controllers

1. Fully actuated: There exists an inverse mapping from reference to control actions

$$\sigma(t) \to u(t)$$

2. Almost no execution error or state estimation error

3. Enough control authority to clamp down errors / overcome disturbances

The Atlas robot hard at ... play?

https://www.youtube.com/watch?v=fRj34o4hN4I

Challenge 1: Underactuated systems

Fully actuated: There exists an inverse mapping from reference to control actions

We don't have full authority to move the system along arbitrary trajectories

Challenge 1: Underactuated systems

What affects the error between robot state and reference?

Some initial motor thrust ...

Whole lot of gravity!

Whole lot of momentum!

... some precise control adjustments

Question:

If we know the model of our robot, can't we solve a huge optimization problem to figure out control?

Doing backflips with a helicopter

https://www.youtube.com/watch?v=RGu45s1_QPU

And just what is this model ?!?

Chaotic vortex around blades!

Hopeless to assume we know exactly how the helicopter will behave upside down...

Challenge 2: Choosing good closed-loop models

Closed-loop system = Point mass with a planar thrust vector

Chaotic dynamics

+

Feedback control law Well-behaved system

=

Challenge 3: Model changing on the fly!

Run real-time estimators for wheel characteristics

Need control laws for all possible model parameters

Ok let's control racecars!

Reference Parameterizations

Option 1: **Time**-parameterized trajectory

Pro: Useful if we want the robot to respect time constraints Con: Sometimes we only care about deviation from reference

Reference Parameterizations

Option 2: Index-parameterized geometric path (untimed)

Pro: Useful for conveying shape for the robot to follow Con: Can't control when robot will reach a point

Controller Design Decisions

- 1. Get a reference path/trajectory to track
- 2. Pick a reference state from the reference path/trajectory
- 3. Compute error to reference state
- 4. Compute control law to minimize error

Step 2: Pick a reference (desired) state

How do we choose a reference state?

Closest point
$$\tau_{ref} = \arg\min_{\tau} \| \begin{bmatrix} x & y \end{bmatrix}^{\top} - \begin{bmatrix} x(\tau) & y(\tau) \end{bmatrix}^{\top} \|$$

How do we choose a reference state?

Lookahead
$$au_{\mathrm{ref}} = \arg\min_{\tau} \left(\| \begin{bmatrix} x & y \end{bmatrix}^{\top} - \begin{bmatrix} x(\tau) & y(\tau) \end{bmatrix}^{\top} \| - \ell \right)^2$$

Aside: Rotation Matrices (Plane)

We want position in frame B

$${}^{B}e = \begin{bmatrix} e_{at} \\ e_{ct} \end{bmatrix} = \begin{bmatrix} \cos(\theta_{ref}) & \sin(\theta_{ref}) \\ -\sin(\theta_{ref}) & \cos(\theta_{ref}) \end{bmatrix} \left(\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x_{ref} \\ y_{ref} \end{bmatrix} \right)$$

$$\theta_e = \theta - \theta_{ref}$$

(Along-track)
$$e_{at} = \cos(\theta_{ref})(x - x_{ref}) + \sin(\theta_{ref})(y - y_{ref})$$

(Cross-track) $e_{ct} = -\sin(\theta_{ref})(x - x_{ref}) + \cos(\theta_{ref})(y - y_{ref})$

(Heading) $heta_e = heta - heta_{ref}$

Step 4: Compute control law

u = K(e)

We will only control steering angle; fixed constant speed

As a result, no real control for along-track

error

Some control laws will only minimize crosstrack error, others will also minimize heading Proportional-integral-derivative (PID) control

Pure-pursuit control

Model-predictive control (MPC)

Linear-quadratic regulator (LQR)

And many many more!

Bang-bang control

Simple control law - choose between hard left and hard right

Bang-bang control

What happens when we run this control?

Need to adapt the magnitude of control proportional to the error ...

This clearly sucks! Come back on Monday to find out more

Class Outline

