Autonomous Robotics

Winter 2024
Abhishek Gupta
TAs: Karthikeya Vemuri, Arnav Thareja

Marius Memmel, Yunchu Zhang

Class Outline

State Estimation Control
Robotic System Design Filtering Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning | |Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

Logistics

m HW 2 released

m Extra lecture/OH after class to clear up Kalman
Filters/Particle Filters

m Feedback welcome on how we can make the class
better!

Lecture Outline

(Whiteboard) Recap of Basic Particle Filtering

\4

Particle Filter w/ Resampling

v
Practical Considerations

v

EKF + Applications

Overall Particle Filter algorithm —v1

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(xo)

-

_

/

o

Estimate B—el(gjt) A
Sample particles from p(:ljt ‘:Ct_l, ut) propagating weights
J
7
Estimate Bel(xy) \

1. Weight samples by p(z;|x¢)

2. Normalize weights

Lecture Outline

(Whiteboard) Recap of Basic Particle Filtering

\4

Particle Filter w/ Resampling

v
Practical Considerations

v

EKF + Applications

What happens across multiple steps?

-

—_ -
- -~
-
-

~

, ~O
8 N T e
é O _________________________ ©
A O cmmmmmmmmmm T
__________ o 3
o O
X AN
= o p(z|z) o
5 © > e
>
B e

AN

Importance weights get multiplied at each step

Why might this be bad?

Importance weights get multiplied at each step

o O G
O o

1. May blow up and get numerically unstable over many steps
2. Particles stay stuck in unlikely regions

TRUE POSTERIOR | TRUE POSTERIOR | TRUE POSTERIOR

Resampling

= Given: Set S of weighted samples (from measurement step)
with weights w;

= Wanted : unweighted random sample, where the
probability of drawing x; is given by w,.

= Typically done n times with replacement to generate new
sample set §".

Resampling

® Spin a roulette wheel

® Space according to weights

® Pick samples based on where it lands

Here are your random numbers:

0.97
0.26

col o)}

Resampling in a particle filter

Bel(xzy) = nP(2|2:) Bel(x) P(z|)

Bel(a;) — P(z|zd)Bel(z) ™~ 5 P(zai)
Y [P(z|wy) Bel(xy)day

O - >
Resampling

O : jl>:o
o@ o0

Resample particles from weighted distribution to give unweighted set of particles

Original: Normalized Importance Sampling

) @) (M)
XL XL XL
Bel(z:) =4 1) o ()

New: Normalized Importance Sampling with Resampling

Here are your random numbers:

(L) (2) (3)
e L Wy 0026
0.72

o
| =
col o)
—t

New: Normalized Importance Sampling with Resampling

22

Overall Particle Filter algorithm — v2

Dynamics/Prediction

Measurement/Correction

Initial Prior
p(xo)

Estimate B—el(gjt)

Sample particles from p(z¢|xs 1, ur_1)

v

Estimate Bel(x¢)

1. Weight samples by p(zt|att)

2. Resample particles to get unweighted set

AN

Lecture Outline

(Whiteboard) Recap of Basic Particle Filtering

\4

Particle Filter w/ Resampling

v
Practical Considerations

v

EKF + Applications

Problem 1: Two Room Challenge

Particles begin equally distributed, no motion or observation

All particles migrate to one room!

Reason: Resampling Increases Variance

50% prob. of resampling particle from Room 1 vs Room 2
31% prob. of preserving 50-50 particle split

L LG

All particles migrate to one room!

ldea 1: Judicious Resampling

Key idea: resample less often! (e.g., if the robot is stopped, don’t
resample). Too often may lose particle diversity, infrequently may waste
particles

Common approach: don’t resample if weights have low variance

Can be implemented in several ways: don’t resample when...
...all weights are equal
...weights have high entropy
...ratio of max to min weights is low

ldea 2: Low-Variance Resampling

Sample one random number r ~ [O, ﬁ}
Covers space of samples more systematically (and more efficiently)
If all samples have same importance weight, won’t lose particle diversity

o
| =
x|
—

Other Practical Concerns

How many particles is enough?
Typically need more particles at the beginning (to cover possible states)
KLD Sampling (Fox, 2001) adaptively increases number of particles when
state uncertainty is high, reduces when state uncertainty is low

Particle filtering with overconfident sensor models
Squash sensor model prob. with power of 1/m (Lecture 3)
Sample from better proposal distribution than motion model
Manifold Particle Filter (Koval et al., 2017) for contact sensors

Particle starvation: no particles near current state

https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://www.cs.cmu.edu/~kaess/pub/Koval17icra.pdf

MuSHR Localization Project

Implement kinematic car motion model
Implement different factors of single-beam sensor model

Combine motion and sensor model with the Particle Filter algorithm

Lecture Outline

(Whiteboard) Recap of Basic Particle Filtering

\4

Particle Filter w/ Resampling

v
Practical Considerations

\4

EKF + Applications

Ok, but maintaining particles is kind of a pain.

Can | reuse Kalman Filter math for non-linear
systems?

Nonlinear Dynamic Systems

= Most realistic robotic problems involve nonlinear

functions
Ti+1 — g(lli‘t,ut) €t

Non-linear system

Lt = h(iﬁt) -+ 575

€r ~ N(O, Q) b
Additive Gaussian noise Cﬁ e
2.

More reasonable assumption than linear Gaussian. More on non-Gaussian systems next time

How do we deal with non-linearity?

= Differentiable non-linear functions can be
expressed via their Taylor expansion

f'(a) " (a) " (a)

f(@)=fla)+ —-@-a+——@-a + ——(z—-a) +--,
f'(a) . |
f(x) ~ f(a) -+ T (:Ij — a) Dropping higher order terms, when x-a is small enough
Linear function in x f(a) + f"(a)(x—a)

f(x)
Pretend that your function is linear in this neighborhood \>/\\
- Reapprox in a new neighborhood - Z

a X

EKF Linearization: First Order Taylor Series Expansion

ldea behind EKF: Linearize the dynamics and measurement
around current p,

Dynamics Model (linearize around previous belief):

0
9z, ur) (T — pe) + €
8$t Lt—Mt

= g, ue) + G(xy — pg) + €

Ty = g(Te,ur) + € ~ g e, ug) +

Measurement Model (linearize around post dynamics belief):

(9h(:vt)
(9:1:',5

Zt —]’L(CCt) -+ 5t ~ h(,at) + (xt - /jt) + 0 &~ h(ﬂt) + H(azt — ,at) -+ (575

Tt=¢

Now everything is linear = back to Kalman filtering!

Modified System under EKF Linearization

Start by linearizing dynamics model under current belief

Dynamics Model (linearize around previous belief):

ag(xtv ut)

Tir1 = g(2¢, ur) + € ~ g,) +
aZEt

(e — pt) + €

Tt= ¢

Perform dynamics update

Linearize measurement around post dynamics belief

8h(:ct)
8xt

Zt — h([ll't) -+ 5t ~ h(ﬂt) + (xt — ,L_Lt) +0¢ & h(ﬂt) -+ H(Zl?t — /_Lt) —+ (St

Tt=[bt

Perform measurement update

Repeat

Original Kalman Filter Algorithm

Initial Prior

p(fCo)

4 Estimate Bel(x;11))
Dynamics/Prediction P(Tep1|uott1, 20:t) = N (Apgjor + Buesa, A2t|0:tAT + Qt41)
(given some u)
1\ J
4)

Estimate Bel(xsy1)
Measurement/Correction

p($t+1 |U0:t+1> zO:t—l—l)

_ = N(pet110:¢ + Ker1(2e41 — Cpiggajone), (I — Ker1C) X 4100:4) y

(given some z)

EKF Algorithm — linearize non-linear functions

Initial Prior 1

(Linearize dynamics

p(zo) J

Dynamics/Prediction
(given some u)

Measurement/Correction
(given some z)

ag('xt? ut)
8$t

(p — 1) + €

Tt=HUt

'L Tir1 = 9(T,ur) + €6~ gpe, ue) +

Estimate Bel ()

p(xt—|—1 |Z0:t7 uO:t) ~ N (g(pt, ut), Gzt|0:tGT + Q)

8}1(21775)
3xt

zi = h(xy) + 6 =~ h(in) +

l

Estimate Bel (x;) }

P(xt+1 |ZO:t+1a UO:t) = N(Mt+1|o:t + K1 (ze01 — h(jie), (I — Kt+1H>Et+1|0:t)

[Linearize measurement

Why might we still want to use particle filters?

® Non-linear functions

® Non-Gaussian functions «—— EKFs still require Gaussian Distributions

Py)
— Gaussian of p{y)

— EFK Gaussian

0 0204 06 0.8

6
4
2
0
2
4

Ok so what have we learned

Bayesian Filtering!

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xy_1)

Step 1: Prediction - push belief through dynamics given action

bel(z;) = Z P(x¢|ug, zp—1)bel(xi—1)

Step 2: Correction - apply Bayes rule given measurement

bel(zy) = nP(z|x¢)bel(xy)

Motion and Measurement Model

Linear Gaussian
— Kalman Filter

Nonlinear Gaussian
— Extended Kalman Filter

Nonlinear non-gaussian
— Particle Filter

Why is this useful - Localization

Thrust Intensities

Centroidal Momentum

Linear y Component

Linear z Component

Left Arm Right Arm Linear x Component
100} 100
=30 =30 =30
=z =z =z z z
2 Z S20 20 Z20
% so g s0 E E 5
g g 10 210 10
\ 5 & £ €
of u Jo S o 30 |
15 10 5 0 15 10 s o 15 5 o0 15 10 s] 5 10 s 0
Left Back Right Back Angular x Component > Angular y Component Angular z Component
150 150 e 7 o)
€ E osl £
= = : 05 05 0s
Z 100 £ 100 = = =
% S g © E 0 { £ ©
£ sof £ 50 S 3 S
= 505 505 g 03
& €
ot 0 < Wy > S0 <
15 10 s 0 15 10 5 0 15 5 0 B 15 10 5 0 15 10 s 0
Time (s] Time (s} Time (5] Time {s)

Why is this useful - Localization

Why is this useful - SLAM

" So far, the maps have been assumed to be known = often untrue - SLAM problem

" Avrobotis exploring an unknown, static environment. =

Given:
The robot’s controls (u)

Observations of nearby features (z)

Estimate:
Map of features (x)

Path of the robot (x)

Why is this useful - SLAM

Pointcloud-Map

Class Outline

State Estimation Control
Robotic System Design Filtering Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning | |Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

