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Recap



Bayes filter in a nutshell

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

bel ZCt ZP 513t|ut,il3t 1)b€l($t 1)

Step 2: Correction - apply Bayes rule given measurement

bel(x) = nP(z|z:)bel(x;)
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So what do we need to define to instantiate this?

Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1
bel(xi_1)

Step 1: Prediction - push belief through dynamics given action

@(xt) = ’ P(a:t|ut,a:t_1 Bl(ﬂjt_]_)

Step 2: Correction - apply Bayes rule given measurement

bel(xy) = el(a;t)



Let’s ground this in the context of the car

PREDICTION CORRECTION

PREDICTION CORRECTION

P(x¢|ug, xp—1) P(z¢|x¢)



Motion Model

How do we know this?
-2 it’s just physics!




A Spectrum of Motion Models

Highest-fidelity \?J?hp:ce)trsngg ﬁloise
models capturing
everything we know

(Red Bull F1 Simulator)



https://www.f1simulatormaniac.com/red-bull-simulator/

Why is the motion model probabilistic?

= If we know how to write out equations of motion,
shouldn’t we be able to predict exactly where an

object ends up?

= “All models are wrong, but some are useful” —
George Box
= Examples: ideal gas law, Coulomb friction

m Stochasticity is a catch-all for model error, actuation
error, ...




What defines a good motion model?

In theory: try to accurately model the uncertainty (e.g., actuation
errors)

In practice...

= We need just enough stochasticity to explain any measurements we'll see
(Bayes filter uses measurements to hone in on the right state)

= We need a model that can deal with unknown unknowns
(No matter the model, we need to overestimate uncertainty)

= We would like a model that is computationally cheap
(Bayes filter repeatedly invokes this model to predict state after actions)

Key idea: simple model + stochasticity



W What motion model should | use for MuSHR? .

= A kinematic model governs how wheel speeds map to
robot velocities

= A dynamic model governs how wheel torques map to
robot accelerations

s For MuSHR, we'll ignore dynamics and focus on
kinematics (assuming the wheel actuators can set speed
directly)

s Other assumptions: wheels roll on hard, flat, horizontal
ground without slipping



Kinematic Car Model
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Kinematic Car Model
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Definition: Instant Center of Rotation (CoR)

A planar rigid body undergoing a rigid
transformation can be viewed as
undergoing a pure rotation about an
instant center of rotation.

rigid body: a non-deformable object

rigid transformation: a combined
rotation and translation

HTTPS://EN.WIKIPEDIA.ORG/WIKI/INSTANT_CENTRE_OF_ROTATION



Equations of Motion
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Equations of Motion

T = vcosl
Yy =vsinf
v
0=w=—
R




Kinematic Car Model
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Integrate the Kinematics Numerically

T = vcosb
Yy = vsinf

0 = %tan5

Assume that steering
angle is piecewise
constant betweentand t’



Integrate the Kinematics Numerically

t’ t’ 0’
Axr = / vcosO(t)dt = / UC(.)SH d(gdt = / cos 0d6
t t 0

o di 6
—— .
= tan5(8111(9 — sin ) x = vcos b
Yy = vsinf
.
L 0 = —tano
Ay = — cos '
Y tam(s(cosH cos ") L

Assume that steering
angle is piecewise
constant betweentand t’

t/
Al = / Odt = b tan 0 At
’ L



Kinematic Car Update

0, =0, 1 + A0 =0, + — tan 6A

L
+A Y (sinf, — sinf,_,)
— XT+_ — L+_1 no; —sino;_
Lt Lt—1 L Lt—1 tanéSIt SINN Uy 1
L
Yt = Yp—1 + AY = yy_1 (cos@;_1 — cos6;)

tan o



Kinematic Car Model
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‘Why is the kinematic car model probabilistic?

= Control signal error: voltage discretization, communication lag

= Unmodeled physics parameters: friction of carpet, tire pressure

= Incorrect physics: ignoring tire deformation, ignoring wheel
slippage

= Our probabilistic motion model

= Add noise to control before propagating through model
= Add noise to state after propagating through model




Motion Model Summary

MOTION MODEL MOTION MODEL
PROB. DENSITY FUNCTION SAMPLES

= Write down the deterministic equations of motion
(kinematic car model)

= Introduce stochasticity to account against various factors
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Sensor Model




How Does LIDAR Work?

HTTPS://YOUTU.BE/NZKVF1CXES8S



LIDAR in the Real World

HTTPS://YOUTU.BE/I8YV5D8CPOC



Why is the sensor model probabilistic?

= Incomplete/incorrect map: pedestrians, objects moving
around

= Unmodeled physics: lasers go through glass

= Sensing assumptions: light interference from other
Sensors,
multiple laser returns (bouncing off multiple objects)




What defines a good sensor model?

s Overconfidence can be catastrophic for Bayes filter

= LIDAR is very precise, but has distinct modes of failure

= Anticipate specific types of failures, and add stochasticity
accordingly



What sensor model should | use for MuSHR?

P(z¢|xy) — P(z¢|xe, m)

LASER SCAN STATE MAP




Assumption: Conditional Independence

7ZtK|xt7 m)




Assumption: Conditional Independence

P(zi|zy, m) = P(zg, th, co ,ZtK|ZIZt,m)




Single Beam Sensor Model

P(z{f|xt,m)

\> DISTANCE




Typical Sources of Stochasticity

1. Correct range (distance) with local measurement noise
2. Unexpected objects

3. Sensor failures

4. Random measurements



Factor 1: Local Measurement Noise

p(zf | x¢,m)

What the range must have
been, given the map

Sensor limit

L £

Rt <max

e (25 | zem) = ] MNGEEET o) 0 S 2 <t
A Y 0 otherwise



Factor 2: Unexpected Objects

p(zf | m,m)

What the range must have
been, given the map

Sensor limit

\

koo
N Ashort € ebort?r  if O < 2F < 2
0 otherwise

Zmax

pshort(zgC | xt,m) — {



Factor 2: Unexpected Objects

p(zéc | ¢, m) 128

\

O |l oOo|lo|lo|oOoo | oo |OoO |+~

k *
Rt Amax

koo
k _ n )\short 6_>\Sh°rtzt if 0 < Zf < Zf*

Dshort (27 | ¢, m) = .
0 otherwise



Factor 2: Unexpected Objects (Project)

p(zf | m,m)

What the range must have
been, given the map

\/ Sensor limit

Zmax

Zt _Zt
{2 e if 2F < 2

0 otherwise

Pshort (Zf‘ﬂjt, m) —



Factor 3: Sensor Failures

p(z | x,m)

What the range must have
been, given the map

Sensor limit

Zmax

1 if 2 = zZpax

pmax(zt |a:t,m) — I(ZZZmaX) — {O otherwise



Factor 4: Random Measurements

p(zf | m,m)

What the range must have
been, given the map

Sensor limit
l% |
Ry * Amax

1

if0< 2k <2
prand(zf|$t,m) p— { Smax — ~t max

otherwise




Putting It All Together

T
( Zhit \ ( phit(zf | T, m) \
Zshort . Pshort (Zf | Lt m)
Zmax pmatx(zic | Lty m)

\ Zrand ) \ prand(zilbc | $t7m) )

(2t | ze,m) =

Weights sum to 1

Ik*
Zy Zmax



LIDAR Model Algorithm

P(Zt|ll3t, H P |£Ut,

. Use robot state to compute the sensor’'s pose on the map
. Ray-cast from the sensor to compute a simulated laser scan

. For each beam, compare ray-casted distance to real laser scan
distance

. Multiply all probabilities to compute the likelihood of that real
laser scan
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Tuning Single Beam Parameters

Ize parameters

180

collect lots of data and opt

s Offline

10000

5000



Tuning Single Beam Parameters

= Online: simulate a scan and plot the likelihood from different positions

Y

Actual scan Likelihood at various locations



Dealing with Overconfidence

K
P(zt|xe, m) = H |-f'3t>

= Subsample laser scans: convert 180 beams to 18 beams
s Force the single beam model to be less confident

P(z;|ze, m) = P(27 |z, m)%, a < 1



MuSHR Localization Project

= Implement kinematic car motion model
= Implement different factors of single-beam sensor model

= Combine motion and sensor model with the Particle Filter
algorithm
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What makes this challenging?

Need to choose form of probability distributions

= Dynamics (Prediction) .
Bel(x;) = /P(azt|ut;’;1,a}t1)Bel(xt1)da:t1
= Measurement (Correction)

Bel(x;) = nP(zt\:;:t)B—el

(@

Tractable computation of Bayesian posteriors



What makes this challenging?

= Dynamics (Prediction)

Bel(xy) = /P(azt|ut1,a}t1)Bel(xt1)da:t1
= Measurement (Correction)

Bel(;) = nP(z|7:) Bel ()

Model as Linear Gaussian



Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models

Lt—1 Tt Lt4+1




Discrete Kalman Filter

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation

Tti1 = Aﬂft -+ BU/t -+ €+
€r "~ N(07 Q) \

Linear Gaussian

with a measurement //

241 = Cxyqq + 0y
(St ~/ N(O, R)




55

Components of a Kalman Filter

A

Matrix (n x n) that describes how the state evolves
from t-7 to t without controls or noise.

Matrix (n x I) that describes how the control u,_,
changes the state from t-7to t

Matrix (k x n) that describes how to map the state
x, to an observation z..

Random variables representing the process and
measurement noise that are assumed to be
iIndependent and normally distributed with
covariance R and Q respectively.



Goal of the Kalman Filter

Belief

@ Q @ p(xt|20:t7u0:t—l)

Idea: recursive update

LTt—1 Lt Lt41
X (Zt|$t Q?t\fﬁt 1, Ut— 1 xt 1\2’0t 1, UO:t— 2 diUt 1

: 3 Measurement \

Recursive Belief

2 step process:.
= Dynamics update (incorporate action)

= Measurement update (incorporate sensor reading)
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