

# **Autonomous Robotics**Winter 2024

Abhishek Gupta

TAs: Karthikeya Vemuri, Arnav Thareja Marius Memmel, Yunchu Zhang



#### Class Outline



## Recap

#### Bayes filter in a nutshell

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u_t}, x_{t-1}) bel(x_{t-1})$$

Step 2: Correction - apply Bayes rule given measurement

$$bel(x_t) = \eta P(\mathbf{z_t}|x_t) \overline{bel}(x_t)$$

#### Lecture Outline

**Instantiating Motion Models Instantiating Sensor Models** Putting together for the Car Kalman Filtering

#### Bayes filter in a nutshell

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum P(x_t | \mathbf{u_t}, x_{t-1}) bel(x_{t-1})$$

Step 2: Correction - apply Bayes rule given measurement

$$bel(x_t) = \eta P(\mathbf{z_t}|x_t) \overline{bel}(x_t)$$

#### So what do we need to define to instantiate this?

Key Idea: Apply Markov to get a recursive update!

Step 0. Start with the belief at time step t-1

$$bel(x_{t-1})$$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum P(x_t|\mathbf{u_t}, x_{t-1})bel(x_{t-1})$$

Step 2: Correction - apply Bayes rule given measurement

$$bel(x_t) = P(z_t|x_t) \overline{vel}(x_t)$$

#### Let's ground this in the context of the car

**PREDICTION** 

**CORRECTION** 



**PREDICTION** 

**CORRECTION** 

 $P(x_t|u_t,x_{t-1})$ 

 $P(z_t|x_t)$ 

#### **Motion Model**

How do we know this?

→ it's just physics!



$$P(x_t|u_t,x_{t-1})$$

#### A Spectrum of Motion Models



**VS** 



Simple model with lots of noise

Highest-fidelity models capturing everything we know

(Red Bull F1 Simulator)

## Why is the motion model probabilistic?

- If we know how to write out equations of motion, shouldn't we be able to predict exactly where an object ends up?
- "All models are wrong, but some are useful" —
   George Box
  - Examples: ideal gas law, Coulomb friction
- Stochasticity is a catch-all for model error, actuation error, ...

## What defines a good motion model?

- In theory: try to accurately model the uncertainty (e.g., actuation errors)
- In practice...
  - We need just enough stochasticity to explain any measurements we'll see (Bayes filter uses measurements to hone in on the right state)
  - We need a model that can deal with unknown unknowns
     (No matter the model, we need to overestimate uncertainty)
  - We would like a model that is computationally cheap
     (Bayes filter repeatedly invokes this model to predict state after actions)
- Key idea: simple model + stochasticity

#### What motion model should I use for MuSHR?

- A kinematic model governs how wheel speeds map to robot velocities
- A dynamic model governs how wheel torques map to robot accelerations
- For MuSHR, we'll ignore dynamics and focus on kinematics (assuming the wheel actuators can set speed directly)
- Other assumptions: wheels roll on hard, flat, horizontal ground without slipping

#### Kinematic Car Model



#### Kinematic Car Model

$$\dot{x} = f(x, u) \longrightarrow \begin{bmatrix} x_{t-1} + \Delta x \\ y_{t-1} + \Delta y \\ \theta_{t-1} + \Delta \theta \end{bmatrix} = \begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix}$$

$$\rightarrow P(x_t|u_t,x_{t-1})$$

## Definition: Instant Center of Rotation (CoR)



A planar **rigid body** undergoing a **rigid transformation** can be viewed as undergoing a **pure rotation** about an instant center of rotation.

rigid body: a non-deformable object

rigid transformation: a combined rotation and translation

## **Equations of Motion**



$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{ heta}=$$
 ?

#### **Equations of Motion**



$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = \omega = \frac{v}{R} = \frac{v \tan \delta}{L}$$

$$\tan \delta = \frac{L}{R} \to R = \frac{L}{\tan \delta}$$

#### Kinematic Car Model

$$\dot{x} = f(x, u) \quad \Longrightarrow \quad \begin{bmatrix} x_{t-1} + \Delta x \\ y_{t-1} + \Delta y \\ \theta_{t-1} + \Delta \theta \end{bmatrix} = \begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix}$$

## Integrate the Kinematics Numerically

$$\begin{vmatrix} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = \frac{v}{L} \tan \delta \end{vmatrix}$$

Assume that steering angle is **piecewise constant** between t and t'

## Integrate the Kinematics Numerically

$$\Delta x = \int_{t}^{t'} v \cos \theta(t) dt = \int_{t}^{t'} \frac{v \cos \theta}{\dot{\theta}} \frac{d\theta}{dt} dt = \frac{v}{\dot{\theta}} \int_{\theta}^{\theta'} \cos \theta d\theta$$

$$= \frac{L}{\tan \delta} (\sin \theta' - \sin \theta)$$

$$\Delta y = \frac{L}{\tan \delta} (\cos \theta - \cos \theta')$$

$$\Delta \theta = \int_{t}^{t'} \dot{\theta} dt = \frac{v}{L} \tan \delta \Delta t$$

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = \frac{v}{L} \tan \delta$$

Assume that steering angle is **piecewise constant** between t and t'

#### Kinematic Car Update

$$\theta_t = \theta_{t-1} + \Delta\theta = \theta_{t-1} + \frac{v}{L} \tan \delta \Delta t$$

$$x_t = x_{t-1} + \Delta x = x_{t-1} + \frac{L}{\tan \delta} (\sin \theta_t - \sin \theta_{t-1})$$

$$y_t = y_{t-1} + \Delta y = y_{t-1} + \frac{L}{\tan \delta} (\cos \theta_{t-1} - \cos \theta_t)$$

#### Kinematic Car Model

$$\dot{x} = f(x, u) \longrightarrow \begin{bmatrix} x_{t-1} + \Delta x \\ y_{t-1} + \Delta y \\ \theta_{t-1} + \Delta \theta \end{bmatrix} = \begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix}$$

$$\rightarrow P(x_t|u_t,x_{t-1})$$
 ADD NOISE

## Why is the kinematic car model probabilistic?

- Control signal error: voltage discretization, communication lag
- Unmodeled physics parameters: friction of carpet, tire pressure
- Incorrect physics: ignoring tire deformation, ignoring wheel slippage
- Our probabilistic motion model
  - Add noise to control before propagating through model
  - Add noise to state after propagating through model

## Motion Model Summary





MOTION MODEL PROB. DENSITY FUNCTION

MOTION MODEL SAMPLES

- Write down the deterministic equations of motion (kinematic car model)
- Introduce stochasticity to account against various factors

#### Lecture Outline

**Instantiating Motion Models Instantiating Sensor Models** Putting together for the Car Kalman Filtering

#### Sensor Model



$$P(z_t|x_t)$$

#### How Does LIDAR Work?



HTTPS://YOUTU.BE/NZKVF1CXE8S

#### LIDAR in the Real World



## Why is the sensor model probabilistic?

- Incomplete/incorrect map: pedestrians, objects moving around
- Unmodeled physics: lasers go through glass
- Sensing assumptions: light interference from other sensors,
  - multiple laser returns (bouncing off multiple objects)

## What defines a good sensor model?

- Overconfidence can be catastrophic for Bayes filter
- LIDAR is very precise, but has distinct modes of failure
  - Anticipate specific types of failures, and add stochasticity accordingly

#### What sensor model should I use for MuSHR?





## Assumption: Conditional Independence

$$P(z_t|x_t,m) = P(z_t^1, z_t^2, \cdots, z_t^K|x_t, m)$$

$$= \prod_{k=1}^K P(z_t^k | x_t, m)$$



## Assumption: Conditional Independence

$$P(z_t|x_t,m) = P(z_t^1, z_t^2, \cdots, z_t^K|x_t, m)$$

$$= \prod_{k=1}^K P(z_t^k | x_t, m)$$



## Single Beam Sensor Model





## Typical Sources of Stochasticity

- 1. Correct range (distance) with local measurement noise
- 2. Unexpected objects
- 3. Sensor failures
- 4. Random measurements

#### Factor 1: Local Measurement Noise



$$p_{\text{hit}}(z_t^k \mid x_t, m) = \begin{cases} \eta \mathcal{N}(z_t^k; z_t^{k*}, \sigma_{\text{hit}}^2) & \text{if } 0 \leq z_t^k \leq z_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

# Factor 2: Unexpected Objects



$$p_{\text{short}}(z_t^k \mid x_t, m) = \begin{cases} \eta \lambda_{\text{short}} e^{-\lambda_{\text{short}} z_t^k} & \text{if } 0 \le z_t^k \le z_t^{k*} \\ 0 & \text{otherwise} \end{cases}$$

# Factor 2: Unexpected Objects



| 1 |   |   |   |   |   |   |   | 1 |
|---|---|---|---|---|---|---|---|---|
| 0 | 1 |   |   |   |   |   |   | 6 |
| 0 | 0 | 1 |   |   |   |   |   | 3 |
| 0 | 0 | 0 | 1 |   |   |   |   | 1 |
| 0 | 0 | 0 | 0 | 1 |   |   |   | 8 |
| 0 | 0 | 0 | 0 | 0 | 1 |   |   | 4 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 |   | 2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

$$p_{\text{short}}(z_t^k \mid x_t, m) = \begin{cases} \eta \lambda_{\text{short}} e^{-\lambda_{\text{short}} z_t^k} & \text{if } 0 \le z_t^k \le z_t^{k*} \\ 0 & \text{otherwise} \end{cases}$$

# Factor 2: Unexpected Objects (Project)



#### Factor 3: Sensor Failures



$$p_{\max}(z_t^k \mid x_t, m) = I(z = z_{\max}) = \begin{cases} 1 & \text{if } z = z_{\max} \\ 0 & \text{otherwise} \end{cases}$$

#### Factor 4: Random Measurements



$$p_{\mathrm{rand}}(z_t^k \mid x_t, m) = \begin{cases} \frac{1}{z_{\mathrm{max}}} & \text{if } 0 \leq z_t^k < z_{\mathrm{max}} \\ 0 & \text{otherwise} \end{cases}$$

# Putting It All Together



# LIDAR Model Algorithm

$$P(z_t|x_t, m) = \prod_{k=1}^{K} P(z_t^k|x_t, m)$$

- 1. Use robot **state** to compute the sensor's pose on the **map**
- 2. Ray-cast from the sensor to compute a simulated laser scan
- For each beam, compare ray-casted distance to real laser scan distance
- 4. Multiply all probabilities to compute the likelihood of that real laser scan

# Lecture Outline

**Instantiating Motion Models Instantiating Sensor Models** Putting together for the Car Kalman Filtering

# Tuning Single Beam Parameters

Offline: collect lots of data and optimize parameters



## **Tuning Single Beam Parameters**

Online: simulate a scan and plot the likelihood from different positions



Actual scan

Likelihood at various locations

# Dealing with Overconfidence

$$P(z_t|x_t, m) = \prod_{k=1}^{K} P(z_t^k|x_t, m)$$

- Subsample laser scans: convert 180 beams to 18 beams
- Force the single beam model to be less confident

$$P(z_t^k|x_t,m) \to P(z_t^k|x_t,m)^{\alpha}, \alpha < 1$$

# MuSHR Localization Project

- Implement kinematic car motion model
- Implement different factors of single-beam sensor model
- Combine motion and sensor model with the Particle Filter algorithm

# Lecture Outline

**Instantiating Motion Models Instantiating Sensor Models** Putting together for the Car Kalman Filtering

## What makes this challenging?

Need to choose form of probability distributions



Measurement (Correction)

$$Bel(x_t) = \eta P(z_t | x_t) \overline{Bel}(x_t)$$

Tractable computation of Bayesian posteriors

## What makes this challenging?

Dynamics (Prediction)

$$\overline{Bel}(x_t) = \int P(x_t|u_{t-1}, x_{t-1})Bel(x_{t-1})dx_{t-1}$$

Measurement (Correction)  $Bel(x_t) = \eta P(z_t|x_t)\overline{Bel}(x_t)$ 

Model as Linear Gaussian

#### Discrete Kalman Filter

Kalman filter = Bayes filter with Linear Gaussian dynamics and sensor models



#### Discrete Kalman Filter

Estimates the state x of a discrete-time controlled process that is governed by the linear stochastic difference equation

Linear Gaussian

$$x_{t+1} = Ax_t + Bu_t + \epsilon_t \leftarrow ----$$

$$\epsilon_t \sim \mathcal{N}(0, Q)$$

with a measurement

$$z_{t+1} = Cx_{t+1} + \delta_t \leftarrow \delta_t \sim \mathcal{N}(0, R)$$

# Components of a Kalman Filter

- A Matrix (n x n) that describes how the state evolves from t-1 to t without controls or noise.
- B Matrix (n x l) that describes how the control  $u_{t-1}$  changes the state from t-1 to t
- C Matrix (k x n) that describes how to map the state  $x_t$  to an observation  $z_t$ .
- $\epsilon_t$  Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance R and Q respectively.

#### Goal of the Kalman Filter



#### 2 step process:

- Dynamics update (incorporate action)
- Measurement update (incorporate sensor reading)

### Class Outline

