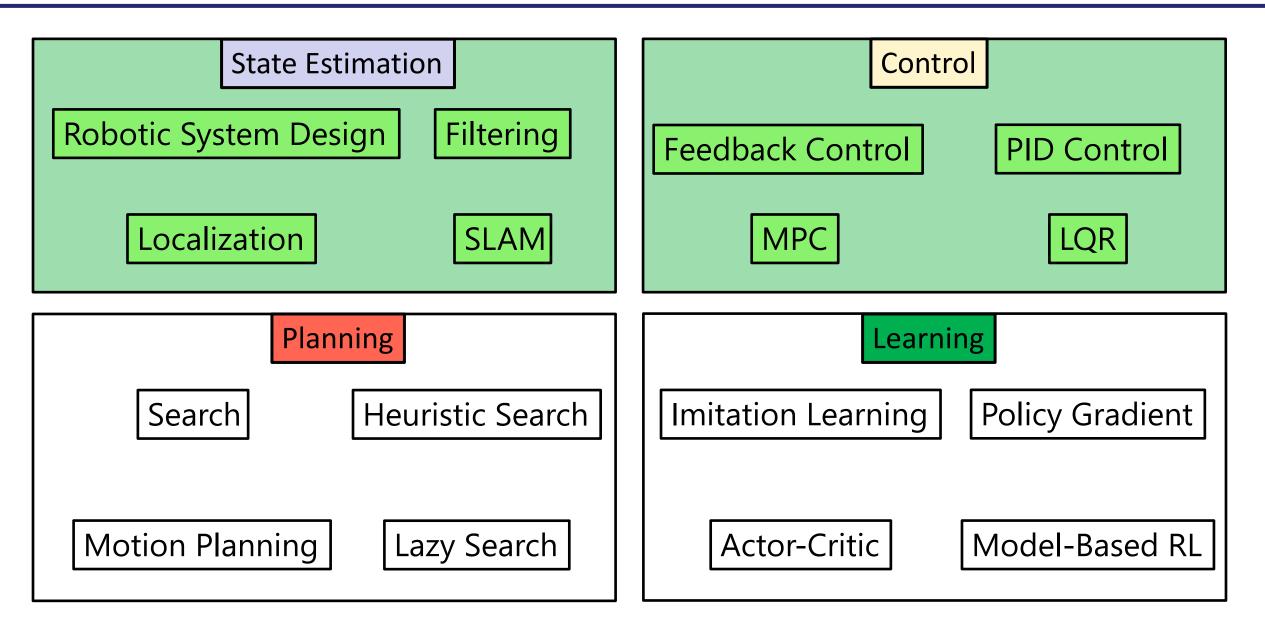


Autonomous Robotics Winter 2024

Abhishek Gupta TAs: Karthikeya Vemuri, Arnav Thareja Marius Memmel, Yunchu Zhang

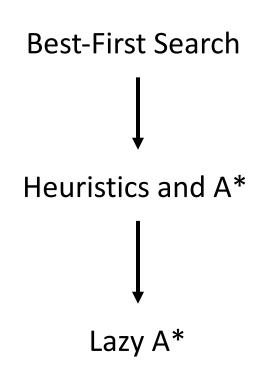
Slides borrowed from many sources – Sidd Srinivasa, Sanjiban Choudhury, Dieter Fox

Class Outline



- HW 3 due today!
- Paper commentaries due today!
- Paper presentations Friday:
 - <u>RRT-connect</u> Kuffner et al
 - Other on Feb 26
- Guest lecture 1 Feb 21

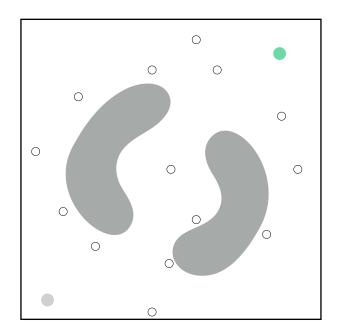
Lecture Outline



Creating a Graph

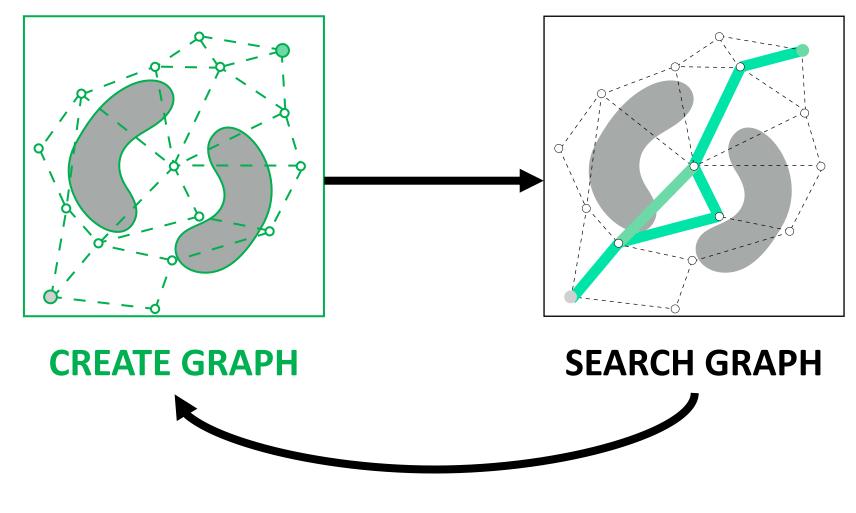
$$G = (V, E)$$

- **1.** Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges





Sampling-Based Motion Planning



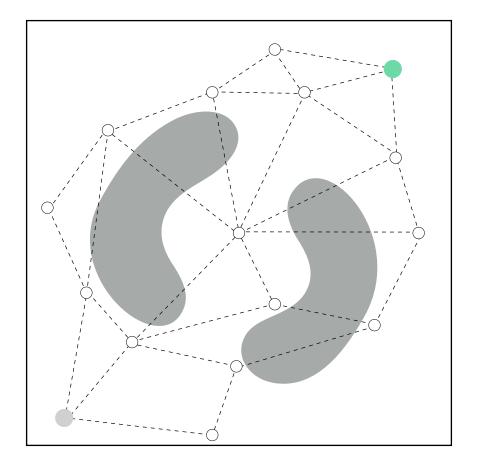
INTERLEAVE

Minimal Cost Path on a Graph

START, GOAL

COST (E.G. LENGTH)

Minimal Cost Path on a Graph

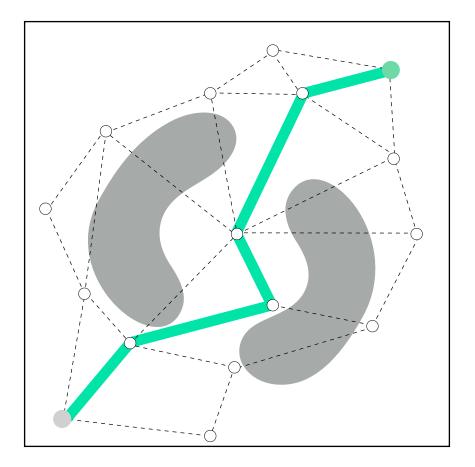


START, GOAL

COST (E.G. LENGTH)

GRAPH (VERTICES, EDGES)

Minimal Cost Path on a Graph



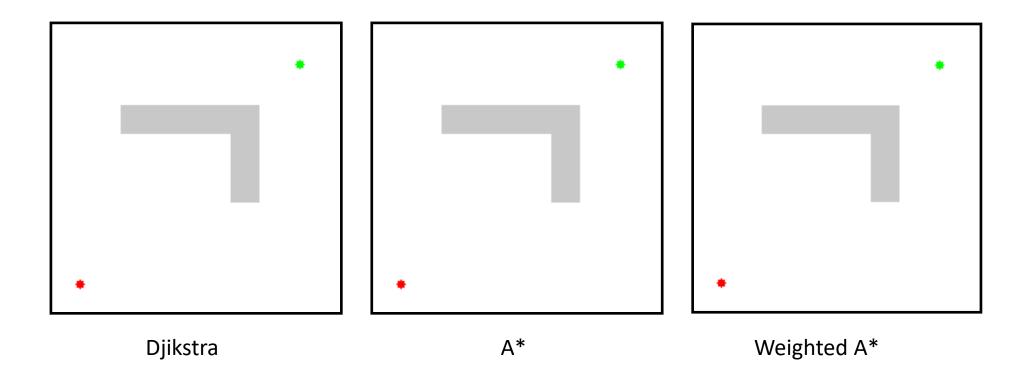
START, GOAL

COST (E.G. LENGTH)

GRAPH (VERTICES, EDGES)

High-order bit

Expansion of a search wavefront from start to goal



What do we want?

1. Search to systematically reason over the space of paths

2. Find a (near)-optimal path quickly

(minimize planning effort)

Best first search

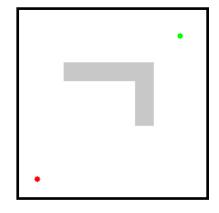
This is a meta-algorithm

BFS maintains a priority queue of promising nodes

Each node is ranked by a function f(s)

Populate queue initially with start node

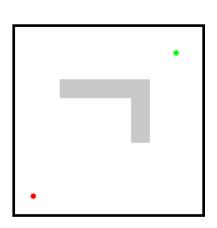
Element (Node)	Priority Value (f-value)
Node A	f(A)
Node B	f(B)



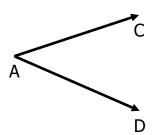
Best first search

Search explores graph by expanding most promising node min *f(s)*

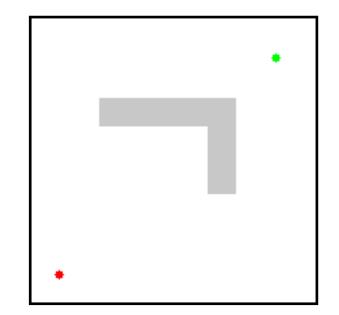
Terminate when you find the goal



Element (Node)	Priority Value (f-value)
Node A	f(A)
Node B	f(B)



Best first search



Key Idea: Choose *f(s)* wisely!

- when goal found, it has (near) optimal path

- minimize the number of expansions

Notations

Given:

Start Sstart Goal Sgoal

Cost *c(s, s')*

Objects created:

OPEN: priority queue of nodes to be processed

CLOSED: list of nodes already processed

g(s): estimate of the least cost from start to a given node

Pseudocode

Push *start* into OPEN

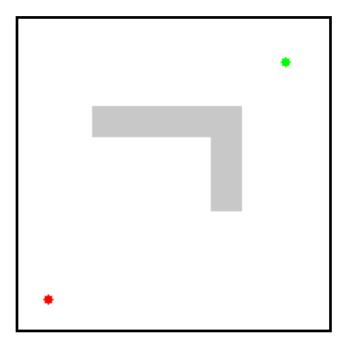
While goal not expanded

Pop *best* from OPEN

Add *best* to CLOSED

For every successor s'

If g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s')Add (or update) s' to OPEN



Set f(s) = g(s)

Sort nodes by their cost to come

Dijkstra's Algorithm

- optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$ the cost $c(s_l, s_{goal})$ of an edge from s_1 to s_{goal} 2 S_2 S_1 (S_{start} $(S_{\underline{goal}})$ I 3 S_4 S_3

Dijkstra's Algorithm

- optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$ the cost $c(s_l, s_{goal})$ of an edge from s_1 to s_{goal} g=3 g=I2 S_2 S_1 g=0g=5(S_{star}) S I goal 3 S_4 S_3 g=2g=5

Nice property:

Only process nodes ONCE. Only process cheaper nodes than goal.

Lecture Outline

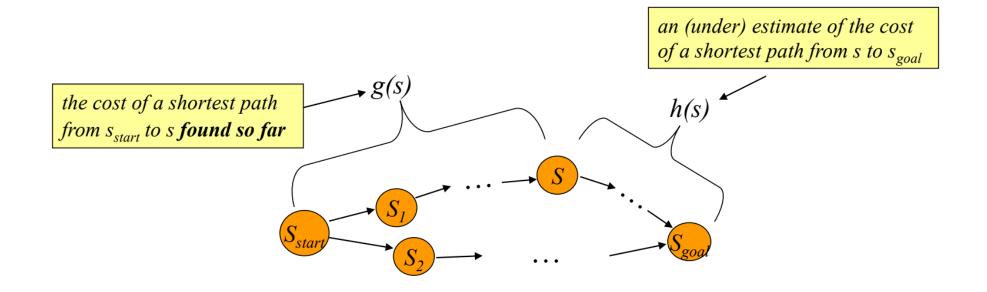
Can we have a better f(s)?

Yes!

f(s) should estimate the cost of the path to goal

Heuristics

What if we had a heuristic *h*(*s*) that estimated the cost to goal?



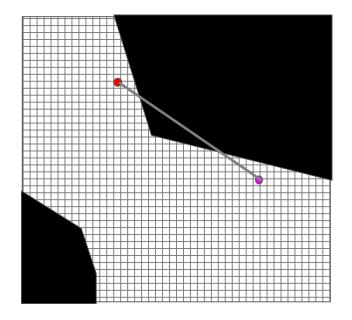
Set the evaluation function f(s) = g(s) + h(s)

1. Minimum number of nodes to go to goal

2. Euclidean distance to goal (if you know your cost is measuring length)

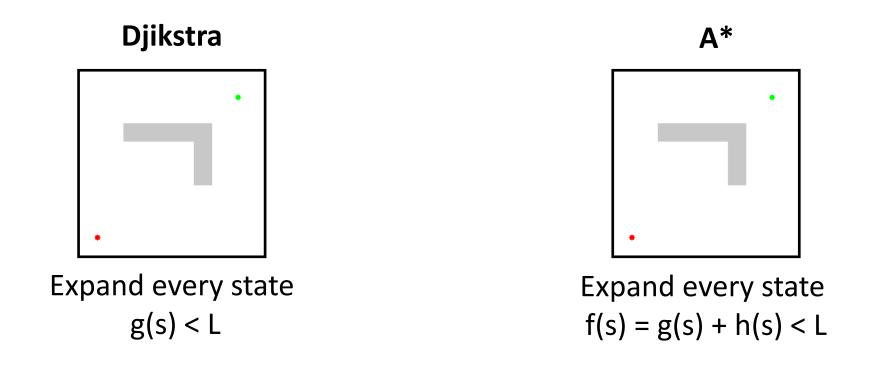
3. Solution to a relaxed problem

4. Domain knowledge / Learning



A* [Hart, Nillson, Raphael, '68]

Let L be the length of the shortest path



Both find the optimal path ...

but A* only expands relevant states, i.e., does much less work!

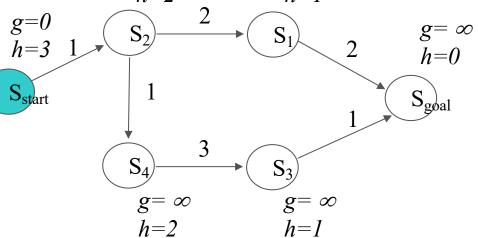
• Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s 'not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s' into OPEN;
```

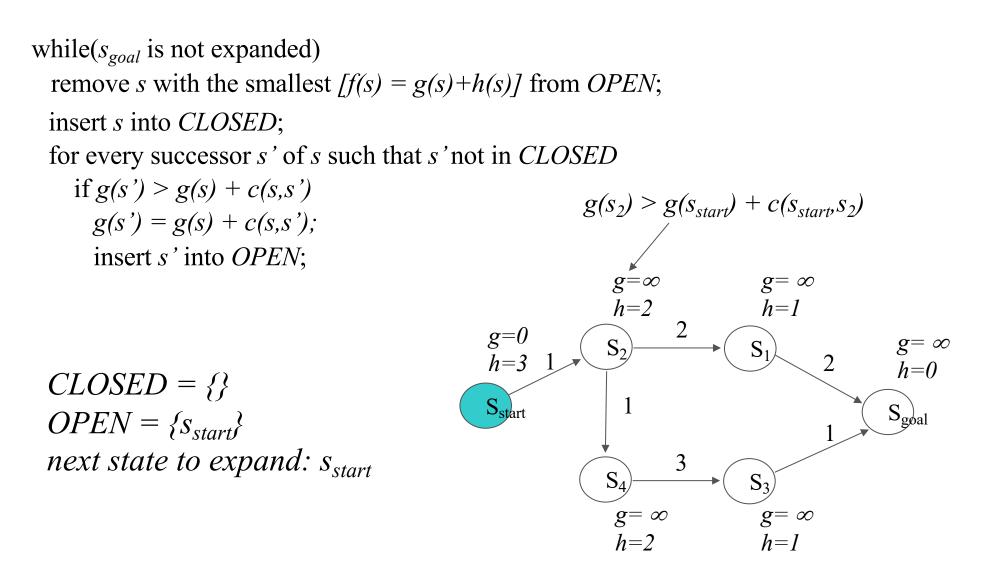
• Computes optimal g-values for relevant states

```
while(s<sub>goal</sub> is not expanded)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
      insert s' into OPEN;
                                                           g = \infty
                                                                           g = \infty
                                                           h=2
                                                                           h=1
                                                                  2
                                              g=0
                                                           S_2
                                                                          S_1
                                               h=3
 CLOSED = \{\}
```

 $OPEN = \{s_{start}\}$ next state to expand: s_{start}



• Computes optimal g-values for relevant states



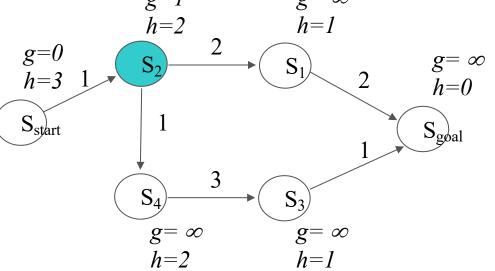
• Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s' not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s' into OPEN;
g=0
g=0g=0
g=0
g=
```

$$CLOSED = \{s_{start}\}$$

$$OPEN = \{s_2\}$$

next state to expand: s_2



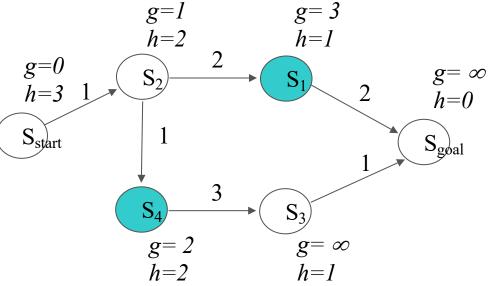
• Computes optimal g-values for relevant states

while(s_{goal} is not expanded) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s'* of *s* such that *s'* not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s'); insert *s'* into *OPEN*; $g=0 \qquad g=0 \qquad g=2 \qquad g=3 \qquad h=1$

$$CLOSED = \{s_{start}, s_2\}$$

$$OPEN = \{s_1, s_4\}$$

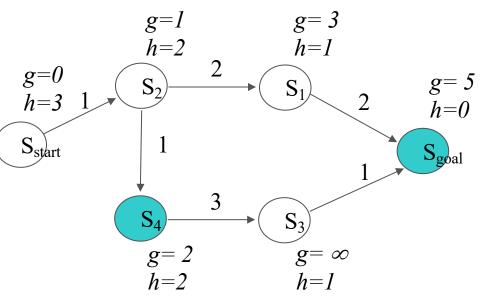
next state to expand: s_1



• Computes optimal g-values for relevant states

while(s_{goal} is not expanded) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s*' not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s'); insert *s*' into *OPEN*; g=1h=2

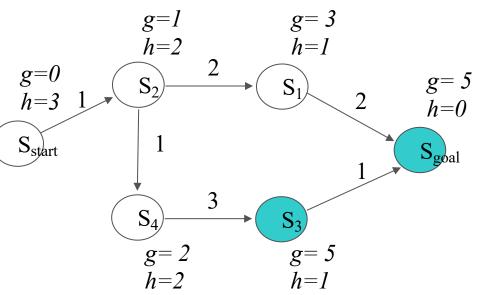
 $CLOSED = \{s_{start}, s_2, s_1\}$ $OPEN = \{s_4, s_{goal}\}$ $next state to expand: s_4$



• Computes optimal g-values for relevant states

while(s_{goal} is not expanded) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s*' not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s'); insert *s*' into *OPEN*; g=1h=2

 $CLOSED = \{s_{start}, s_2, s_1, s_4\}$ $OPEN = \{s_3, s_{goal}\}$ $next state to expand: s_{goal}$

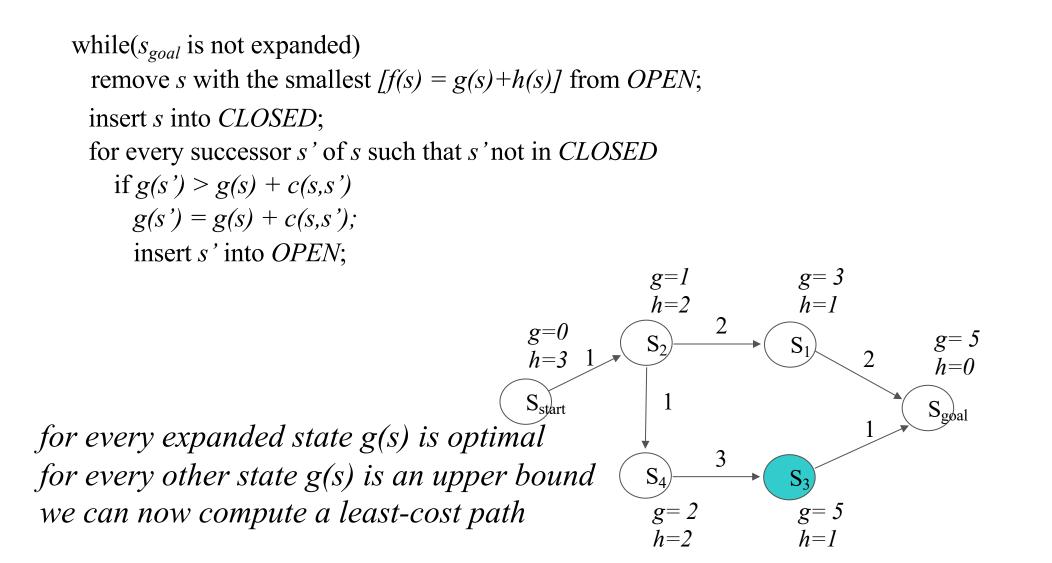


• Computes optimal g-values for relevant states

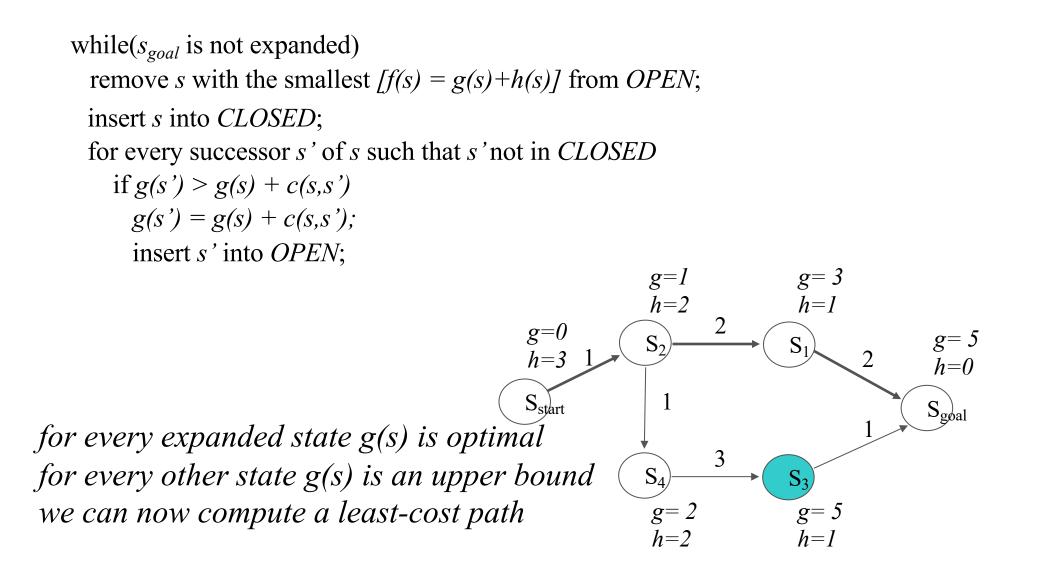
```
while(s<sub>goal</sub> is not expanded)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
      insert s' into OPEN;
                                                                            g= 3
                                                             g=l
                                                             h=2
                                                                            h=1
                                                                    2
                                                g=0
                                                                                           g=5
                                                            S_2
                                                                            S_1
                                                h=3
                                                                                           h=0
 CLOSED = \{s_{start}, s_2, s_1, s_4, s_{goal}\}
                                               S<sub>start</sub>
                                                                                          Sgoal
 OPEN = \{s_3\}
 done
                                                                    3
                                                            S_4
                                                                            g= 5
                                                             g = 2
```

h=1

• Computes optimal g-values for relevant states



• Computes optimal g-values for relevant states



Properties of heuristics

What properties should *h*(*s*) satisfy? How does it affect search?

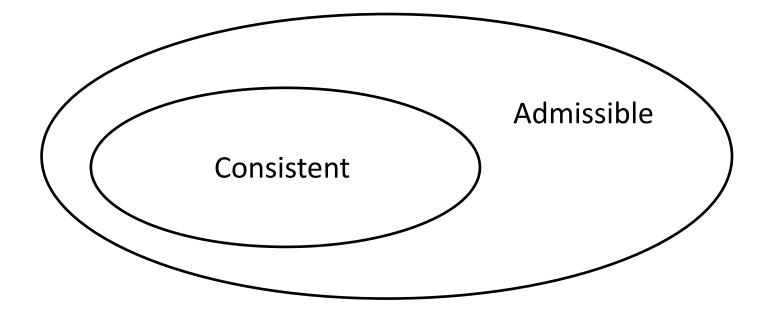
Admissible: $h(s) \le h^*(s)$ h(goal) = 0

If this true, the path returned by A* is optimal

Consistency: $h(s) \le c(s,s') + h(s')$ h(goal) = 0

If this true, A* is optimal AND efficient (will not re-expand a node)

Admissible vs Consistent



Theorem: ALL consistent heuristics are admissible, not vice versa!

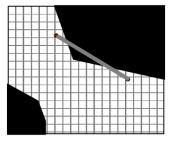
Takeaway:

Heuristics are great because they focus search on relevant states

AND

still give us optimal solution

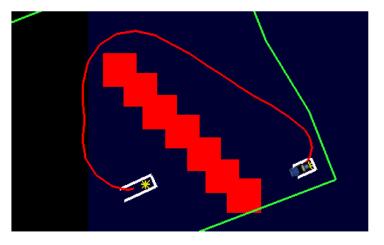
- For grid-based navigation:
 - Euclidean distance



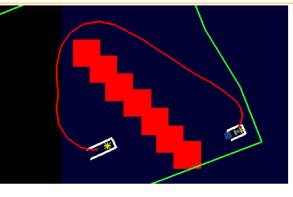
- Manhattan distance: $h(x,y) = abs(x-x_{goal}) + abs(y-y_{goal})$
- Diagonal distance: $h(x,y) = max(abs(x-x_{goal}), abs(y-y_{goal}))$
- More informed distances???

Which heuristics are admissible for 4-connected grid? 8-connected grid?

• For lattice-based 3D (x, y, Θ) navigation:



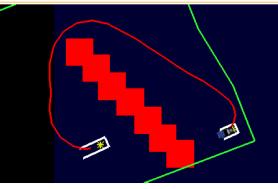
• For lattice-based 3D (x,y,Θ) navigation:



-2D(x,y) distance accounting for obstacles (single Dijkstra's on 2D grid cell starting at goalcell will give us these values)

Any problems where it will be highly uninformative?

• For lattice-based 3D (x, y, Θ) navigation:

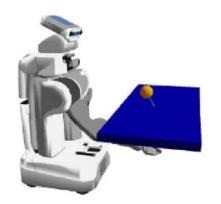


-2D(x,y) distance accounting for obstacles (single Dijkstra's on 2D grid cell starting at goalcell will give us these values)

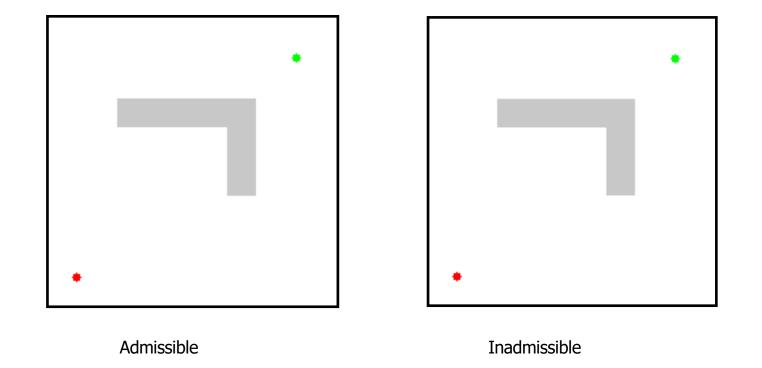
Any problems where it will be highly uninformative?

Courtesy Max Likhachev

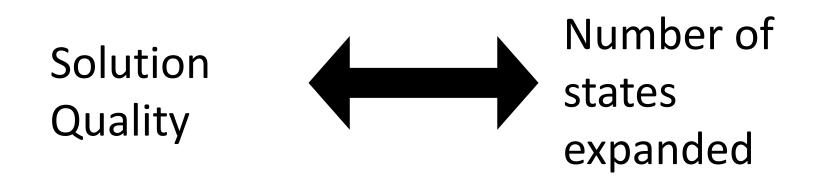
• Arm planning in 3D:



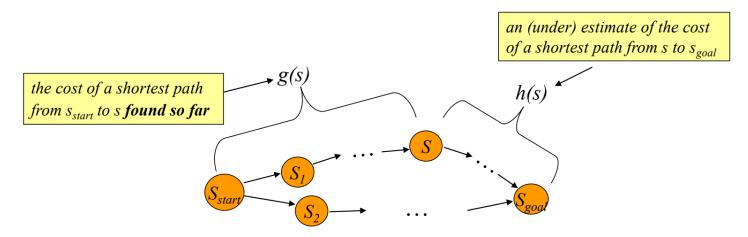
Is admissibility always what we want?

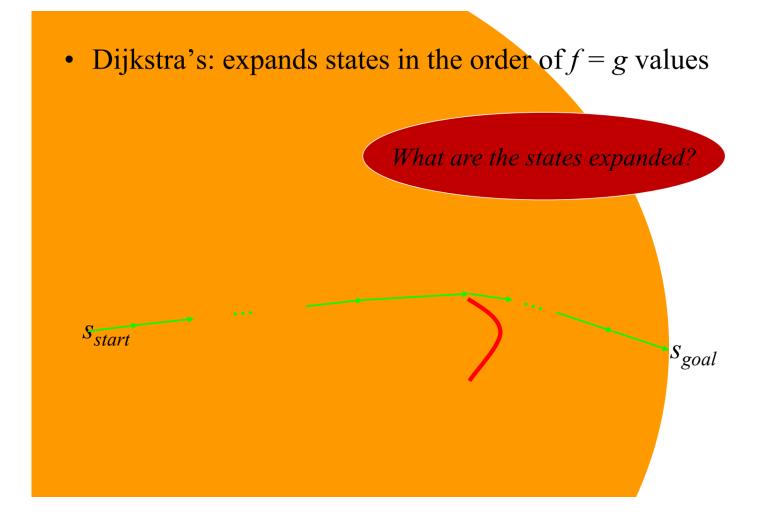


Can inadmissible heuristics help us with this tradeoff?



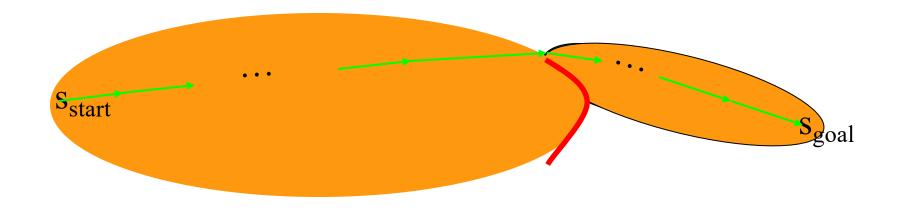
- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal





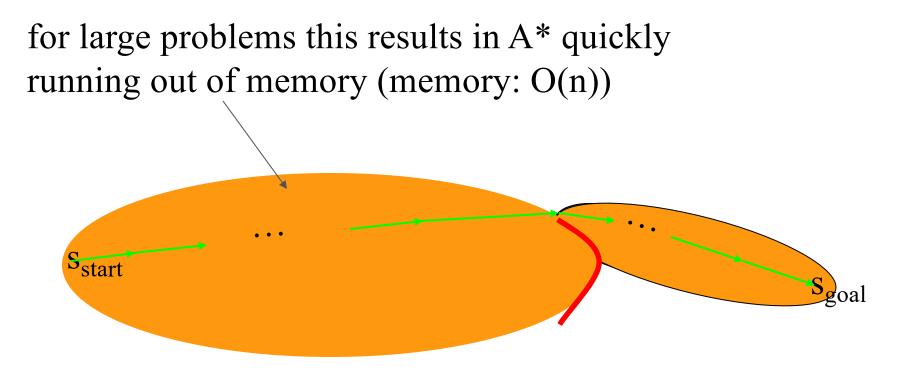
Courtesy Max Likhachev

• A* Search: expands states in the order of f = g+h values

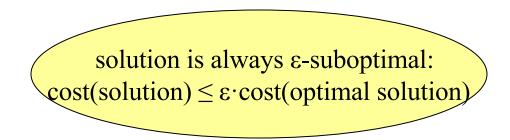


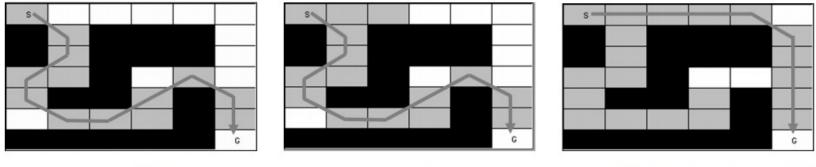
Courtesy Max Likhachev

• A* Search: expands states in the order of f = g+h values



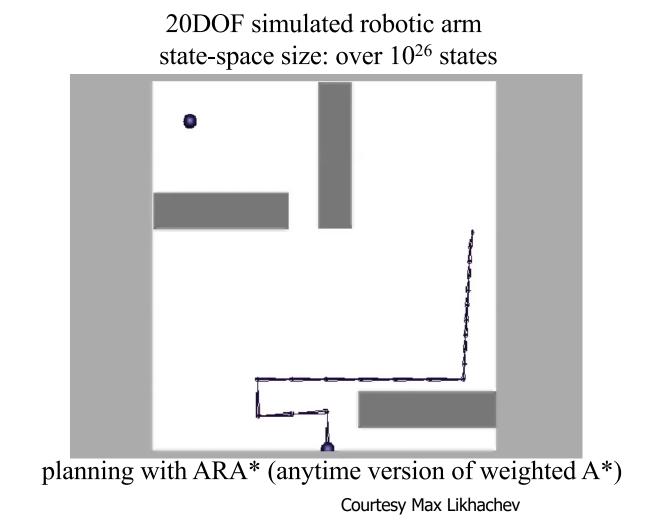
• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal



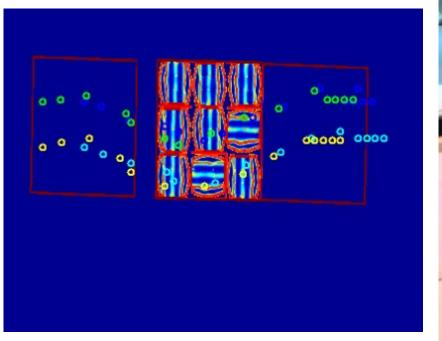


 $\epsilon = 2.5$ $\epsilon = 1.5$ $\epsilon = 1.0$ (optimal search)

• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal



- planning in 8D (<x,y> for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds



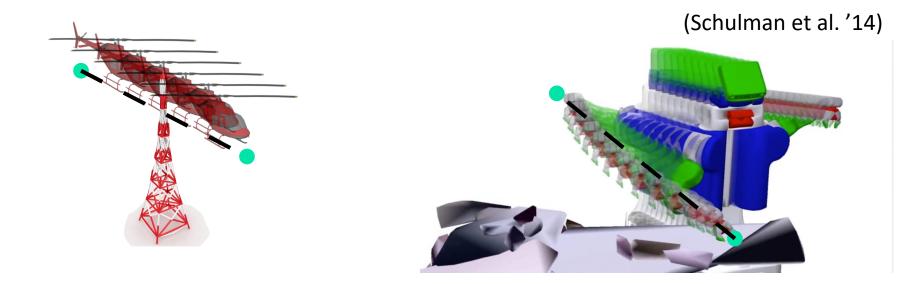
Uses R* - A randomized version of weighted A* Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Lecture Outline

But is the number of expansions really what we want to minimize in motion planning?

What is the most expensive step?

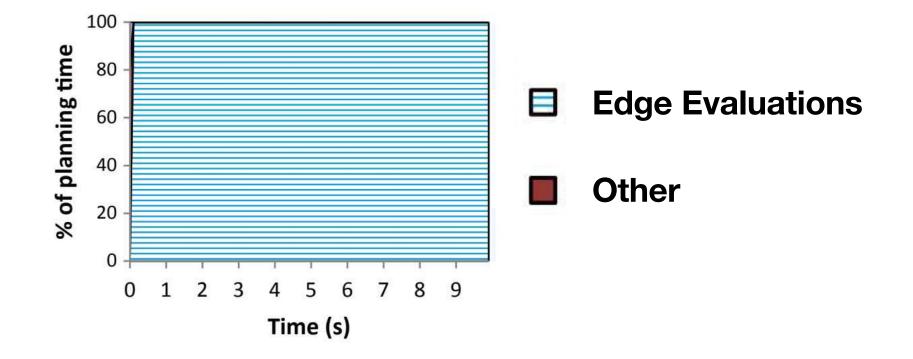
Edge evaluation is expensive



Check if helicopter intersects with tower

Check if manipulator intersects with table

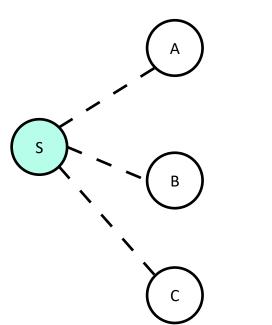
Edge evaluation dominates planning time



Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015

Let's revisit Best First Search

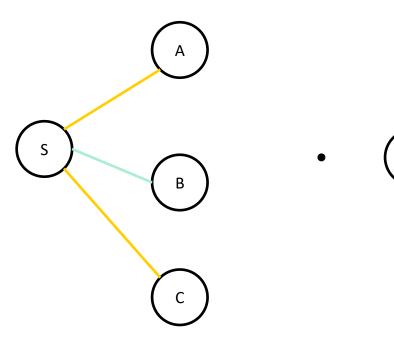
Element (Node)	Priority Value (f-value)
Node S	f(S)



G

Let's revisit Best First Search

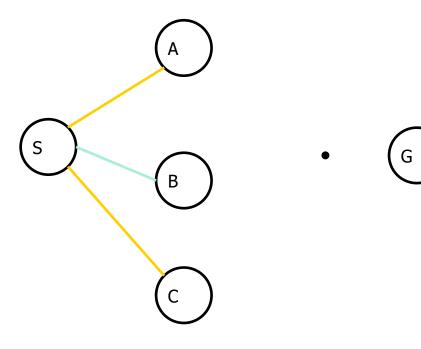
Element (Node)	Priority Value (f-value)	
Node S	f(S)	
Node A	f(A)	
Node C	f(C)	



G

What if we never use C? Wasted collision check!

Element (Node)	Priority Value (f-value)	
Node S	f(S)	
Node A	f(A)	
Node C	f(C)	



The provable virtue of laziness:

Take the thing that's expensive (collision checking)

and

procrastinate as long as possible till you have to evaluate it!

Cohen, Phillips, and Likhachev 2014

Key Idea:

1. When expanding a node, don't collision check edge to successors

(be optimistic and assume the edge will be valid)

2. When expanding a node, collision check the edge to parent

(expansion means this node is good and worth the effort)

3. Important: OPEN list will have multiple copies of a node

(multiple candidate parents since we haven't collision check)

Cohen, Phillips, and Likhachev 2014

Non lazy A*

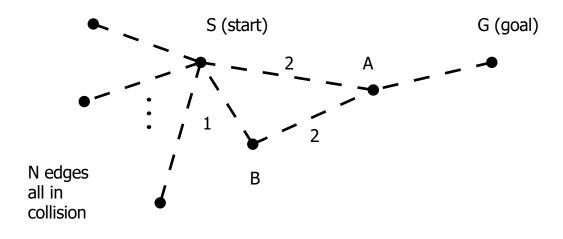
while(s_{goal} is not expanded)
remove s with the smallest
[f(s) = g(s)+h(s)] from OPEN;

insert *s* into *CLOSED*; for every successor *s'* of *s* such that *s'* not in *CLOSED* if edge (*s*,*s'*) in collision $c(s,s') = \infty$ if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s'); insert *s'* into *OPEN*;

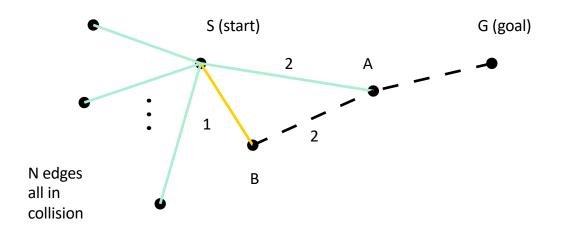
Lazy A*

```
while(s<sub>aoal</sub> is not expanded)
 remove s with the smallest
  [f(s) = g(s)+h(s)] from OPEN;
  if s is in CLOSED
     continue;
 if edge(parent(s), s) in collision
   continue;
 insert s into CLOSED;
 for every successor s' of s such
    that s' not in CLOSED
    no collision checking of edge
    if q(s') > q(s) + c(s,s')
      q(s') = q(s) + c(s,s');
      insert s' into OPEN; // multiple
                             copies
```

Let's say S-A is in collision and true shortest path is S-B-A-G

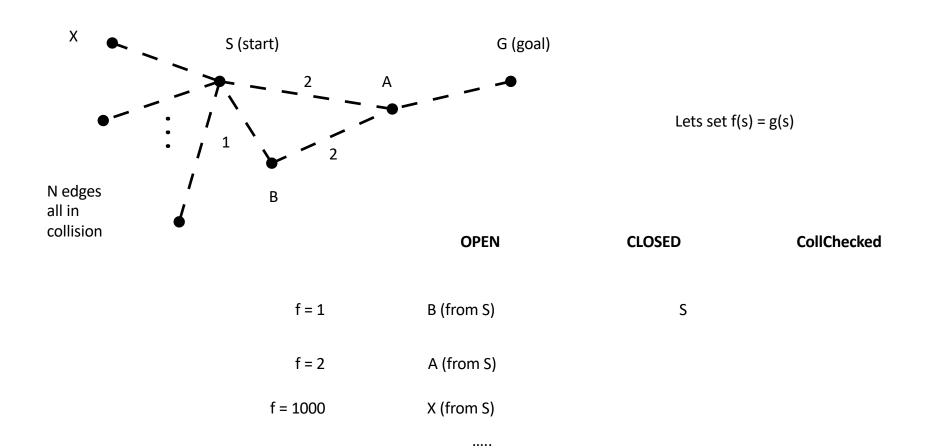


Let's say S-A is in collision and true shortest path is S-B-A-G

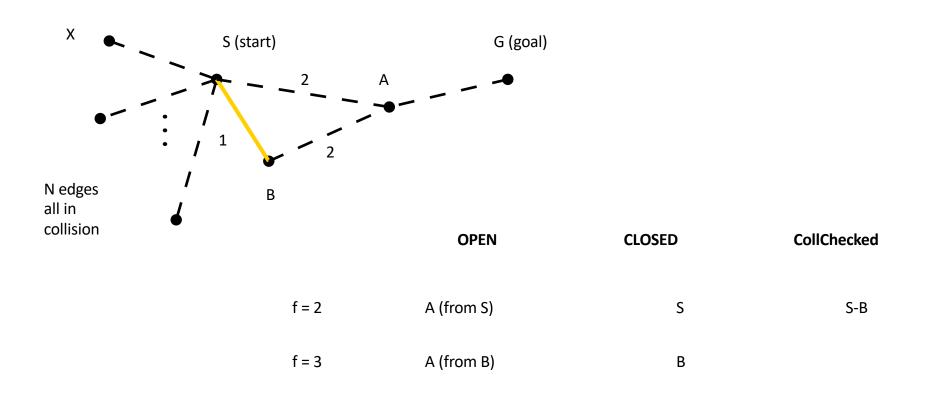


A* will collision check all N+2 edges!

Let's say S-A is in collision and true shortest path is S-B-A-G

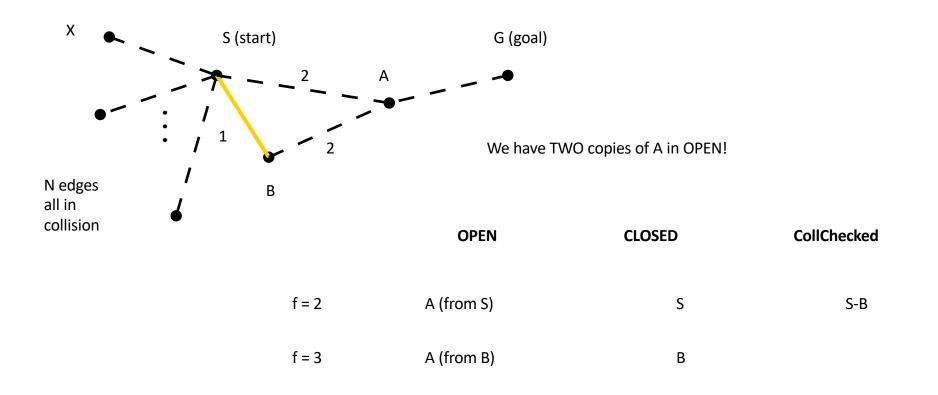


Let's say S-A is in collision and true shortest path is S-B-A-G



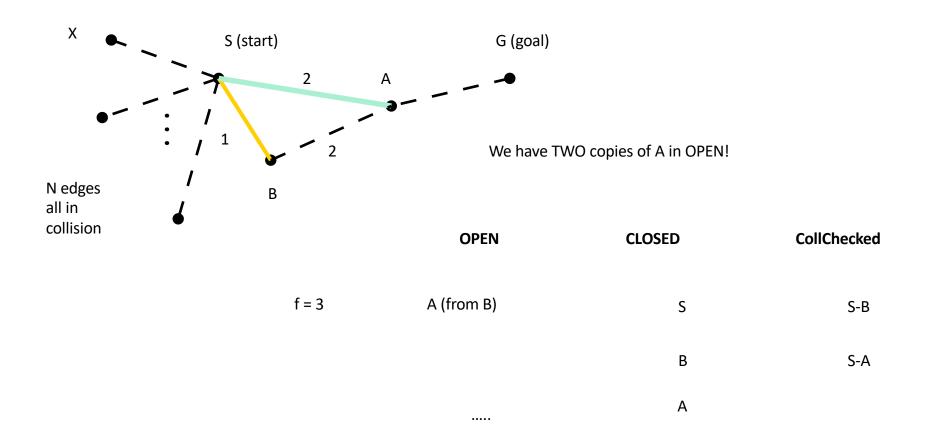
.....

Let's say S-A is in collision and true shortest path is S-B-A-G

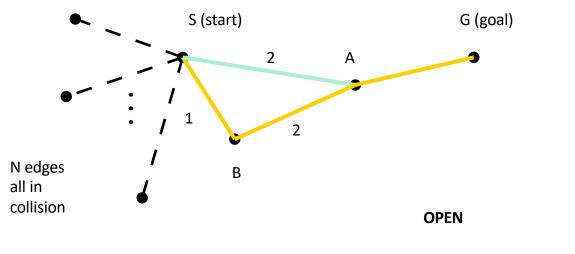


.....

Let's say S-A is in collision and true shortest path is S-B-A-G



Let's say S-A is in collision and true shortest path is S-B-A-G



S	S-B	
В	S-A	
А	B-A	
G	A-G	6

CollChecked

CLOSED

Lecture Outline

Class Outline

