
Autonomous Robotics
Winter 2024
Abhishek Gupta

TAs: Karthikeya Vemuri, Arnav Thareja
Marius Memmel, Yunchu Zhang

Slides borrowed from many sources – Sidd Srinivasa,
Sanjiban Choudhury, Dieter Fox

Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient

n HW 3 due today!

n Paper commentaries due today!

n Paper presentations Friday:

n RRT-connect – Kuffner et al

n Other on Feb 26

n Guest lecture 1 – Feb 21

Logistics

https://www.cs.cmu.edu/afs/cs/academic/class/15494-s12/readings/kuffner_icra2000.pdf

Lecture Outline

Best-First Search

Heuristics and A*

Lazy A*

Creating a Graph

1. Sample collision-free configurations as vertices (including start and goal)
2. Connect neighboring vertices with simple movements as edges

SEARCH GRAPHCREATE GRAPH

INTERLEAVE

Sampling-Based Motion Planning

Minimal Cost Path on a Graph

COST (E.G.
LENGTH)

START, GOAL

Minimal Cost Path on a Graph

GRAPH
(VERTICES,

EDGES)

COST (E.G.
LENGTH)

START, GOAL

Minimal Cost Path on a Graph

START, GOAL

GRAPH
(VERTICES,

EDGES)

COST (E.G.
LENGTH)

High-order bit

Expansion of a search wavefront from start to goal

Courtesy wikipedia

Djikstra A* Weighted A*

What do we want?

1. Search to systematically reason over the space of paths

(minimize planning effort)

2. Find a (near)-optimal path quickly

Best first search
This is a meta-algorithm

Element
(Node)

Priority Value
(f-value)

Node A f(A)

Node B f(B)

….. ……

BFS maintains a priority queue of promising nodes

Each node is ranked by a function f(s)

Populate queue initially with start node

1
3

Best first search

A

C

D

Search explores graph by expanding most promising node min f(s)

Terminate when you find the goal

Element
(Node)

Priority Value
(f-value)

Node A f(A)

Node B f(B)

….. ……

Best first search

Key Idea: Choose f(s) wisely!

- minimize the number of expansions

- when goal found, it has (near) optimal path

Notations
Given:

Start sstart Goal sgoal

Cost c(s, s’)

Objects created:

OPEN: priority queue of nodes to be processed

CLOSED: list of nodes already processed

g(s): estimate of the least cost from start to a given node

Pseudocode

While goal not expanded

Add (or update) s’ to OPEN

Push start into OPEN

Pop best from OPEN

Add best to CLOSED

For every successor s’

If g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’)

Dijkstra’s Algorithm

Set
f(s) = g(s)

Sort nodes by their cost to come

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Nice property:
Only process nodes ONCE. Only process cheaper nodes than goal.

Lecture Outline

Best-First Search

Heuristics and A*

Lazy A*

2
1

Can we have a better f(s)?

Yes!

f(s) should estimate the
cost of the path to goal

Heuristics

2
2

What if we had a heuristic h(s) that estimated the cost to goal?

Set the evaluation function f(s) = g(s) + h(s)

Example of heuristics?
1. Minimum number of nodes to go to goal

3. Solution to a relaxed problem

2. Euclidean distance to goal (if you know your cost is measuring length)

4. Domain knowledge / Learning ….

A* [Hart, Nillson, Raphael, ’68]
Let L be the length of the shortest path

Djikstra

Expand every state
g(s) < L

A*

Expand every state
f(s) = g(s) + h(s) < L

but A* only expands relevant states, i.e., does much less work!

Both find the optimal path …

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

A* Search
● Computes optimal g-values for relevant states

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

A* Search
● Computes optimal g-values for relevant states

CLOSED = {}
OPEN = {sstart}
next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=¥
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

● Computes optimal g-values for relevant states

A* Search

CLOSED = {sstart}
OPEN = {s2}
next state to expand: s2

S2 S1

Sgoal

2

g=1
h=2

g= ¥
h=1

g= ¥
h=02

S4 S3
3

g= ¥
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

● Computes optimal g-values for relevant states

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= ¥
h=02

S4 S3
3

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

CLOSED = {sstart,s2}
OPEN = {s1,s4}
next state to expand: s1

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

● Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= ¥
h=1

1
Sstart

1

1

g=0
h=3

CLOSED = {sstart,s2,s1}
OPEN = {s4,sgoal}
next state to expand: s4

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

● Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

CLOSED = {sstart,s2,s1,s4}
OPEN = {s3,sgoal}
next state to expand: sgoal

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

● Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

CLOSED = {sstart,s2,s1,s4,sgoal}
OPEN = {s3}
done

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

● Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

● Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

A* Search

S2 S1

Sgoal

2

g=1
h=2

g= 3
h=1

g= 5
h=02

S4 S3
3

g= 2
h=2

g= 5
h=1

1
Sstart

1

1

g=0
h=3

for every expanded state g(s) is optimal
for every other state g(s) is an upper bound
we can now compute a least-cost path

insert s into CLOSED;
for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)
g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

● Computes optimal g-values for relevant states
ComputePath function
while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

A* Search

Properties of heuristics

What properties should h(s) satisfy? How does it affect search?

Admissible: h(s) <= h*(s) h(goal) = 0

If this true, the path returned by A* is optimal

Consistency: h(s) <= c(s,s’) + h(s’) h(goal) = 0

If this true, A* is optimal AND efficient (will not re-expand a node)

Admissible vs Consistent

Admissible

Consistent

Theorem: ALL consistent heuristics are admissible,
not vice versa!

Takeaway:
Heuristics are great because they focus search on relevant states

AND

still give us optimal solution

3
8

Courtesy Max Likhachev

3
9

Courtesy Max Likhachev

4
0

Courtesy Max Likhachev

4
1

Courtesy Max Likhachev

4
2

Courtesy Max Likhachev

4
3

Is admissibility always what we want?

Admissible Inadmissible

4
4

Solution
Quality

Number of
states
expanded

Can inadmissible heuristics help us with this tradeoff?

Courtesy Max Likhachev

Courtesy Max Likhachev

Effect of the Heuristic Function

sgoal
sstart

… …

● A* Search: expands states in the order of f = g+h values

Courtesy Max Likhachev

sgoal
sstart

… …

for large problems this results in A* quickly
running out of memory (memory: O(n))

Courtesy Max Likhachev

Effect of the Heuristic Function
● A* Search: expands states in the order of f = g+h values

Effect of the Heuristic Function
● Weighted A* Search: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

solution is always ε-suboptimal:
cost(solution) ≤ ε·cost(optimal solution)

Courtesy Max Likhachev

Courtesy Max Likhachev

Effect of the Heuristic Function

● Weighted A* Search: expands states in the order of f = g+εh
values, ε > 1 = bias towards states that are closer to goal

20DOF simulated robotic arm
state-space size: over 1026 states

planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev

Effect of the Heuristic Function

• planning in 8D (<x,y> for each foothold)
• heuristic is Euclidean distance from the center of the body to the goal location
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A*
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin Chitta,
Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev Effect of the Heuristic Function

Lecture Outline

Best-First Search

Heuristics and A*

Lazy A*

5
4

But is the number of expansions really what we want to minimize in motion planning?

What is the most expensive step?

Edge evaluation is expensive

5
5

(Schulman et al. ’14)

Check if helicopter
intersects with tower

Check if manipulator
intersects with table

Edge evaluation dominates planning time

5
6

Edge Evaluations

Other

Hauser, Kris., Lazy collision checking in asymptotically-optimal motion planning. ICRA 2015

Let’s revisit Best First Search

5
7

S

A

B
G

C

Element
(Node)

Priority Value
(f-value)

Node S f(S)

5
8

S

A

B
G

C

Element
(Node)

Priority Value
(f-value)

Node S f(S)

Node A f(A)

Node C f(C)

Let’s revisit Best First Search

What if we never use C? Wasted collision check!

5
9

S

A

B
G

C

Element
(Node)

Priority Value
(f-value)

Node S f(S)

Node A f(A)

Node C f(C)

6
0

The provable virtue of laziness:

Take the thing that’s expensive (collision checking)

and

procrastinate as long as possible
till you have to evaluate it!

Lazy (weighted) A*
Cohen, Phillips, and Likhachev 2014

Key Idea:

1. When expanding a node, don’t collision check edge to successors

(be optimistic and assume the edge will be valid)

2. When expanding a node, collision check the edge to parent

(expansion means this node is good and worth the effort)

3. Important: OPEN list will have multiple copies of a node

(multiple candidate parents since we haven’t collision check)

Lazy A*
Cohen, Phillips, and Likhachev 2014

ComputePath function
while(sgoal is not expanded)

remove s with the smallest
[f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;
for every successor s’ of s such

that s’ not in CLOSED
if edge (s,s’) in collision

c(s,s’) = ∞
if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);
insert s’ into OPEN;

Non lazy A* Lazy A*
ComputePath function
while(sgoal is not expanded)

remove s with the smallest
[f(s) = g(s)+h(s)] from OPEN;
if s is in CLOSED

continue;
if edge(parent(s), s) in collision

continue;
insert s into CLOSED;
for every successor s’ of s such

that s’ not in CLOSED
no collision checking of edge
if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);
insert s’ into OPEN; // multiple

copies

6
3

A*

G (goal)S (start)

N edges
all in
collision

A

B

2

21

Let’s say S-A is in collision and true shortest path is S-B-A-G

6
4

A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

A* will
collision check
all N+2 edges!

Lazy A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

B (from S)

A (from S)

…..

f = 1

f = 2

Lets set f(s) = g(s)

f = 1000

X

X (from S)

S

6
6

Lazy A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

A (from S)

A (from B)

S

…..

S-B

B

f = 2

f = 3

X

6
7

Lazy A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

We have TWO copies of A in OPEN!

OPEN CLOSED CollChecked

A (from S)

A (from B)

S

…..

S-B

B

f = 2

f = 3

X

6
8

Lazy A*

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

We have TWO copies of A in OPEN!

OPEN CLOSED CollChecked

A (from B) S

…..

S-B

B

f = 3

X

A

S-A

6
9

G (goal)S (start)

N edges
all in
collision

A

B

2

2
1

Let’s say S-A is in collision and true shortest path is S-B-A-G

OPEN CLOSED CollChecked

S S-B

B S-A

B-A

A-G

A

G

Lazy A*

Lecture Outline

Best-First Search

Heuristics and A*

Lazy A*

Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient

