

# **Autonomous Robotics**Winter 2024

Abhishek Gupta

TAs: Karthikeya Vemuri, Arnav Thareja Marius Memmel, Yunchu Zhang



### Class Outline



# Logistics

■ HW 3 due Feb 14

■ Paper commentaries due Wednesday 2/14

# Lecture Outline

Why is the problem hard?

A recipe for solving motion planning problems

**Graph Construction Techniques** 

Planning via Explicit Search

#### Geometric Path Planning Problem



# Also known as Piano Mover's Problem (Reif 79)

#### Given:

- 1. A workspace W, where either  $W = \mathbb{R}^2$  or  $W = \mathbb{R}^3$ .
- 2. An obstacle region  $\mathcal{O} \subset \mathcal{W}$ .
- 3. A robot defined in W. Either a rigid body A or a collection of m links:  $A_1, A_2, \ldots, A_m$ .
- 4. The configuration space C ( $C_{obs}$  and  $C_{free}$  are then defined).
- 5. An initial configuration  $q_I \in \mathcal{C}_{free}$ .
- 6. A goal configuration  $q_G \in \mathcal{C}_{free}$ . The initial and goal configuration are often called a query  $(q_I, q_G)$ .

Compute a (continuous) path,  $\tau : [0,1] \to \mathcal{C}_{free}$ , such that  $\tau(0) = \mathbf{q}_I$  and  $\tau(1) = \mathbf{q}_G$ .

Also may want to minimize cost  $\,c( au)\,$ 

#### Differential constraints

In geometric path planning, we were only dealing with C-space

$$q \in \mathcal{C}$$

We now introduce differential constraints

$$\begin{bmatrix} \dot{q} \\ \ddot{q} \end{bmatrix} = f(\begin{bmatrix} q \\ q \end{bmatrix}, u)$$



Let the state space x be the following augmented C-space

$$\dot{x} = (q, \dot{q})$$
  $\dot{x} = f(x, u)$ 

#### Differential constraints make things even harder



These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

#### Differential constraints make things even harder





"Left-turning-car"

These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

# Motion planning under differential constraints

- 1. Given world, obstacles, C-space, robot geometry (same)
- 2. Introduce state space X. Compute free and obstacle state space.

- 3. Given an action space U
- 4. Given a state transition equations  $\dot{x}=f(x,u)$
- 5. Given initial and final state, cost function  $\ J(x(t),u(t))=\int c(x(t),u(t))dt$
- 6. Compute action trajectory that satisfies boundary conditions, stays in free state space and minimizes cost.

# Challenges in Motion Planning

Computing configuration-space obstacles

HARD!

Planning in continuous high-dimensional space

HARD!

Underactuated dynamics/constrained system does not allow direct teleportation

HARD!

Goal: tractable approximations with provable guarantees!



(EXAMPLE FROM HOWIE CHOSET)

# Lecture Outline

Why is the problem hard?

A recipe for solving motion planning problems

**Graph Construction Techniques** 

Planning via Explicit Search

#### How might we tackle this problem?



#### Given:

- 1. A workspace W, where either  $W = \mathbb{R}^2$  or  $W = \mathbb{R}^3$ .
- 2. An obstacle region  $\mathcal{O} \subset \mathcal{W}$ .
- 3. A robot defined in W. Either a rigid body A or a collection of m links:  $A_1, A_2, \ldots, A_m$ .
- 4. The configuration space C ( $C_{obs}$  and  $C_{free}$  are then defined).
- 5. An initial configuration  $q_I \in \mathcal{C}_{free}$ .
- 6. A goal configuration  $q_G \in \mathcal{C}_{free}$ . The initial and goal configuration are often called a query  $(q_I, q_G)$ .

Compute a (continuous) path,  $\tau : [0,1] \to \mathcal{C}_{free}$ , such that  $\tau(0) = q_I$  and  $\tau(1) = q_G$ .

#### Lets use ideas from search!



#### How might we tackle this problem?



#### Given:

- 1. A workspace W, where either  $W = \mathbb{R}^2$  or  $W = \mathbb{R}^3$ .
- 2. An obstacle region  $\mathcal{O} \subset \mathcal{W}$ .
- 3. A robot defined in W. Either a rigid body A or a collection of m links:  $A_1, A_2, \ldots, A_m$ .
- 4. The configuration space C ( $C_{obs}$  and  $C_{free}$  are then defined).
- 5. An initial configuration  $q_I \in \mathcal{C}_{free}$ .
- 6. A goal configuration  $q_G \in \mathcal{C}_{free}$ . The initial and goal configuration are often called a query  $(q_I, q_G)$ .

Compute a (continuous) path,  $\tau : [0,1] \to \mathcal{C}_{free}$ , such that  $\tau(0) = q_I$  and  $\tau(1) = q_G$ .

Continuous space

Hard to characterize obstacles

# Sampling-Based Motion Planning

Computing configuration-space obstacles is hard

Use a collision checker instead!

Planning in continuous high-dimensional space is hard

Construct a discrete graph approximation of the continuous space!



(EXAMPLE FROM HOWIE CHOSET)

### Planning as Search



Convert into a search problem



planning map

search the graph for a least-cost path from s<sub>start</sub> to s<sub>goal</sub>

Can use efficient techniques for <u>discrete</u> graph search



Implicit sampling-based search

#### Recasting Planning as Search





planning map

search the graph for a least-cost path from s<sub>start</sub> to s<sub>goal</sub>

Can use efficient techniques for discrete graph search



#### Recasting Planning as Search







planning map

search the graph for a least-cost path from  $s_{\text{start}}$  to  $s_{\text{goal}}$ 

Can use efficient techniques for discrete graph search

Which ones? = Best-first explicit search or Implicit sampling-based graph search

# Sampling-Based Motion Planning



# Sampling-Based Motion Planning

# Lecture Outline

Why is the problem hard?

A recipe for solving motion planning problems

**Graph Construction Techniques** 

Planning via Explicit Search

#### Creating a Graph

$$G = (V, E)$$

- 1. Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges





# Creating a Graph

$$G = (V, E)$$

- 1. Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges





#### Strategy 1: Lattice Sampling / Discretization

Main idea: create a grid, and connect neighboring points (4-conn, 8-conn, ...)



Pros/Cons?

# Strategy 2: Uniform Random Sampling

Main idea: sample uniformly between each dimension's lower/upper bounds Connect vertices within radius (r-disc) or k nearest neighbors



Pros/Cons?

# Probabilistic Roadmap (PRM)

When should we collision-check edges?
What is the optimal radius? (PRM with optimal radius = PRM\*)



# Alternatives to Random Sampling





# Strategy 3: Low-Dispersion Sampling

Main idea: Halton sequence uniformly densifies the space





#### Detour: Van der Corput sequence

|    | Naive    |        | Reverse | Van der |                                         |
|----|----------|--------|---------|---------|-----------------------------------------|
| i  | Sequence | Binary | Binary  | Corput  | Points in $[0,1]/\sim$                  |
| 1  | 0        | .0000  | .0000   | 0       | •                                       |
| 2  | 1/16     | .0001  | .1000   | 1/2     | $\circ$                                 |
| 3  | 1/8      | .0010  | .0100   | 1/4     | 0-0-0                                   |
| 4  | 3/16     | .0011  | .1100   | 3/4     | $\circ$                                 |
| 5  | 1/4      | .0100  | .0010   | 1/8     | $\circ$                                 |
| 6  | 5/16     | .0101  | .1010   | 5/8     | 0-0-0-0-0                               |
| 7  | 3/8      | .0110  | .0110   | 3/8     | 0-0-0-0-0                               |
| 8  | 7/16     | .0111  | .1110   | 7/8     | 0-0-0-0-0-0                             |
| 9  | 1/2      | .1000  | .0001   | 1/16    | 000-0-0-0-0-0                           |
| 10 | 9/16     | .1001  | .1001   | 9/16    | 000-0-0-0-0-0                           |
| 11 | 5/8      | .1010  | .0101   | 5/16    | 000-000-000-0                           |
| 12 | 11/16    | .1011  | .1101   | 13/16   | 000-000-000-0                           |
| 13 | 3/4      | .1100  | .0011   | 3/16    | 000000000000000000000000000000000000000 |
| 14 | 13/16    | .1101  | .1011   | 11/16   | 0000000-000                             |
| 15 | 7/8      | .1110  | .0111   | 7/16    | 000000000000000000000000000000000000000 |
| 16 | 15/16    | .1111  | .1111   | 15/16   | 000000000000000000000000000000000000000 |
|    |          |        |         |         |                                         |

#### Detour: Van der Corput sequence

|    | Naive    |        | Reverse | Van der |                                                                                                                             |
|----|----------|--------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------|
| i  | Sequence | Binary | Binary  | Corput  | Points in $[0,1]/\sim$                                                                                                      |
| 1  | 0        | .0000  | .0000   | 0       | •                                                                                                                           |
| 2  | 1/16     | .0001  | .1000   | 1/2     | · · · · · ·                                                                                                                 |
| 3  | 1/8      | .0010  | .0100   | 1/4     | 0-0-0                                                                                                                       |
| 4  | 3/16     | .0011  | .1100   | 3/4     | $\circ$                                                                                                                     |
| 5  | 1/4      | .0100  | .0010   | 1/8     | $\circ \bullet \circ \circ$ |
| 6  | 5/16     | .0101  | .1010   | 5/8     | 0-0-0-0-0                                                                                                                   |
| 7  | 3/8      | .0110  | .0110   | 3/8     | 0-0-0-0-0                                                                                                                   |
| 8  | 7/16     | .0111  | .1110   | 7/8     | 0-0-0-0-0                                                                                                                   |
| 9  | 1/2      | .1000  | .0001   | 1/16    | 000-0-0-0-0-0                                                                                                               |
| 10 | 9/16     | .1001  | .1001   | 9/16    | 000-0-0-00-0-0                                                                                                              |
| 11 | 5/8      | .1010  | .0101   | 5/16    | 000-000-000-0-0                                                                                                             |
| 12 | 11/16    | .1011  | .1101   | 13/16   | 000-000-000-0                                                                                                               |
| 13 | 3/4      | .1100  | .0011   | 3/16    | 0000000-000-000-0                                                                                                           |
| 14 | 13/16    | .1101  | .1011   | 11/16   | 0000000-000                                                                                                                 |
| 15 | 7/8      | .1110  | .0111   | 7/16    | 000000000000000000000000000000000000000                                                                                     |
| 16 | 15/16    | .1111  | .1111   | 15/16   | 000000000000000000000000000000000000000                                                                                     |
|    |          |        |         | -       |                                                                                                                             |

The b-ary representation of the positive integer  $n \geq 1$  is

$$n \ = \ \sum_{k=0}^{L-1} d_k(n) b^k \ = \ d_0(n) b^0 + \dots + d_{L-1}(n) b^{L-1},$$

where b is the base in which the number n is represented, and  $0 \le d_k(n) < b$ ; that is, the k-th digit in the b-ary expansion of n. The n-th number in the van der Corput sequence is

$$g_b(n) \ = \ \sum_{k=0}^{L-1} d_k(n) b^{-k-1} \ = \ d_0(n) b^{-1} + \dots + d_{L-1}(n) b^{-L}.$$

Whiteboard

# Strategy 3: Low-Dispersion Sampling

Halton sequence – multi-dimensional van der corput sequence, co-prime bases



positional(1234, 10) 
$$\rightarrow$$
 [1,2,3,4] halton(1234, 10)  $\rightarrow$   $\frac{4}{10} + \frac{3}{100} + \frac{2}{1000} + \frac{1}{10000}$  positional(1234, 2)  $\rightarrow$  [1,0,0,1,1,0,1,0,0,1,0] halton(1234, 2)  $\rightarrow$   $\frac{1}{4} + \frac{1}{32} + \frac{1}{128} + \frac{1}{256} + \frac{1}{2048}$  positional(1234, 3)  $\rightarrow$  [1,2,0,0,2,0,1] halton(1234, 3)  $\rightarrow$   $\frac{1}{3} + \frac{2}{27} + \frac{2}{729} + \frac{1}{2187}$  positional(0x4d2, 16)  $\rightarrow$  [4,13,2] halton(0x4d2, 16)  $\rightarrow$   $\frac{2}{16} + \frac{13}{256} + \frac{4}{4096}$ 

### What Graphs Are Good?

A good graph must be sparse (both in vertices and edges)

A good graph must have good free-space coverage For every configuration in the free space, there's a vertex in the graph that can be connected to it.

A good graph must have good free-space connectivity

For every connected pair of points in the free space, there's a path on the graph between them.



# Creating a Graph

$$G = (V, E)$$

- Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges





# Creating a Graph

$$G = (V, E)$$



Connect collision free edges



#### **API for Graph Construction**



#### Let's take a look at the inputs

We need to give the planner a collision checker

$$\texttt{coll}(q) = \begin{cases} 0 & \text{in collision, i.e. } q \in \mathcal{C}_{obs} \\ 1 & \text{free, i.e. } q \in \mathcal{C}_{free} \end{cases}$$

What work does this function have to do?

Collision checking is expensive!

#### Let's take a look at the inputs

We need to give the planner a steer function

$$\mathtt{steer}(q_1,q_2)$$

A steer function tries to join two configurations with a feasible path Computes simple path, calls coll(q), and returns success if path is free

$$\underbrace{(1-\alpha)q_1 + \alpha q_2}_{q_1}$$

Example: Connect them with a straight line and check for feasibility

# Can steer be smart about collision checking?



 $\mathtt{steer}(q_1,q_2)$  has to assure us line is collision free (upto a resolution)

Things we can try:

- 1. Step forward along the line and check each point
- 2. Step backwards along the line and check each point

.....

## Can steer be smart about collision checking?

Say we chunk the line into 16 parts



Any collision checking strategy corresponds to sequence

(Naive) 
$$\alpha = 0, \frac{1}{16}, \frac{2}{16}, \frac{3}{16}, \cdots, \frac{15}{16}$$

(Bisection) 
$$\alpha = 0, \frac{8}{16}, \frac{4}{16}, \frac{12}{16}, \cdots, \frac{15}{16}$$

## Ans: Van der Corput sequence

|    | Naive    |        | Reverse | Van der |                                         |
|----|----------|--------|---------|---------|-----------------------------------------|
| i  | Sequence | Binary | Binary  | Corput  | Points in $[0,1]/\sim$                  |
| 1  | 0        | .0000  | .0000   | 0       | •                                       |
| 2  | 1/16     | .0001  | .1000   | 1/2     | $\circ$                                 |
| 3  | 1/8      | .0010  | .0100   | 1/4     | 00                                      |
| 4  | 3/16     | .0011  | .1100   | 3/4     | $\circ$                                 |
| 5  | 1/4      | .0100  | .0010   | 1/8     | $\circ$                                 |
| 6  | 5/16     | .0101  | .1010   | 5/8     | 0-0-0-0-0                               |
| 7  | 3/8      | .0110  | .0110   | 3/8     | 0-0-0-0-0                               |
| 8  | 7/16     | .0111  | .1110   | 7/8     | 0-0-0-0-0-0                             |
| 9  | 1/2      | .1000  | .0001   | 1/16    | 000-0-0-0-0-0                           |
| 10 | 9/16     | .1001  | .1001   | 9/16    | 000-0-0-0-0-0                           |
| 11 | 5/8      | .1010  | .0101   | 5/16    | 000-000-0-0-0                           |
| 12 | 11/16    | .1011  | .1101   | 13/16   | 000-000-000-0                           |
| 13 | 3/4      | .1100  | .0011   | 3/16    | 000000000000000000000000000000000000000 |
| 14 | 13/16    | .1101  | .1011   | 11/16   | 0000000-000                             |
| 15 | 7/8      | .1110  | .0111   | 7/16    | 000000000000000000000000000000000000000 |
| 16 | 15/16    | .1111  | .1111   | 15/16   | 000000000000000000000000000000000000000 |
|    |          |        |         |         |                                         |

#### **Boundary Value Problem**



How can we move from one configuration to another?

→ Hard in general!

Define a steering function that is tasked with connecting two configurations

Previously, steering function was trivial (straight line)

## Differential Constraints on Graphs

To construct a graph under differential constraints:

- 1. Sample collision free configuration states (check with collision checker)
- 2. Solve boundary-value problem to see if states can be connected
- 3. If connectable, add an edge, otherwise no edge
- 4. Benefit!



Connect collision free edges



# Solving the Boundary Value Problem



$$q_1 = (x_1, y_1, \theta_1)$$

$$q_2 = (x_2, y_2, \theta_2)$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \frac{v \tan \delta}{L} \end{bmatrix}$$

$$0 \le v \le v_{\text{max}}, |\delta| \le \delta_{\text{max}}$$

#### **Dubins Curves**



RIGHT-STRAIGHT-LEFT

Dubins showed that all solutions had to be one of six classes  $\{LRL, RLR, LSL, LSR, RSL, RSR\}$ 

Given two configurations to connect, evaluate all six options, return shortest one

Car has fixed forward velocity; Reeds-Shepp curves may include backward velocity

# What Environments Are Hard?



Sampling-based methods struggle with narrow passages Probability of sampling an edge in the passage is very small, so with a finite number of samples, the two halves of the roadmap may not be connected

<u>Practical solutions:</u> sample near obstacle surface, bridge test to add samples between two obstacles, train ML algorithm to detect narrow passages

## Creating a Graph

$$G = (V, E)$$

- 1. Sample collision-free configurations as vertices (including start and goal)
- 2. Connect neighboring vertices with simple movements as edges





# Sampling-Based Motion Planning



# Lecture Outline

Why is the problem hard?

A recipe for solving motion planning problems

**Graph Construction Techniques** 

Planning via Explicit Search

# Minimal Cost Path on a Graph



START, GOAL

COST (E.G. LENGTH)

## Minimal Cost Path on a Graph



START, GOAL

COST (E.G. LENGTH)

GRAPH (VERTICES, EDGES)

## Minimal Cost Path on a Graph



START, GOAL

COST (E.G. LENGTH)

GRAPH (VERTICES, EDGES)

## Best-First Search Meta-Algorithm



#### Best-First Search Meta-Algorithm

Key insight: maintain a priority queue of promising nodes, ranked by f(s)

- -Initialize queue with start node
- -While goal isn't reached

  Pop the most promising node from the queue

  If it's not the goal, enqueue its neighbors
- -When goal is reached, compute path by backtracking to the start

## Best-First Search Meta-Algorithm



## **Best-First Search Implementation**

Inputs: graph G = (V, E); cost c(s, s') = c(e); start and goal Data structures maintained

OPEN: priority queue of nodes that may be expanded (with priority f)

CLOSED: set of nodes that have been expanded

g(s): estimated minimum cost from start to node s ("cost-to-come")

#### **Best-First Search Implementation**

```
Initialize g(start) = 0 and all other g-values to infinity
Insert start into OPEN
While goal not in CLOSED
Remove s with smallest f(s) from OPEN
Add s to CLOSED
For every neighbor s'
If g(s) + c(s, s') < g(s'), update g(s') and add s' to OPEN (with parent s)
```

# Dijkstra's Shortest Path Algorithm

Best-first search with f(s) = g(s) Only expands nodes with lower cost-to-come than goal!



## Class Outline

