
Autonomous Robotics
Winter 2024
Abhishek Gupta

TAs: Karthikeya Vemuri, Arnav Thareja
Marius Memmel, Yunchu Zhang

Slides borrowed from many sources – Sidd Srinivasa,
Sanjiban Choudhury, Dieter Fox

Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient

n HW 3 due Feb 14

n Paper commentaries due Wednesday 2/14

Logistics

Lecture Outline
Why is the problem hard?

A recipe for solving motion planning problems

Graph Construction Techniques

Planning via Explicit Search

Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Also may want to minimize cost

Differential constraints
In geometric path planning, we were only dealing with C-space

We now introduce differential constraints

Let the state space x be the following augmented C-space

Differential constraints make things even harder

These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

Differential constraints make things even harder

These are examples of non-holonomic system

non-holonomic differential constraints are not completely integrable

i.e. the system is trapped in some sub-manifold of the config space

“Left-turning-car”

Emergency landing where
UAV can only turn left

Motion planning under differential constraints

1. Given world, obstacles, C-space, robot geometry (same)

2. Introduce state space X. Compute free and obstacle state space.

3. Given an action space

4. Given a state transition equations

6. Compute action trajectory that satisfies boundary conditions, stays in free state space and
minimizes cost.

5. Given initial and final state, cost function

Challenges in Motion Planning

Computing configuration-space obstacles

Planning in continuous high-dimensional space

Underactuated dynamics/constrained system
does not allow direct teleportation

(EXAMPLE FROM HOWIE CHOSET)

HARD!

HARD!

Goal: tractable approximations with
provable guarantees!

HARD!

Lecture Outline
Why is the problem hard?

A recipe for solving motion planning problems

Graph Construction Techniques

Planning via Explicit Search

How might we tackle this problem?

Lets use ideas from search!

How might we tackle this problem?

Continuous space

Hard to characterize
obstacles

Sampling-Based Motion Planning

Computing configuration-space obstacles is hard
§ Use a collision checker instead!

Planning in continuous high-dimensional space is hard
§ Construct a discrete graph approximation of the

continuous space!

(EXAMPLE FROM HOWIE CHOSET)

Planning as Search

Convert into a search problem

planning map

S2 S3

S4 S5

S6

search the graph
for a least-cost path

from sstart to sgoal

Can use efficient techniques for discrete graph search

Explicit graph search Implicit sampling-based search

CSE-571: Courtesy of Maxim Likhachev, CMU

Recasting Planning as Search

S2 S3

S4 S5

S6

Can use efficient techniques for discrete graph search

How?

Which ones?

Convert into a search problem

planning map

search the graph
for a least-cost path

from sstart to sgoal

CSE-571: Courtesy of Maxim Likhachev, CMU

Recasting Planning as Search

S2 S3

S4 S5

S6

Can use efficient techniques for discrete graph search

How? = Sampling

Which ones? = Best-first explicit search or Implicit sampling-based graph search

Convert into a search problem

planning map

search the graph
for a least-cost path

from sstart to sgoal

SEARCH GRAPHCREATE GRAPH

INTERLEAVE

Sampling-Based Motion Planning

NEW PLANNING
ALGORITHM = GRAPH

CONSTRUCTION × FANCY SEARCH
ALGORITHM ×

Sampling-Based Motion Planning

++ for efficiency

Lecture Outline
Why is the problem hard?

A recipe for solving motion planning problems

Graph Construction Techniques

Planning via Explicit Search

Creating a Graph

1. Sample collision-free configurations as vertices (including start and goal)
2. Connect neighboring vertices with simple movements as edges

Creating a Graph

1. Sample collision-free configurations as vertices (including start and goal)
2. Connect neighboring vertices with simple movements as edges

Strategy 1: Lattice Sampling / Discretization

Main idea: create a grid, and connect neighboring points (4-conn, 8-conn, …)

Pros/Cons?

Strategy 2: Uniform Random Sampling

Main idea: sample uniformly between each dimension’s lower/upper bounds
Connect vertices within radius (r-disc) or k nearest neighbors

KAVRAKI ET AL., 1996

Pros/Cons?

Probabilistic Roadmap (PRM)

When should we collision-check edges?
What is the optimal radius? (PRM with optimal radius = PRM*)

KAVRAKI ET AL., 1996

Alternatives to Random Sampling

Strategy 3: Low-Dispersion Sampling

Main idea: Halton sequence uniformly densifies the space

HTTPS://OBSERVABLEHQ.COM/@JRUS/HALTON

Halton sequence Uniformly randomly sample

Detour: Van der Corput sequence

Detour: Van der Corput sequence

Whiteboard

Strategy 3: Low-Dispersion Sampling

Halton sequence – multi-dimensional van der corput sequence, co-prime bases

HTTPS://OBSERVABLEHQ.COM/@JRUS/HALTON

What Graphs Are Good?

A good graph must be sparse (both in vertices and
edges)

A good graph must have good free-space coverage
For every configuration in the free space, there’s a

vertex in the graph that can be connected to it.

A good graph must have good free-space connectivity

For every connected pair of points in the free space,
there’s a path on the graph between them.

Creating a Graph

1. Sample collision-free configurations as vertices (including start and goal)
2. Connect neighboring vertices with simple movements as edges

Creating a Graph

Connect collision free edges

API for Graph Construction

Input Output

Graph
Construction

1. A collision checker

2. Steering method

Connected graph for
search

Let’s take a look at the inputs

We need to give the planner a collision checker

What work does this function have to do?

Collision checking is expensive!

Let’s take a look at the inputs

We need to give the planner a steer function

A steer function tries to join two configurations with a feasible path

Computes simple path, calls coll(q), and returns success if path is free

Example: Connect them with a straight line and check for feasibility

Can steer be smart about collision checking?

Things we can try:

1. Step forward along the line and check each point

2. Step backwards along the line and check each point

…….

has to assure us line is collision free (upto a resolution)

Say we chunk the line into 16 parts

Any collision checking strategy corresponds to sequence

(Naive)

(Bisection)

Can steer be smart about collision checking?

Ans: Van der Corput sequence

Boundary Value Problem

How can we move from one configuration to another?
àHard in general!

Define a steering function that is tasked with connecting two configurations
àPreviously, steering function was trivial (straight line)

Differential Constraints on Graphs

To construct a graph under differential constraints:
1. Sample collision free configuration states (check with collision checker)
2. Solve boundary-value problem to see if states can be connected
3. If connectable, add an edge, otherwise no edge
4. Benefit!

Connect collision
free edges

Solving the Boundary Value Problem

Dubins Curves

Dubins showed that all solutions
had to be one of six classes

Given two configurations to
connect, evaluate all six options,

return shortest one

Car has fixed forward velocity;
Reeds-Shepp curves may include

backward velocity
RIGHT-STRAIGHT-LEFT

What Environments Are Hard?

Sampling-based methods struggle with narrow passages
Probability of sampling an edge in the passage is very small, so with a finite number of
samples, the two halves of the roadmap may not be connected

Practical solutions: sample near obstacle surface, bridge test to add samples between
two obstacles, train ML algorithm to detect narrow passages

Creating a Graph

1. Sample collision-free configurations as vertices (including start and goal)
2. Connect neighboring vertices with simple movements as edges

SEARCH GRAPHCREATE GRAPH

INTERLEAVE

Sampling-Based Motion Planning

Lecture Outline
Why is the problem hard?

A recipe for solving motion planning problems

Graph Construction Techniques

Planning via Explicit Search

Minimal Cost Path on a Graph

COST (E.G.
LENGTH)

START, GOAL

Minimal Cost Path on a Graph

GRAPH
(VERTICES,

EDGES)

COST (E.G.
LENGTH)

START, GOAL

Minimal Cost Path on a Graph

START, GOAL

GRAPH
(VERTICES,

EDGES)

COST (E.G.
LENGTH)

Best-First Search Meta-Algorithm

(WIKIPEDIA)

Best-First Search Meta-Algorithm

Key insight: maintain a priority queue of promising nodes, ranked by f(s)

-Initialize queue with start node
-While goal isn’t reached

Pop the most promising node from the queue
If it’s not the goal, enqueue its neighbors

-When goal is reached, compute path by backtracking to the start

(WIKIPEDIA)

DIJKSTRA A*

Best-First Search Meta-Algorithm

Best-First Search Implementation

Inputs: graph G = (V, E); cost c(s, s’) = c(e); start and goal
Data structures maintained

OPEN: priority queue of nodes that may be expanded (with priority f)
CLOSED: set of nodes that have been expanded
g(s): estimated minimum cost from start to node s (“cost-to-come”)

Best-First Search Implementation

Initialize g(start) = 0 and all other g-values to infinity
Insert start into OPEN
While goal not in CLOSED

Remove s with smallest f(s) from OPEN
Add s to CLOSED
For every neighbor s’

If g(s) + c(s, s’) < g(s’), update g(s’) and add s’ to OPEN (with parent s)

Dijkstra’s Shortest Path Algorithm

Best-first search with f(s) = g(s)
Only expands nodes with lower cost-to-come than goal!

S G

A B

C D

1
2

3

1

1

2

g = 0

g = 2

g = 1 g = 3

g = 5

g = 5
(WIKIPEDIA)

Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient

