
Autonomous Robotics
Winter 2024
Abhishek Gupta

TAs: Karthikeya Vemuri, Arnav Thareja
Marius Memmel, Yunchu Zhang

Slides borrowed from many sources – Sidd Srinivasa, 
Sanjiban Choudhury



Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient



n HW 2 due tomorrow

n HW3 out on Feb 3 (Saturday)

Logistics



Lecture Outline

Linear Quadratic Regulator Problems

Linear Quadratic Regulator

Beyond the Linear Quadratic Regulator



Controller Design Decisions

Option 1: 
Bang-bang control

Option 2: 
PID control

Option 3: 
Pure-pursuit control

Model Agnostic Very simplistic model

Very particular cost function 



Control as an Optimization Problem

n For a sequence of H control actions
1. Use model to predict consequence of actions (i.e., H future states)
2. Evaluate the cost function

n Compute optimal sequence of H control actions 
(minimizes cost)



n Minimize sum of costs, subject to dynamics and other constraints

Generalized Problem: Optimal Control

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds



Linear Quadratic Regulator

n Linear system (model)
n Quadratic cost function to 

minimize



Linear System

n Linear system (model)
n Quadratic cost function to 

minimize

(M x 1)(N x M)(N x 1)(N x N)(N x 1)

STATE → NEXT STATE CONTROL → NEXT STATE



Example: Inverted Pendulum (Linear System)



Quadratic Cost Function

(N x 1)(N x N)

STATE COST CONTROL COST

(1 x N) (M x 1)(M x M)(1 x M)

n Linear system (model)
n Quadratic cost function to 

minimize



Example: Inverted Pendulum (State Cost)

(QUADRATIC FORM)



Example: Inverted Pendulum (Control Cost)

(QUADRATIC FORM)



Example: Inverted Pendulum



How do we solve for controls?

T-1T-2T-3

Start from timestep T-1 and solve backwards

Dynamic programming to the rescue!



Bellman Equation for Dynamic Programming

MINIMUM COST, 
STARTING FROM 

x_t

MINIMUM FUTURE 
COST, STARTING 
FROM x_t+_11

IMMEDIATE 
COST

n Linear system (model)
n Quadratic cost function to 

minimize



Start from the back: Time-to-go = 0

(whiteboard)



Start from the back: Time-to-go = 0

Minimized with u = 0

T-1

= 0
Note that the cost is quadratic in x



Take one step towards the start: Time-to-go = 1

Solve for control at timestep T-1, accounting 
for impact on the future, through dynamics 



Take one step towards the start: Time-to-go = 1

(Move to whiteboard)



Value Iteration (Horizon = 1)



Turns into a recursion at time-to-go = i

RUNTIME:

Optimal controller is linear in x

Optimal cost is quadratic in x



The LQR algorithm

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0:
return 0, Q

else:
Pi-1 = OptimalValueControl(A, B, Q, R, time-to-go - 1)

return Ki, Pi

Optimal controller is linear in x

Optimal cost is quadratic in x



Unpacking LQR intuitively



Unpacking LQR intuitively

Recall Kalman Filtering

Set A, B = I

Tradeoff between future cost Pi-1 and current cost R



Unpacking LQR intuitively

x^T x

Current state cost

Current action cost

Optimal cost in the future based on dynamics 



Linear Quadratic Regulator

n For linear systems with quadratic costs, we can write 
down very efficient algorithms that return the optimal 
sequence of actions!
n Special case where dynamic programming can be applied to 

continuous states and actions (typically only discrete states and 
actions)

n Many LQR extensions: non-linear systems, linear time-
varying systems, trajectory following for non-linear 
systems, arbitrary costs, etc.



LQR in Action: Stanford Helicopter

HTTPS://YOUTU.BE/0JL04JJJOCCABBEEL ET AL., 2006



LQR in Action

Klemm et al 2020



n Extensions make it more generally applicable:
n Affine systems

n Systems with stochasticity

n Penalization for change in control inputs

n Linear time varying (LTV) systems

n Trajectory following for non-linear systems

LQR assumptions revisited

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.



n Extensions make it more generally applicable:
n Affine systems

n Systems with stochasticity

n Non-linear systems

n Linear time varying (LTV) systems

n Trajectory following for non-linear systems

LQR assumptions revisited

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.



Nonlinear system:

We can keep the system at the state x* iff

Linearizing the dynamics around x* gives:

Equivalently:

Let zt = xt – x* , let vt = ut – u*, then:
[=standard LQR]

LQR Ext1: non-linear systems

A B



LQR Ext2: Linear Time Varying (LTV) Systems



LQR Ext2: Linear Time Varying (LTV) Systems



LQR Ext3: Trajectory Following for Non-Linear Systems
n A state sequence x0*, x1*, …, xH* is a feasible target trajectory if and 

only if

n Problem statement:

n Transform into linear time varying case (LTV):

At Bt



n Transformed into linear time varying case (LTV):

n Now we can run the standard LQR back-up iterations.

n Resulting policy at i time-steps from the end:

n The target trajectory need not be feasible to apply this technique, 
however, if it is infeasible then there will an offset term in the dynamics:

LQR Ext3: Trajectory Following for Non-Linear Systems



Iteratively Apply LQR



Class Outline

Motion Planning Lazy Search

Search

Feedback Control

LQRMPC

Robotic System Design Filtering

SLAMLocalization

State Estimation Control

Planning

PID Control

Heuristic Search

Learning

Actor-Critic Model-Based RL

Imitation Learning Policy Gradient


