Autonomous Robotics

Winter 2024
Abhishek Gupta
TAs: Karthikeya Vemuri, Arnav Thareja

Marius Memmel, Yunchu Zhang

Slides borrowed from many sources — Sidd Srinivasa,
Sanjiban Choudhury

Class Outline

State Estimation Control
Robotic System Design Filtering Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning | |Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

Logistics

m HW 2 due tomorrow

m HW3 out on Feb 3 (Saturday)

Lecture Outline

Linear Quadratic Regulator Problems

\4

Linear Quadratic Regulator

\4

Beyond the Linear Quadratic Regulator

Controller Design Decisions

Very particular cost function

_

Option 1: Option 2: Option 3:
Bang-bang control PID control Pure-pursuit control

\/

Model Agnostic Very simplistic model

Control as an Optimization Problem

= For a sequence of H control actions
1. Use model to predict consequence of actions (i.e., H future states)

2. Evaluate the cost function

s Compute optimal sequence of H control actions
(minimizes cost)

~ Generalized Problem: Optimal Control

= Minimize sum of costs, subject to dynamics and other constraints
T

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds

Linear Quadratic Regulator

= Linear system (model) Tiy1 = Axy + Buy

. : T T
= Quadratic cost function to Zt Ly th + Uy Ruy
minimize

Linear System

= Linear system (model) Tiy1 = Axy + Buy

= Quadratic cost function to Zt ZU; Qfl?t == U;r Ruy
minimize
Tir1 = A Lt et B uy
(Nx1) (NXxN)(Nx1) (NxM)(Mx 1)

STATE — NEXT STATE CONTROL — NEXT STATE

Example: Inverted Pendulum (Linear System)

mgl sin @ + 7 = ml*0

0= Isinf+ Tz~ 960+

ml?

1 i _Ot_ _At_ le

Quadratic Cost Function

= Linear system (model) Tiy1 = Axy + Buy

= Quadratic cost function to Zt ZC; Qr: + u;r Ruy
minimize
x| Qxy u, Ruy
(1 XN)(NxN)(Nx1) (1xMMxM(Mx1)

STATE COST CONTROL COST

Example: Inverted Pendulum (State Cost)

x| Qxy (QUADRATIC FORM)

_QQG QQ@'- _Qt_
0] [Qpg ol |0

= Qpo0? + 2Q,;0:0; + Q ;467

Q=0+ 2"Qz>0, Vz#0

Example: Inverted Pendulum (Control Cost)

u, Ruy (QUADRATIC FORM)
Tt Tt
— T 5 RTT D)
le [] le

R>=0+2"Rz>0,Vz#0

Example: Inverted Pendulum

How do we solve for controls?

Dynamic programming to the rescue!

Start from timestep T-1 and solve backwards

- Bellman Equation for Dynamic Programming

= Linear system (model) Tiy1 = Axy + Buy

. : T T
= Quadratic cost function to Zt Ly th + Uy Ruy
minimize

J*(x¢) = minx, Qzy + u, Ruy + J* (x441)

Ut

MINIMUM COST, IMMEDIATE MINIMUM FUTURE

STARTING FROM COST COST, STARTING
Tt FROM L¢41

Start from the back: Time-to-go =0

JO (.ﬂl}) — mln ZETQ.CU _|_ UTRU (whiteboard)
u

Start from the back: Time-to-go =0

Jo(z) =minz' Qr+u' ' Ru=2'Qr =z' Pyx

’ ~ |

, Minimized with u=0 Py = Q

Lref=0

Note that the cost is quadratic in x

Take one step towards the start: Time-to-go =1

Jo(z) =minz' Qr+u' ' Ru=2'Qr =z' Pyx

u

Ji(z) =minz' Qr +u' Ru+ Jo(Azx + Bu)

\I Solve for control at timestep T-1, accounting
| ® Lref

for impact on the future, through dynamics

Take one step towards the start: Time-to-go =1

Ji(x) = mm ' Qr+u' Ru+ Jo(Azx + Bu)

(Move to whiteboard)

Value lteration (Horizon = 1)

Ji(z) =min [z' Qr +u' Ru+ (Az + Bu)' Py(Az + Bu)]

u

Vul] =2Ru+2B" Py(Ax + Bu) =0

uw=—(R+ B'PyB) " 'B'PyAx

Ji(z) =z Pz
Pi=Q+ K, RK; + (A+ BK,)' Py(A+ BK;)
Ki=—(R+B'P,B)"'B'"PA

Turns into a recursion at time-to-go = |

Ki=—(R+B'P_1B)"'B'P_,A
P,=Q+ K,'RK; + (A+ BK;)' Pi_1(A + BK;)

u= K;x, Ji(r) =x P

Optimal controller is linear in x

Optimal cost is quadratic in x RUNTIME: O(H(n3 =+ 7713))

The LQR algorithm

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0:
return 0, Q

else:
P..1 = OptimalValueControl(A, B, Q, R, time-to-go - 1)

Ki=—(R+B'P_1B)"'B"P,_,A
P,=Q+ K, RK; + (A+ BK;)' P,_,(A + BK;)

return Ki, P;

Optimal controller is linear in x

Optimal cost is quadratic in x

Unpacking LQOR intuitively

Ki=—(R+B'P,_1B)"'B'P_,A
P,=Q+ K, RK; + (A + BK;)' P_(A+ BK;)
u= Kz, J;(xr) = ' Px

Unpacking LQOR intuitively

Ki=—(R+B'P,_1B)"'B'P_,A
Recall Kalman Filtering
BT'P,_1A
R+ BTP,_B

Set A, B =1

Pi_q
R+ P4

Tradeoff between future cost P, ; and current cost R

Unpacking LQOR intuitively

XAT

P,=Q+ K, RK; + (A+ BK;)' Pi_1(A+ BK;)| 4

—

l

Current state cost

—

Current action cost

Optimal cost in the future based on dynamics

Linear Quadratic Regulator

= For linear systems with quadratic costs, we can write
down very efficient algorithms that return the optimal
sequence of actions!

s Special case where dynamic programming can be applied to
continuous states and actions (typically only discrete states and

actions)
= Many LQR extensions: non-linear systems, linear time-
varying systems, trajectory following for non-linear
systems, arbitrary costs, etc.

LQR in Action: Stanford Helicopter

ABBEEL ET AL., 2006 HTTPS://YOUTU.BE/0JL0413JOCC

LQR In Action

Overcoming challenging
Indoor environements.

Klemm et al 2020

LQR assumptions revisited

Tiv1 = Az + Buy

g(xe,uy) = :L‘tTth -+ utTRut

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.

Extensions make it more generally applicable:
= Affine systems
= Systems with stochasticity
= Penalization for change in control inputs
= Linear time varying (LTV) systems

= Trajectory following for non-linear systems

LQR assumptions revisited

Tt+l — A.Z't . B’U,t

g(xe,uy) = :z:tTth -+ u;rRut

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.

Extensions make it more generally applicable:
= Affine systems
= Systems with stochasticity
= Non-linear systems <{——
= Linear time varying (LTV) systems C:I

= Trajectory following for non-linear systems

LQR Extl: non-linear systems

Nonlinear system: Tyl = f(xt, ut)

We can keep the system at the state x™ iff
Ju*s.t. =¥ = f(z",u”)

Linearizing the dynamics around x” gives:

0 0
e % S) + g)@ —a) +) =)
| |

Equivalently: A B
Ty — " ~ Ay — x2%) + B(ug — u”)

J

* *
letz, =x,—x , letv,=u,—u’, then:

Zt4+1 — Azt + B’Ut, cost = thta -+ ’UtTR’Ut [=standard LQR]
v = Kz = up —u” =K($t—$*) = Ut =u*+K(:ct—:c*)

LQR Ext2: Linear Time Varying (LTV) Systems

At.’l?t -+ Btut
T T
Xy tht + Uy Rtut

Lt41
g(xta ut)

LQR Ext2: Linear Time Varying (LTV) Systems

Set P() =)
fori=1,2,3,...
Ki = —(Ry_i+Bj_;Pi_1By_y) 'By_,P,_1An_;
B = Q- KiTRH—iKi + (Ag—; + BH—iKi)TPi—l(AH—z’ + By _; K;)

The optimal policy for a i-step horizon is given by:
m(x) = K;x
The cost-to-go function for a i-step horizon is given by:

Ji(z) = 2" Px.

LQR Ext3: Trajectory Following for Non-Linear Systems

s A state sequence xy*, X¢%, ..., X4* is a feasible target trajectory if and
only if
Jus, ul, .. upy_y 2 VEe{0,1,...,H -1} : zp = f(zf,u))
= Problem statement:

. H— * * * *
MMy, 0q . u g —1 Zt:Ol(wt — Ty)TQ(fEt —x;) + (uy — uy)TR(ut — uy)
S.t. LTt+1 — f(xt,ut)
= Transform into linear time varying case (LTV):

Tt41 ~ f(xtaut) +\%($tvut)}(let — 33:) +\%($tvut)(ut — ut)
| Y
A, B,

LQR Ext3: Trajectory Following for Non-Linear Systems

= Transformed into linear time varying case (LTV):

. H—
mlnuo,ul,...,u”_l thol(xt - :C;Lk)TQ(-Tt - CE;‘) + (’U,t — u;")TR(uf — ’U,;k)

S.t. Lt41 — Zl?:+1 — At(xt — :C:fk) + Bt(ut o u:)

= Now we can run the standard LQR back-up iterations.

s Resulting policy at i time-steps from the end:
upg—; —uy_; = Ki(zp—i — x5 _;)

= The target trajectory need not be feasible to apply this technique,
however, if it is infeasible then there will an offset term in the dynamics:

Tir1 — iy = f(xe,ue) — 23y + Ae(xe — x7) + Be(ue — uyp)

Iteratively Apply LQR

Initialize the algorithm by picking either (a) A control policy 7(?) or (b) A
sequence of states :c(()o), :vgo), ;4 ,:z:g) and control inputs uf)o) , ugo), gt ,ug). With
initialization (a), start in Step (1). With initialization (b), start in Step (2).

Iterate the following:

(1) Execute the current policy 7(¥) and record the resulting state-input tra-
jectory :c(()i), uéi), xgi), ugi), —_— acg), u&})

(2) Compute the LQ approximation of the optimal control problem around
the obtained state-input trajectory by computing a first-order Taylor ex-
pansion of the dynamics model, and a second-order Taylor expansion of
the cost function.

(3) Use the LQR back-ups to solve for the optimal control policy w(i+1) for
the LQ approximation obtained in Step (2).

(4) Set + =17+ 1 and go to Step (1).

Class Outline

State Estimation Control
Robotic System Design Filtering Feedback Control PID Control
Localization SLAM MPC LQR
Planning -
Search Heuristic Search Imitation Learning | |Policy Gradient

Motion Planning

Lazy Search

Actor-Critic

Model-Based RL

