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Class Outline

Motion Planning Lazy Search

Search
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n HW 2 due on Feb 2

n HW3 out on Feb 3 (Saturday) barring no hiccups in 

testing J

Logistics



Lecture Outline

Recap of Pure Pursuit

From tracking to optimal control

Linear Quadratic Regulator



Aerial combat in which aircraft pursues another 
aircraft by pointing its nose directly towards it

Similar to 
carrot on a stick!

Pure Pursuit Control



Rationale: Controller should leverage model!

PID control doesn’t directly utilize the fact
that we know the kinematic car model



Key Idea:

The car is always moving 
in a circular arc



Pure Pursuit Controller

n Assume the car is moving with 
fixed steering angle

COULTER, 1992



L

Consider a reference at a lookahead distance

Problem: Can we solve for a steering angle that guarantees 
that the car will pass through the reference?



Solution: Compute a circular arc

We can always solve for a arc that 
passes through a lookahead point

Note: As the car moves forward, the point keeps moving



Pure pursuit: Keep chasing looakahead

1. Find a lookahead and compute arc

2. Move along the arc

3. Go to step 1



Equations of Motion RECALL



Kinematic Car Model

X-COORDINATE
Y-COORDINATE
HEADING

SPEED

STEERING ANGLE

1
u

RECALL



Pure pursuit: Control law derivation

Whiteboard



Computing the Arc Radius



Computing the Arc Radius

Different than cross-track error
(this is ref. position in robot 
frame;
vice versa for cross-track error)



Computing the Steering Angle



Question: How do I choose L?

1
8



Controller Design Decisions

1. Get a reference path/trajectory to track
2. Pick a reference state from the reference path/trajectory
3. Compute error to reference state
4. Compute control law to minimize error

Option 1: 
Bang-bang control

Option 2: 
PID control

Option 3: 
Pure-pursuit control

Are we done?



Lecture Outline

Recap of Pure Pursuit

From tracking to optimal control

Linear Quadratic Regulator



Controller Design Decisions

Option 1: 
Bang-bang control

Option 2: 
PID control

Option 3: 
Pure-pursuit control

Model Agnostic Very simplistic model

Very particular cost function 



Control as an Optimization Problem

n For a sequence of H control actions
1. Use model to predict consequence of actions (i.e., H future states)
2. Evaluate the cost function

n Compute optimal sequence of H control actions 
(minimizes cost)



n Minimize sum of costs, subject to dynamics and other constraints

Generalized Problem: Optimal Control

<latexit sha1_base64="SuBr7ILwcVK8iTsolJJw4mbnOew="></latexit>

min
u1:T

TX

t=1

g(xt, ut) +G(xT , uT )

s.t. xt+1 = Axt +But

Can be costs like smoothness, preferences, speed Can be constraints like velocity/acceleration bounds



Linear Quadratic Regulator

n Linear system (model)
n Quadratic cost function to 

minimize



Linear System

n Linear system (model)
n Quadratic cost function to 

minimize

(M x 1)(N x M)(N x 1)(N x N)(N x 1)

STATE → NEXT STATE CONTROL → NEXT STATE



Example: Inverted Pendulum (Linear System)



Quadratic Cost Function

(N x 1)(N x N)

STATE COST CONTROL COST

(1 x N) (M x 1)(M x M)(1 x M)

n Linear system (model)
n Quadratic cost function to 

minimize



Example: Inverted Pendulum (State Cost)

(QUADRATIC FORM)



Example: Inverted Pendulum (Control Cost)

(QUADRATIC FORM)



Example: Inverted Pendulum



How do we solve for controls?

T-1T-2T-3

Start from timestep T-1 and solve backwards

Dynamic programming to the rescue!



Bellman Equation for Dynamic Programming

MINIMUM COST, 
STARTING FROM 

x_t

MINIMUM FUTURE 
COST, STARTING 
FROM x_t+_11

IMMEDIATE 
COST

n Linear system (model)
n Quadratic cost function to 

minimize



Start from the back: Time-to-go = 0

Minimized with u = 0

T-1

= 0
Note that the cost is quadratic in x



Take one step towards the start: Time-to-go = 1

Solve for control at timestep T-1, accounting 
for impact on the future, through dynamics 



Take one step towards the start: Time-to-go = 1

(Move to whiteboard)



Value Iteration (Horizon = 1)



Turns into a recursion at time-to-go = i

RUNTIME:

Optimal controller is linear in x

Optimal cost is quadratic in x



The LQR algorithm

Algorithm OptimalValueControl(A, B, Q, R, time-to-go):

if time-to-go == 0:
return Q, 0

else:
Pi-1 = OptimalValueControl(A, B, Q, R, time-to-go - 1)

return Ki, Pi

Optimal controller is linear in x

Optimal cost is quadratic in x



Unpacking LQR intuitively



Unpacking LQR intuitively

Recall Kalman Filtering

Set A, B = I

Tradeoff between future cost Pi-1 and current cost R



Unpacking LQR intuitively

x^T x

Current state cost

Current action cost

Optimal cost in the future based on dynamics 



Linear Quadratic Regulator

n For linear systems with quadratic costs, we can write 
down very efficient algorithms that return the optimal 
sequence of actions!
n Special case where dynamic programming can be applied to 

continuous states and actions (typically only discrete states and 
actions)

n Many LQR extensions: non-linear systems, linear time-
varying systems, trajectory following for non-linear 
systems, arbitrary costs, etc.



LQR in Action: Stanford Helicopter

HTTPS://YOUTU.BE/0JL04JJJOCCABBEEL ET AL., 2006



LQR in Action

Klemm et al 2020



Recap: Course Overview

MDPs and RL

Imitation Learning Solving POMDPs

Search Motion Planning

Stability/CertificationTrajOpt

Filtering/Smoothing Localization

SLAMMapping
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