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Occupancy Grid Mapping

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury, Eric Westman, Cyrill Stachniss



What is an occupancy map?
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Probabilistic representation of world 

from  

noisy, uncertain sensor measurement data,  

with the assumption  

that the robot pose is known.



What is an occupancy grid map?
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Example

Courtesy: C. Stachniss

Discretize world into cells

Assign a probability [0,1] 
to each cell



When do we need to map online?
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1. Cant rely on floor plans

3. Mapping disaster regions

2. Unstructured environments



Even floor plans can be wrong…
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Even when we have prior maps, they can be inaccurate…

CAD map occupancy grid map
Tech Museum, San Jose



Why do we need estimation?
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Occupancy Grids: From scans to maps

False “hits” from 
people in the 
environment

Scans are noisy - if you just added them they will 
contradict each other and create a mess!



Bayes filter is a powerful tool
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Localization Mapping SLAM POMDP



Assembling Bayes filter
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Tasks
Localization 

P(pose | data)

Mapping 
P(map | data)

SLAM 
P(pose, map | data)

Belief Representations

Probabilistic Models

Bayes 
Filter



Different tasks as Bayes filtering
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Tasks Belief Representation Probabilistic Models

Localization 
P(pose | data)

Gaussian / Particles
Motion model 

Measurement model

Mapping 
P(map | data)

Discrete (binary) Inverse measurement model

SLAM 
P(pose, map | 

data)

Gaussian (pose, landmarks) 
Motion model, 

measurement model, 
correspondence model



Today’s objective
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1. Understand occupancy grid mapping intuitively

2. Work through Bayes filter derivation

3. Examine when assumptions get violated



Spilling the beans on mapping
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Step 1: 
Start with an 
empty map. 
0.5 prob of being 
free.

zt

xt

Step 2: 
Accept the latest 
measurement 
and pose  

Step 3: 
Raycast every 
beam. Group cells 
as HIT and MISS.  

HIT: Bump down 
probability. 
MISS: Bump up.

zt

xt

Step 4: 
Get new 
measurement.  

Update the map.
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Mapping as just another Bayes filtering problem

Task:
Mapping 

P(map | data)

What is the belief representation?
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Occupancy Grids: From scans to maps

False “hits” from 
people in the 
environment

Represent 
world as a 

collection of  
cells

Each belief 
is [0,1]0 is occupied, 1 is free, 

0.5 unknown

P (m) = P (m1,m2, . . . ,mn)

What is the data?

Stream of pose and  
laser scans x1:t, z1:t

zt

zt�1

xt�1

xt



Graphical model of mapping
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xt�1 xt xt+1

zt�1 zt zt+1

m



Problem: Space of maps is huge!!
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Map m

mi

Example: We are mapping 25m x 25m 
area at 25 cm resolution. 

     100 x 100 grid = 10,000 cells

How many possible maps can  
there be?

2^10000  !!!

The state is a matrix of binary values

The belief assigns a probability to all states



Solution: Approximate by independent cells
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Representation

• The probability distribution of the map is given by the 
product over the cells

example map
(4-dim state)

4 individual cells
Courtesy: C. Stachniss

4 individual  
cells

Structured 
map (4-dim state)

Joint probability is approximated by product of individual probabilities 

P (m) =
Y

i

P (mi)

P (m|x1:t, z1:t) =
Y

i

P (mi|x1:t, z1:t)

Binary r.v.



Let’s crank through Bayes filter

16

⌘P (zt|mi, z1:t�1, x1:t�1, xt)P (mi|z1:t�1, x1:t�1, xt)=(Bayes)

P (mi|z1:t, x1:t) = P (mi|z1:t�1, x1:t�1, zt, xt)

[old data] [new data]

(Cond Ind.) ⌘P (zt|mi, z1:t�1, x1:t�1, xt)P (mi|z1:t�1, x1:t�1)=
[old filter value][old data]



Problem 1: Can we apply conditional indep?
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P (zt|mi, xt)P (zt|mi, z1:t�1, x1:t�1, xt)=
[old data][map value] [sensor pose]



Let’s crank through Bayes filter
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P (mi|z1:t, x1:t) = P (mi|z1:t�1, x1:t�1, zt, xt)

⌘P (zt|mi, z1:t�1, x1:t�1, xt)P (mi|z1:t�1, x1:t�1, xt)=(Bayes)

(Cond Ind.) ⌘P (zt|mi, z1:t�1, x1:t�1, xt)P (mi|z1:t�1, x1:t�1)=

⌘P (zt|mi, xt)P (mi|z1:t�1, x1:t�1)=(Cond Ind.)



Problem 2: Sensor model is hard to define
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Why is this hard to specify? P (zt|mi, xt)

ztxt

mi

[ray] [cell]

P (zt|mi, xt) =
P (mi|zt, xt)P (zt|xt)

P (mi|xt)
[cell] [ray]

Is this easier to specify?



Problem 2: Sensor model is hard to define
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We can’t specify this…

P (zt|mi, xt)

Solution: Apply Bayes to get an inverse sensor model

P (zt|mi, xt) =
P (mi|zt, xt)P (zt|xt)

P (mi|xt)



Let’s crank through Bayes filter
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P (mi|z1:t, x1:t) = P (mi|z1:t�1, x1:t�1, zt, xt)

⌘P (zt|mi, z1:t�1, x1:t�1, xt)P (mi|z1:t�1, x1:t�1, xt)=(Bayes)

(Cond Ind.) ⌘P (zt|mi, z1:t�1, x1:t�1, xt)P (mi|z1:t�1, x1:t�1)=

⌘P (zt|mi, xt)P (mi|z1:t�1, x1:t�1)=(Cond Ind.)

= ⌘
P (mi|zt, xt)P (zt|xt)

P (mi|xt)
P (mi|z1:t�1, x1:t�1)(Bayes.)

(Cond Ind.) ⌘
P (mi|zt, xt)P (zt|xt)

P (mi)
P (mi|z1:t�1, x1:t�1)=



Let’s look at likelihood ratios
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P (mi|z1:t, x1:t) ⌘
P (mi|zt, xt)P (zt|xt)

P (mi)
P (mi|z1:t�1, x1:t�1)=

There are terms we don’t know and would not like to calculate!

Let’s look at the ratio

P (mi|z1:t, x1:t)

P (¬mi|z1:t, x1:t)
=

P (mi|zt, xt)

P (¬mi|zt, xt)

P (¬mi)

P (mi)

P (mi|z1:t�1, x1:t�1)

P (¬mi|z1:t�1, x1:t�1)

[cell=1]

⌘
P (¬mi|zt, xt)P (zt|xt)

P (¬mi)
P (¬mi|z1:t�1, x1:t�1)=P (¬mi|z1:t, x1:t)

Let’s look at the opposite probability!

[cell=0]



Log likelihood ratios
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P (mi|z1:t, x1:t)

P (¬mi|z1:t, x1:t)
=

P (mi|zt, xt)

P (¬mi|zt, xt)

P (¬mi)

P (mi)

P (mi|z1:t�1, x1:t�1)

P (¬mi|z1:t�1, x1:t�1)

(inverse sensor model) (old ratio)(prior)

Taking logs of all terms

log

✓
P (mi|z1:t, z1:t)
P (¬mi|z1:t, z1:t)

◆
log

✓
P (mi|zt, xt)

P (¬mi|zt, xt)

◆
log

✓
P (mi)

P (¬mi)

◆
log

✓
P (mi|z1:t�1, x1:t�1)

P (¬mi|z1:t�1, x1:t�1)

◆
= � +

lt l(mi|zt, xt) lt�1l0= +�
(updated belief) (old belief)(inverse model) (prior)



Pseudo code of occupancy mapping
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zt

xt

for every ray r in (xt, zt)

for every cell mi in r

if mi is MISS

li = li + l(HIT)� l0

li = li + l(MISS)� l0
else



What is the inverse sensor model P(m|z,x)?
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P (zt|mi, xt) =
P (mi|zt, xt)P (zt|xt)

P (mi|xt)

P (zt|mi, xt) =
P (mi|zt, xt)P (zt|xt)

P (mi|xt)

P (mi)� �

P (mi) + �

P (mi)=

if ray passes  
through cell

if ray does 
not intersect 

cell

if ray stops  
in cell

[cell] [ray]



Problem: Dynamic obstacles
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t=0 t=2 t=4 t=6 t=8 t=10 t=12

Laser array

What will the 
occupancy map look like?



Problem: Dynamic obstacles
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t=2 t=4 t=6

t=8 t=10 t=12

But is this what we want??



Solution: Don’t use independence
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t=2 t=4 t=6

t=8 t=10 t=12

If we directly guessed the best explanation, we can come up with this!

What is wrong with independence?  
Encode knowledge: If I know there is ONE obstacle and a cell gets a 

MISS and neighbor gets a HIT,  
then cell must be FREE (P=1). 



Dynamic obstacle mapping in general
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“Map building with mobile robots in dynamic environments” D. Hähnel, 
R. Triebel, W. Burgard, and S. Thrun. 2003

“Occupancy Grid Models for Robot Mapping in Changing 
Environments” D. Meyer-Delius, M. Beinhofer and W. Burgard 2003


