
1

Particle Filters

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury and Dieter Fox

Assembling Bayes filter

2

Tasks
Localization

P(pose | data)

Mapping
P(map | data)

SLAM
P(pose, map | data)

Belief Representations

Probabilistic Models

Bayes
Filter

Tasks that we will cover

3

Tasks Belief Representation Probabilistic Models

Localization
P(pose | data)

Gaussian / Particles
Motion model

Measurement model

Mapping
P(map | data)

Discrete (binary) Inverse measurement model

SLAM
P(pose, map |

data)

Particles+Gaussian
 (pose, landmarks)

Motion model,
measurement model,
correspondence model

(Week 3)

(Week 4)

(Week 4)

Example: Indoor localization

4

Today’s objective

5

1. Understand the need for non-parametric filtering when 
faced with complex pdf in continuous space.

2. Importance sampling as an effective tool for dealing with
complex pdf

Why can’t we just use parametric filters?

6

bel(xt) P (xt+1|zt+1)bel(xt+1)

(Gaussian)(Gaussian)(Gaussian)

bel(xt+1)

bel(xt) = ⌘P (zt|xt)

Z
P (xt|xt�1, ut) bel(xt�1)dxt�1

(Gaussian)

Everything is a Gaussian - prior, motion, observation, posterior!

Good things about parametric filters

7

1. They are exact (when correct model)

E.g. Kalman Filter

2. They are efficient to compute

E.g. Sparse matrix inversion

We have so far been thinking about parametric filter (Kalman)

Problems with parametric filters

8

1. Posterior has to have a fixed functional form (e.g. Gaussian)

- even if our prior was a Gaussian, if control/measurement 
model is non-linear, posterior is NOT a Gaussian

2. We can always approximate with parametric belief (e.g. EKF)

- what if true posterior was multi-modal? danger of losing 
a mode completely

How can we realize Bayes filters in a non-parametric fashion?

Tracking a landing pad with laser only

9(Arora et al.)

10

Question: What are our
options for non-parametric

belief representations?

1. Histogram filter

2. Normalized importance sampling

3. Particle filter

Approach 1: Histogram filter

11

Simplest approach - discretize the space!

Prior Posteriorbel(xt) bel(xt+1)

Example: Grid-based localization

12

Issues with grid-based localization

13

1. Curse of dimensionality

2. Wasted computational effort

3. Wasted memory resources

Remedy: Adaptive discretization

Remedy: Pre-cache measurements from cell centers

Remedy: Update a select number of cells only

14

If discretization is expensive,
can we sample?

Monte-Carlo method

15

Q: What do we intend to do with the belief ? bel(xt+1)

Ans: Often times we will be evaluating the expected value

E[f] =
Z

x
f(x)bel(x)dx

Mean position:

Probability of collision:

Mean value / cost-to-go:

f(x) ⌘ x

f(x) ⌘ I(x 2 O)

f(x) ⌘ V (x)

Monte-Carlo method

16

E[f] =
Z

x
f(x)bel(x)dx

Problem: Can’t evaluate the integral below since we don’t know bel

E[f] ⇡ 1

N

NX

i

f(xi)

Solution: Sample from the distribution

(originated in Los Alamos)

+ Incremental, any-time.

+ Converges to the true expectation under a mild set of assumptions

Lots of general applications!

x1, . . . , xN ⇠ bel(x)

Monte Carlo
Estimate

Can we always sample?

17

bel(xt) = ⌘P (zt|xt)

Z
p(xt|ut, xt�1)bel(xt�1)dxt�1

How can we sample from the
product of two distributions?

18

Question:
How can we sample from a
complex distribution p(x)?

Solution: Importance sampling

19

Trick:
1. Sample from a proposal distribution (easy),
2. Reweigh samples to fix it!

Solution: Importance sampling

20

Don’t know how to
generate these samples!!

p(x)

Target

Solution: Importance sampling

21

Trick:
1. Sample from a proposal distribution (easy),

p(x) q(x)

Proposal
Target

Solution: Importance sampling

22

Trick:
1. Sample from a proposal distribution (easy),
2. Reweigh samples to fix it!

p(x) q(x)

Proposal
Target

Convergence precondition:

Solution: Importance sampling

23

Trick: Sample from a proposal distribution (easy),
reweigh samples to fix it!

E
p(x)

[f(x)] =
X

p(x)f(x) (1a)

=
X

p(x)f(x)
q(x)

q(x)
(1b)

=
X

q(x)
p(x)

q(x)
f(x) (1c)

= E
q(x)

[
p(x)

q(x)
f(x)] (1d)

⇡ 1

N

NX

i=1

p(xi)

q(xi)
f(xi). (1e)

p(x)
q(x) is called the importance weight. When we are undersampling an area, it weights it stronger;
likewise, oversampled areas are weighted more weakly.

Consider the following (somewhat contrived) pair of functions:

Figure 2: Comparison of distribution we wish to sample from, p, and distribution we can sample
from, q.

Notice that there are places where p is nonzero and q is zero, which means we have regions to
sample that we aren’t sampling at all.

Our estimate of the expectation of p becomes:

1

N

NX

i=1

p(xi)

q(xi)
f(xi) !N!1 Ep[f(x)] (2)

2.1 Example

Set q as the motion model. Note that in reality we never use this – we use a better approximation
of p(xt|xt�1) because the motion model takes too many samples to be reliable.

2

p(x) > 0 q(x) > 0whenever

Importance
Weight

Question: What makes a good proposal distribution?

24

p(x) q(x)

25

bel(xt) = ⌘P (zt|xt)

Z
p(xt|ut, xt�1)bel(xt�1)dxt�1

Target distribution : Posterior

Proposal distribution : After applying motion model

bel(xt) =

Z
p(xt|ut, xt�1)bel(xt�1)dxt�1

Applying importance sampling to Bayes filtering

Importance ratio:

r =
bel(xt)

bel(xt)
= ⌘P (zt|xt)w

26

Question: What are our
options for non-parametric

belief representations?

1. Histogram filter

2. Normalized importance sampling

3. Particle filter

Approach 2: Normalized Importance Sampling

27

bel(xt�1) =

⇢
x1
t�1

w1
t�1

,
x2
t�1

w2
t�1

, · · · , x
M
t�1

wM
t�1

�
0.5

0.25

0.25

for i = 1 to M

sample xi
t ⇠ P (xt|ut, x

i
t)

0.5

0.25

0.25

0.5 * 0.02

0.25 * 0.1

0.25 * 0.05

for i = 1 to M

wi
t = P (zt|x̄i

t)w
i
t�1

=0.01

=0.025

=0.0125

for i = 1 to M

wi
t =

wi
tP

i w
i
t

0.21

0.53

0.26
bel(xt) =

⇢
x̄1
t

w1
t
, · · · , x̄

M
t

wM
t

�

Problem: What happens after enough iterations?

28

Particles don’t move - can get stuck in regions of low probability

This is a problem of histogram filters too…

True posterior True posterior True posterior

29

Key Idea: Resample!

Why? Get rid of bad particles

Approach 3: Particle Filtering (with IS)

30

for i = 1 to M

sample xi
t ⇠ P (xt|ut, x

i
t)

for i = 1 to Mfor i = 1 to M

for i = 1 to M

bel(xt�1) =

⇢
x1
t�1

w1
t�1

,
x2
t�1

w2
t�1

, · · · , x
M
t�1

wM
t�1

�
0.5

0.25

0.25

0.5

0.25

0.25

0.5 * 0.02

0.25 * 0.1

0.25 * 0.05

=0.01

=0.025

=0.0125

all weights
= 1/M

wi
t = P (zt|x̄i

t)w
i
t�1

for i = 1 to M

sample xi
t ⇠ wi

t
bel(xt) =

⇢
x1
t

1
, · · · , x

M
t

1

�2

Virtues of resampling

31

ut zt ut+1 zt+1resample

2

resample

3

Why use particle filters?

32

1. Can answer any query 

2. Will work for any distribution, including multi-modal (unlike
Kalman filter) 

3. Scale well in computational resources (embarrassingly parallel) 

4. Easy to implement!

33

34

35

36

37

38

39

40

41

Histogram Filter

Normalized Importance Sampling

Particle Filter

Grid up state space

Use a fixed set of samples

Resample

Non-parametric Filters
Sa

m
e

fu
nd

am
en

ta
l B

ay
es

 r
ul

e
ag

ai
n

an
d

ag
ai

n
…

42

Are we done?

No!
Lots of practical

problems to deal with

Problem 1: Two room challenge

43

(a) Two rooms with equal probability (b) The same filter, after repeated resampling

Figure 4: A problem with assuming the independence of the observations and using näıve sampling.
Without gaining any new information, the particle filter converges on one of the rooms.

the same observations; however, over the course of 100 timesteps, the filter has become certain that
it is in the right room.

What has happened? The filter is non-deterministic, and so when we pick the particles with
equal weight, it is unlikely that we will equal numbers from each room. As time progresses, this
selection process only becomes more imbalanced: with observations equally likely, if a state has very
few particles in its vicinity, in expection, it will have very few particles after resampling. Further,
once a state space loses its particles, there are no ways to regain them without motion happening.

Figure 5: Low Variance Resampling; in practice, this approach is preferred over the näıve approach.

Fixes: There are a number of ways to prevent situations like this from happening in practice.

1. One way is to detect situations in which you do not have enough new information to resam-
ple, and only run the resampling when your observation model has su�ciently new obser-
vation data to process. One statistic that might be useful for evaluting this is looking at
max({wi})/min({wi}), or looking at the entropy of the weights.

2. One easy fix is to run a more sophisticated resampling method, the low-variance resampler. In
this approach, which is depicted in Fig. 5, a single number r is drawn, and then particles are
selected at every 1/N units on the dartboard in our example. E↵ectively, the same sampler is
used, but the random numbers generated are r+i/N for all (positive and negative) i such that
r + i/N 2 [0, 1]. This has desirable properties: for instance, every particle with normalized
weight over 1/N is guaranteed to be selected at least once. Due to these properties and its
ease of implementation, it is always recommended that you implement this sampler rather
than the näıve approach. Note that this is also known as the “Stochastic Universal Sampler”,
in the genetic algorithms domain.

3. One easy, but undesirable approach is to just inject uniform samples. This should be treated
as a last resort as it is unprincipled.

5

Given: Particles equally distributed, no motion, no observation

What happens?

All particles migrate to the other room!!

(a) Two rooms with equal probability (b) The same filter, after repeated resampling

Figure 4: A problem with assuming the independence of the observations and using näıve sampling.
Without gaining any new information, the particle filter converges on one of the rooms.

the same observations; however, over the course of 100 timesteps, the filter has become certain that
it is in the right room.

What has happened? The filter is non-deterministic, and so when we pick the particles with
equal weight, it is unlikely that we will equal numbers from each room. As time progresses, this
selection process only becomes more imbalanced: with observations equally likely, if a state has very
few particles in its vicinity, in expection, it will have very few particles after resampling. Further,
once a state space loses its particles, there are no ways to regain them without motion happening.

Figure 5: Low Variance Resampling; in practice, this approach is preferred over the näıve approach.

Fixes: There are a number of ways to prevent situations like this from happening in practice.

1. One way is to detect situations in which you do not have enough new information to resam-
ple, and only run the resampling when your observation model has su�ciently new obser-
vation data to process. One statistic that might be useful for evaluting this is looking at
max({wi})/min({wi}), or looking at the entropy of the weights.

2. One easy fix is to run a more sophisticated resampling method, the low-variance resampler. In
this approach, which is depicted in Fig. 5, a single number r is drawn, and then particles are
selected at every 1/N units on the dartboard in our example. E↵ectively, the same sampler is
used, but the random numbers generated are r+i/N for all (positive and negative) i such that
r + i/N 2 [0, 1]. This has desirable properties: for instance, every particle with normalized
weight over 1/N is guaranteed to be selected at least once. Due to these properties and its
ease of implementation, it is always recommended that you implement this sampler rather
than the näıve approach. Note that this is also known as the “Stochastic Universal Sampler”,
in the genetic algorithms domain.

3. One easy, but undesirable approach is to just inject uniform samples. This should be treated
as a last resort as it is unprincipled.

5

Reason: Resampling increases variance

44

Resampling collapses particles, reduces diversity, increases
variance w.r.t true posterior

Particles

True posterior
resample resample

Fix 1: Choose when to resample

45

Key idea: If variance of weights low, don’t resample

We can implement this condition in various ways

1. All weights are equal - don’t resample

2. Entropy of weights high - don’t resample

3. Ratio of max to min weights low - don’t resample

Fix 2: Low variance sampling

46

4

w2

w3

w1wn

Wn-1

Resampling

w2

w3

w1wn

Wn-1

• Roulette wheel
• Binary search, n log n

• Stochastic universal sampling
• Systematic resampling
• Linear time complexity
• Easy to implement, low variance

1. Algorithm systematic_resampling(S,n):

2.
3. For Generate cdf
4.
5. Initialize threshold

6. For Draw samples …
7. While () Skip until next threshold reached
8.
9. Insert
10. Increment threshold

11. Return S�

Resampling Algorithm

1
1,' wcS =Æ=

ni !2=
i

ii wcc += -1

1],,0[~ 1
1 =- inUu

nj !1=

1-+= nuu jj

ij cu >

{ }><È= -1,'' nxSS i

1+= ii

Also called stochastic universal sampling

Particle Filters
)|(

)(
)()|(
)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

Fix 2: Low variance sampling

47

4

w2

w3

w1wn

Wn-1

Resampling

w2

w3

w1wn

Wn-1

• Roulette wheel
• Binary search, n log n

• Stochastic universal sampling
• Systematic resampling
• Linear time complexity
• Easy to implement, low variance

1. Algorithm systematic_resampling(S,n):

2.
3. For Generate cdf
4.
5. Initialize threshold

6. For Draw samples …
7. While () Skip until next threshold reached
8.
9. Insert
10. Increment threshold

11. Return S�

Resampling Algorithm

1
1,' wcS =Æ=

ni !2=
i

ii wcc += -1

1],,0[~ 1
1 =- inUu

nj !1=

1-+= nuu jj

ij cu >

{ }><È= -1,'' nxSS i

1+= ii

Also called stochastic universal sampling

Particle Filters
)|(

)(
)()|(
)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

4

w2

w3

w1wn

Wn-1

Resampling

w2

w3

w1wn

Wn-1

• Roulette wheel
• Binary search, n log n

• Stochastic universal sampling
• Systematic resampling
• Linear time complexity
• Easy to implement, low variance

1. Algorithm systematic_resampling(S,n):

2.
3. For Generate cdf
4.
5. Initialize threshold

6. For Draw samples …
7. While () Skip until next threshold reached
8.
9. Insert
10. Increment threshold

11. Return S�

Resampling Algorithm

1
1,' wcS =Æ=

ni !2=
i

ii wcc += -1

1],,0[~ 1
1 =- inUu

nj !1=

1-+= nuu jj

ij cu >

{ }><È= -1,'' nxSS i

1+= ii

Also called stochastic universal sampling

Particle Filters
)|(

)(
)()|(
)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

Assumption: weights sum to 1

Why does this work?

48

4

w2

w3

w1wn

Wn-1

Resampling

w2

w3

w1wn

Wn-1

• Roulette wheel
• Binary search, n log n

• Stochastic universal sampling
• Systematic resampling
• Linear time complexity
• Easy to implement, low variance

1. Algorithm systematic_resampling(S,n):

2.
3. For Generate cdf
4.
5. Initialize threshold

6. For Draw samples …
7. While () Skip until next threshold reached
8.
9. Insert
10. Increment threshold

11. Return S�

Resampling Algorithm

1
1,' wcS =Æ=

ni !2=
i

ii wcc += -1

1],,0[~ 1
1 =- inUu

nj !1=

1-+= nuu jj

ij cu >

{ }><È= -1,'' nxSS i

1+= ii

Also called stochastic universal sampling

Particle Filters
)|(

)(
)()|(
)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

1. What happens when all weights equal?

2. What happens if you have ONE large weight and many tiny weights?

w1 = 0.5, w2 = 0.5/1000, w3 = 0.5/1000, …. w1001 = 0.5/1000

Problem 2: Particle Starvation

49

No particles in the vicinity of the current state

Why? 
 
1. Unlucky set of samples

2. Committed to the wrong mode in a multi-modal scenario  
 
3. Bad set of measurements

Fix: Add new particles

50

Which distribution should be used to add new particles?

1. Uniform distribution

2. Biased around last good measurement

3. Directly from the sensor model

Fix: Add new particles

51

When should we add new samples?

Key Idea: As soon as importance weights become too small,
add more samples

1. Threshold the total sum of weights

2. Fancy estimator that checks rate of change.

Problem 3: Observation model too good!

52

Observation model is so peaky, that all particles die!

1. Sample from a better proposal distribution than motion model!

2. Squash the observation model (apply a power of 1/m to all
probabilities. m observations count as one)

3. Last resort: Smooth your observation model with a Gaussian
(you are pretending your observation model is worse than it is)

Fixes

Fix 1: Sample from a better proposal distribution

53

Key Idea: Sample and weigh particles correctly

Contact observation may kill ALL particles!

bel(xt) = ⌘P (zt|xt)

Z
P (xt|xt�1, ut) bel(xt�1)dxt�1

(Sample) (Reweigh)

Koval et al. 2017

Problem 4: How many samples is enough?

54

Example: We typically need more particles at the beginning of run

Key idea: KLD Sampling (Fox et al. 2002)

1. Partition the state-space into bins

2. When sampling, keep track of the number of bins

3. Stop sampling when you reach a statistical threshold that depends
on the number of bins

(If all samples fall in a small number of bins -> lower threshold)

Page 14!

KLD-sampling

KLD-sampling

55

KLD sampling

Closing: Myth busting Particle filters

56

1. Particle Filter = Sample from motion model, weight by observation

(sample from any good proposal distribution)

2. Particle filters are for localization

3. Particle filters are to do with samples

(any continuous space estimation problem)

(normalized importance sampling also uses samples but no resampling)

57

Estimate
state

Control
robot to

follow plan

Plan a
sequence of

motions

58

Bayes filter in a nutshell

bel(xt)

zt

ut

bel(xt)

Step 1: Prediction - push belief through dynamics given action

bel(xt) =

Z
P (xt|ut, xt�1)bel(xt�1)dxt�1

Step 2: Correction - apply Bayes rule given measurement

bel(xt) = ⌘P (zt|xt)bel(xt)

bel(xt�1)

Bayes filter is a powerful tool

59
Localization Mapping SLAM POMDP

