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From Bayes to Kalman

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury, Dieter Fox, and Matt Schmittle

Image credit: Ryan Morris



Logistics
• Get started on Lab 1 — more demanding than Lab 0! 
• Tip: check out Kinematic_Car_Model_Derivation.pdf 
• Recitation this Thursday at 9:00am in CSE1 022 (Gilwoo) 
• Talk of interest today: 

Dr. Christof Koch, President/Chief Scientist, Allen 
Institute for Brain Science 
7:00pm, D209 Health Sciences Building 
“Proust among the Machines” 
A future where the thinking capabilities of computers approach our own is coming into view. We feel ever 
more powerful machine-learning algorithms breathing down our necks. Rapid progress in coming decades 
will bring about machines with human-level intelligence capable of speech and reasoning, with a myriad of 
contributions to economics, politics and, inevitably, warcraft. But does this mean that such machines are 
conscious and experience the world, including their body? Will they possess feelings? I here discuss this 
question from the point of view of consciousness in us and related organisms. I distinguish between 
consciousness and intelligence and introduce the two dominant contemporary scientific theories of 
consciousness, Integrated Information Theory and Global Neuronal Workspace theory. While they both 
explain different aspects of the neuronal footprints of consciousness, they come to radically different 
conclusions with regard to the ability of digital computers to experience anything. This has important 
implications for our future.
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Bayes filter in a nutshell

bel(xt)

zt

ut

bel(xt)

Step 1: Prediction - push belief through dynamics given action

bel(xt) =

Z
P (xt|ut, xt�1)bel(xt�1)dxt�1

Step 2: Correction - apply Bayes rule given measurement

bel(xt) = ⌘P (zt|xt)bel(xt)

bel(xt�1)



bel(xt−1)

Suppose you are an alien…
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…beamed to earth …
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.. and you predict you landed at UW
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bel(xt) =

Z
P (xt|ut, xt�1)bel(xt�1)dxt�1

Prediction

bel(xt)

bel(xt)



.. and you predict you landed at UW

UW Earth

bel(xt)
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Eventually GPS measurement comes in…
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… and says you are in New York
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What should we set as our new belief?
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?

??

Depends on measurement uncertainty



Case A: Measurement uncertainty is “small”
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UW Earth

bel(xt)

Case A: Measurement uncertainty is “small”

bel(xt) = ⌘P (zt|xt)bel(xt)

Correction

bel(xt)

“Anywhere on Earth”

P (zt|xt)

New York

bel(xt)
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Case B: Uncertainty is “medium”

13



UW Earth

bel(xt)

P (zt|xt)

New York

Case B: Uncertainty is “medium”

bel(xt) = ⌘P (zt|xt)bel(xt)

Correction

bel(xt)

“Anywhere on Earth”bel(xt)
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Case C: Uncertainty is “large”



UW Earth

bel(xt)

Case C: Uncertainty is “large”

bel(xt) = ⌘P (zt|xt)bel(xt)

Correction

bel(xt)

“Original belief”

P (zt|xt)

New York
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bel(xt)



Recap of the scenario
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What should we set as our new belief?
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Measurement 
Uncertainty Updated belief

Small Anywhere on earth

Medium Anywhere on earth

Large
Original belief 
(UW, 500m)

If we were to do Bayes filtering in our head …
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The Kalman Filter

(Bayes filter with  
Gaussian beliefs and linear models)



Rudolf Emil Kálmán 
1960

Peter Swerling 
1959

Image credit: Ryan Morris

[1] R. Kalman, “A new approach to Linear Filtering and Prediction Problems”, Journal of Basic Engineering. 82: 
35–45. 
[2] P. Swerling, “First-Order Error Propagation in a Stagewise Smoothing Procedure for Satellite Observations”, 
Research Memoranda. RM-2329.

A bit of history…

20



21

1-D Kalman Filtering

P (xt) =
1p
2⇡�2

t

e
� (xt�µt)

2

2�2
t

bel(xt) = N (µt,�
2
t )

bel(xt) =

Belief is a Gaussian

xt+1 = xt + ut+1 +N (0,�2
u)

Motion model is linear with Gaussian noise

zt+1 = xt+1 +N (0,�2
z)

Observation model is linear with Gaussian noise



Step 0: Start with belief at time t
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bel(xt)

µt

bel(xt) = N (µt,�
2
t )



Execute control action
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bel(xt)

ut+1

bel(xt+1)
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bel(xt)

ut+1

bel(xt+1) =

Z 1

�1
P (xt+1|xt, ut+1) bel(xt) dxt

Gaussian GaussianGaussian

bel(xt+1)

Step 1: Prediction



Step 1: Prediction
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bel(xt+1) = N (µt + ut+1,�
2
t + �2

u)

= N (xt+1,�
2
t+1)

bel(xt)

xt+1

bel(xt+1)



Receive a measurement
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bel(xt)

zt+1

bel(xt+1) P (xt+1|zt+1)



Step 2: Correction
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bel(xt) P (xt+1|zt+1)bel(xt+1)

bel(xt+1) = ⌘ P (zt+1|xt+1) bel(xt+1)
GaussianGaussianGaussian

bel(xt+1)



Updated belief also a Gaussian!

28

P (xt+1|zt+1)bel(xt+1)

zt+1xt+1

bel(xt+1) = N
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Linearly interpolate prediction and measurement
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P (xt+1|zt+1)bel(xt+1)

zt+1xt+1
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Problem: Variance ALWAYS decreases!
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P (xt+1|zt+1)bel(xt+1)

bel(xt+1) = N
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… no matter what the measurement values are!



Back to example …
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What should we set as our new belief?
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Measurement 
Uncertainty

Our reasonable 
guess

Kalman 
Filter

Small Anywhere on earth
midpoint; small 

uncertainty

Medium Anywhere on earth
close to UW; small 

uncertainty

Large UW; 500m UW; 500m



What is broken ?!?
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Is the  
linear model 

broken?

Is the  
Gaussian  

assumption 
broken?

Is the  
Bayes 
filtering 
broken?
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• KF works best when         ,      comparable.  
•         may become unrealistically low (overconfidence) by: 

• taking long time steps 
• accumulating incomplete/noisy measurements 

• Gaussian update “ignores” measurements 
• Fix: inflate variance of model uncertainty, e.g. add noise!

Problem: Overconfidence

σt+1 σz

σt+1
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Going Deeper on Kalman 
Filters
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Aside: Gaussians

x ∼ N (µ,σ2)

p(x) =
1√
2πσ

e−
1
2

(x−µ)2

σ2

x ∼ N (µ,Σ)

p(x) =
1

(2π)d/2 |Σ|1/2
e−

1
2 (x−µ)ᵀΣ−1(x−µ)

σ−σ

µ

Σ

µ

Univariate

Multivariate
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Aside: Gaussians have nice properties

x ∼ N (µ,σ2)

y = ax+ b
y ∼ N

(
aµ+ b, a2σ2

)
=⇒}

x1 ∼ N (µ1,σ
2
1)

x2 ∼ N (µ2,σ
2
2)

=⇒ p(x1)p(x2) ∼ N
(

σ2
2

σ2
1 + σ2

2

µ1 +
σ2
1

σ2
1 + σ2

2

µ2,
1

σ−2
1 + σ−2

2

)}
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Aside: Gaussians have nice properties

=⇒ p(x1)p(x2)
x1 ∼ N (µ1,Σ1)

x2 ∼ N (µ2,Σ2)
∼ N

(
Σ2

Σ1 +Σ2
µ1 +

Σ1

Σ1 +Σ2
µ2,

1

Σ−1
1 +Σ−1

2

)}

y = Ax+B
y ∼ N (Aµ+B,AΣAᵀ)}=⇒

As long as we start from a Gaussian and perform only linear 
transformations, we remain in the Gaussian world.

x ∼ N (µ,Σ)



Kalman Filter: Motion & Sensor Models

xt = Atxt−1 +Btut + ϵt

zt = Ctxt + δt

Dynamics

Measurement
ϵt ∼ N (0, Rt)

δt ∼ N (0, Qt)

Discrete-time Linear Systems with Gaussian noise

n-vector

nxn

m-vector

nxm n-vector
Covariance nxn

k-vector

kxn

Covariance kxkk-vector
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2. Linear Dynamics

3.  Linear Measurement Model

1.  Initial belief  is a gaussian distribution

Kalman Filter Assumptions

xt = Atxt−1 +Btut + ϵt

zt = Ctxt + δt

xt ∼ N (µt,Σt)
Σ

µ
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*Slide by Dieter Fox

Kalman Gain: degree at 
which observation factors 

into belief 

“Innovation”

Sec. 3.2.4

The Kalman Filter Algorithm
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● Highly efficient: O(k2.376+ n2)

● Optimal for linear Gaussian systems (minimizes variance)

● Requires linear motion and observation model

Summary

● Overconfidence
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Extended Kalman Filter (EKF) 

● Linearize Motion/Sensor models 
● 1st order Taylor Series expansion 
● Sec. 3.3 of Probabilistic Robotics

Plot Twist: Most Robotic Systems are Nonlinear…
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Coming up next…

Particle Filters


