Probabilistic Models II

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

Logistics

- Lab0 due tonight at midnight
- Lab1 to be released today; due in 2 weeks
- No Class/OH Monday (MLK day)
- Probability recitation next Thursday (9am, CSE1 022)
- Exciting guest lectures planned
 - ◆ Prof. Dieter Fox
 - ◆ Prof. Sidd Srinivasa
 - ◆ Dr. Tapo Bhattacharjee
 - → Demo by Starship Robotics

Probabilistic Models in Localization

Measurement model

Key Idea: Simple model + Stochasticity

Simple Model

$$\dot{x} = V \cos(\theta)$$

$$\dot{y} = V \sin(\theta)$$

$$\dot{\theta} = \omega = \frac{V \tan \delta}{L}$$

Why is it simple?

- -Simplified physics
- -Assumes perfect actuation
- -Assumes perfect knowledge of design parameters

Accounting for Stochasticity

$$\dot{x} = f(u, x) + \text{Noise}$$

Probability density function

Samples from the pdf

Probabilistic models in localization

Motion model

$$P(x_t|\mathbf{u_t}, x_{t-1})$$

Measurement Model

sensor reading state map

LiDAR

- $\mathbf{Light} + \mathbf{RaDAR}$
- Light Detection And Ranging
- A distance sensor
- Everywhere, self-driving cars ... your racecar
- Edward Hutchinson Synge (1930)

How does a LiDAR work?

- Source emits photons
- Photons bounce on objects
- Return to receiver
- Measure time between emission-reception
- Multiply by speed of light
- Get distance measurement

$$z_t = c \cdot \Delta t$$

How does a LiDAR work?

Working with Lasers in the Real World

Some Pros & Cons

- Fast (~1M photons per second)
- Accurate
- Does not require external light
- Works remarkably well in the real world
- High resolution images
- Photons pass through glass
- Sensitive to weather conditions (rain, snow, ...)
- High-res LiDAR might be expensive

Three Questions You Should Ask

1. Why is the model probabilistic?

2. What defines a good model?

3. What model should I use for my robot?

Why is the Measurement Model Probabilistic?

Several sources of stochasticity

Three Questions You Should Ask

1. Why is the model probabilistic?

2. What defines a good model?

3. What model should I use for my robot?

What Defines a Good Model?

Good news: LiDAR is very precise!

A handful of measurements is enough to localize robot

However, has distinct modes of failures

Problem: Overconfidence in measurement can be catastrophic

Solution: Anticipate specific types of failures and add stochasticity accordingly.

Three questions you should ask

1. Why is the model probabilistic?

2. What defines a good model?

3. What model should I use for my robot?

Measurement Model for LiDAR

Beam-based Model for LiDAR

Assume individual beams are conditionally independent given map

$$P(z_t|x_t,m) = \prod_{\substack{laser \ scan}}^{K} P(z_t^k|x_t,m)$$

When is this assumption invalid?

Example: Small α + Large L =Beams correlated

Measurement Model for Single Beam

$$P(z_t^k|x_t,m)$$
distance state map

Typical Sources of Stochasticity

1. Simple measurement noise in distance value

2. Presence of unexpected objects

3. Sensor failures

4. Randomness

Factor 1: Simple Measurement Noise

$$p_{\text{hit}}(z_t^k \mid x_t, m) = \begin{cases} \eta \mathcal{N}(z_t^k; z_t^{k*}, \sigma_{\text{hit}}^2) & \text{if } 0 \leq z_t^k \leq z_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

Factor 2: Unexpected Objects

$$p_{\text{short}}(z_t^k \mid x_t, m) = \begin{cases} \eta \lambda_{\text{short}} e^{-\lambda_{\text{short}} z_t^k} & \text{if } 0 \le z_t^k \le z_t^{k*} \\ 0 & \text{otherwise} \end{cases}$$

Factor 3: Sensor Failures

$$p_{\max}(z_t^k \mid x_t, m) = I(z = z_{\max}) = \begin{cases} 1 & \text{if } z = z_{\max} \\ 0 & \text{otherwise} \end{cases}$$

Factor 4: Random Measurements

$$p_{\mathrm{rand}}(z_t^k \mid x_t, m) = \begin{cases} \frac{1}{z_{\mathrm{max}}} & \text{if } 0 \leq z_t^k < z_{\mathrm{max}} \\ 0 & \text{otherwise} \end{cases}$$

Combined Measurement Model

Weights summing up to 1

$$p(z_t^k \mid x_t, m) = \begin{pmatrix} z_{\text{hit}} \\ z_{\text{short}} \\ z_{\text{max}} \\ z_{\text{rand}} \end{pmatrix}^T \cdot \begin{pmatrix} p_{\text{hit}}(z_t^k \mid x_t, m) \\ p_{\text{short}}(z_t^k \mid x_t, m) \\ p_{\text{max}}(z_t^k \mid x_t, m) \\ p_{\text{rand}}(z_t^k \mid x_t, m) \end{pmatrix}$$

Measurement Algorithm

Input: State of the robot x, Map m, True laser scan z

Output: Probability p

- 1. Use x to figure out the pose of the sensor
- 2. Ray-cast (shoot out rays) from sensor to the map
- 3. Get back a simulated laser-scan z*
- 4. Go over every ray in z* and compare with z. Compute combined likelihood based on how much they match / mismatch.
- 5. Multiply all probabilities to get p

Question: How do we Tune Parameters?

In theory: Collect lots of data and optimize parameters to maximize data likelihood

Example:
Place a robot
300 cm from
a wall and
collect lots of
data

Number of datapoint

Question: How do we Tune Parameters?

In practice: Simulate a scan and plot the likelihood from different positions

Actual scan

Likelihood at various locations

Problem: Overconfidence

$$P(z_t|x_t, m) = \prod_{i=1}^{K} P(z_t^k|x_t, m)$$

Independence assumption may result in repetition of mistakes