Bayes filtering : A deeper dive

Instructor: Chris Mavrogiannis

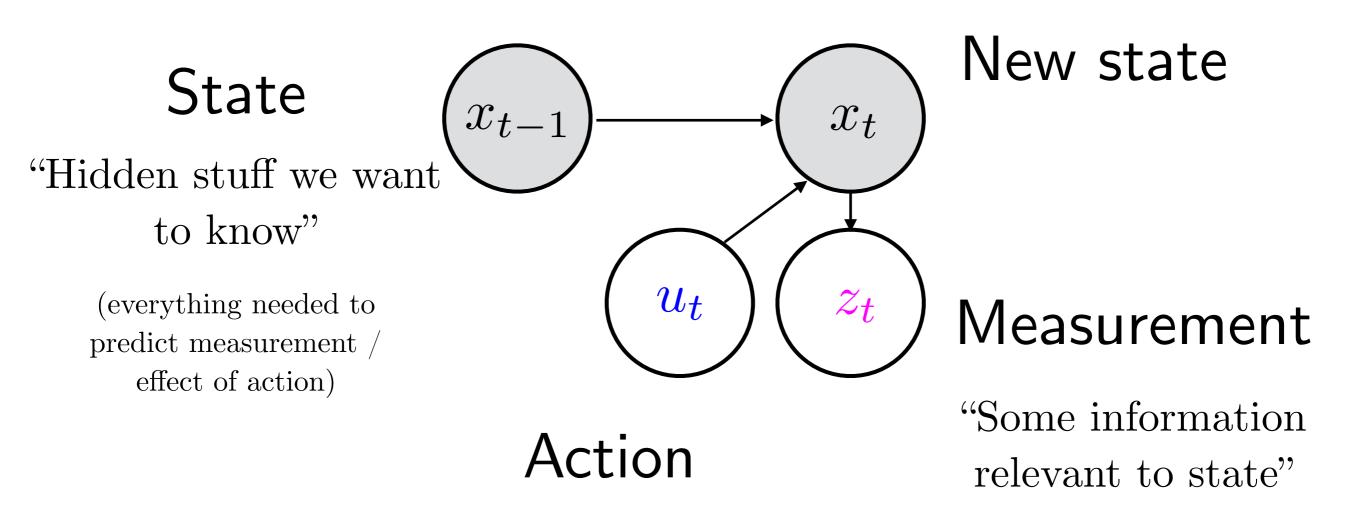
TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury

Logistics

- Lab/CSE1 access
- Registering for class
- Team formation
- Probability background
- Lab0 deadline coming up!

Recap: Key players in a Bayes filter



"Affects how state evolves"

З

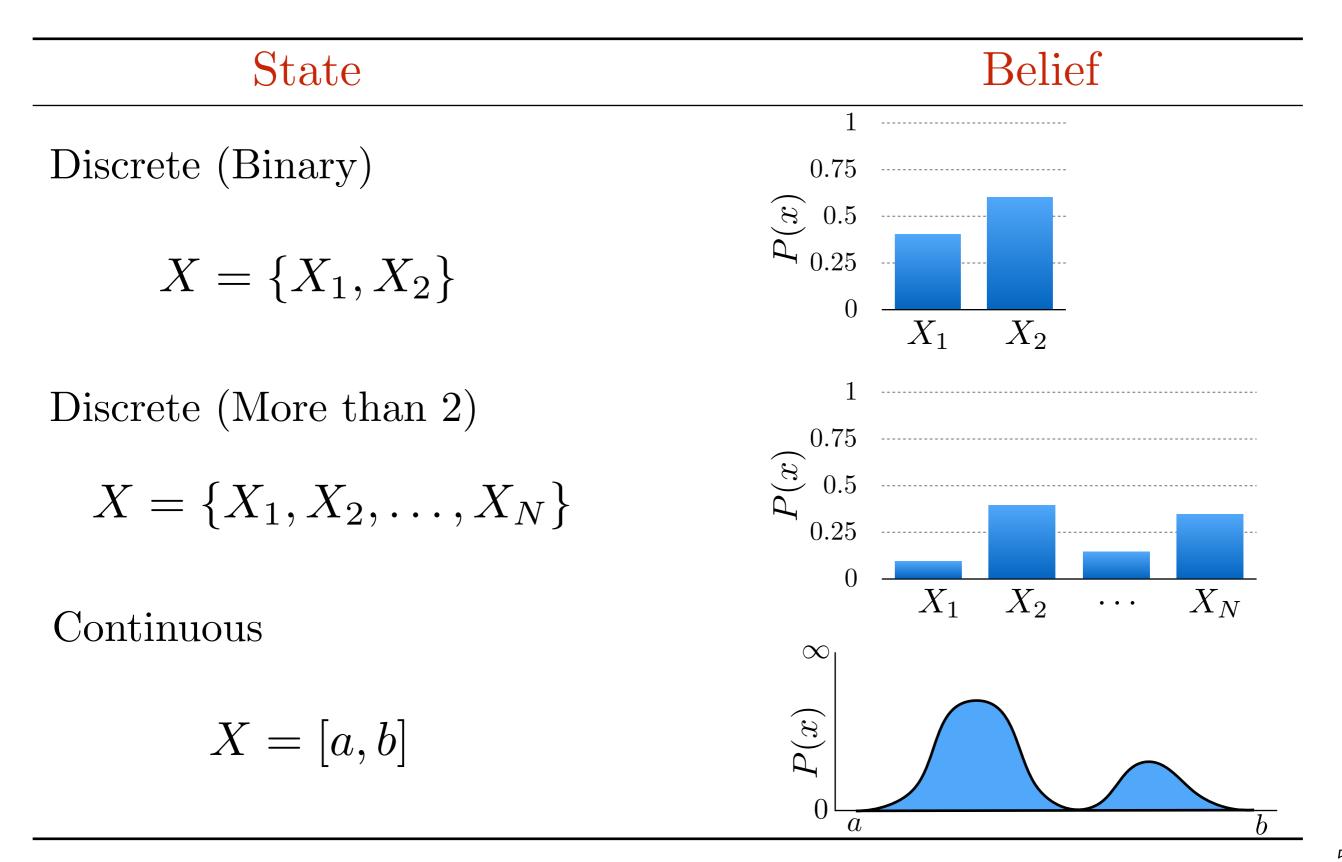
Today's objective

1. Examples of **nonparametric** Bayes filtering

2. Work through derivation

3. Question assumptions along the way

States and beliefs



API of a general Bayes filter

Parameters of the Bayes filter:

Transition
model:
$$P(x_t | x_{t-1}, u_t)$$
 Measurement $P(z_t | x_t)$
model: $P(z_t | x_t)$

Input to the filter:

Old belief: $bel(x_{t-1})$ Action: u_t Measurement: z_t

Output of the filter:

Updated belief: $bel(x_t)$

2 simple steps:

1. Predict belief after action

2. Correct belief after measurement

Discrete

There are two states that we are tracking

 $X = \{ Open, Closed \}$

Our robot can do two actions

 $A = \{ Pull, Leave \}$

We define a transition model (note: our robot is clumsy)

$$P(x_t | x_{t-1}, \boldsymbol{u_t})$$

P(O | C, P) = 0.7 P(C | C, P) = 0.3

..... and so on

There are two states that we are tracking

 $X = \{ Open, Closed \}$

Our robot can do two actions

 $A = \{ Pull, Leave \}$

Rewrite the transition model as a matrix

$$\begin{bmatrix} P(x_t = \mathbf{O} | x_{t-1} = \mathbf{O}, u_t) & P(x_t = \mathbf{O} | x_{t-1} = \mathbf{C}, u_t) \\ P(x_t = \mathbf{C} | x_{t-1} = \mathbf{O}, u_t) & P(x_t = \mathbf{C} | x_{t-1} = \mathbf{C}, u_t) \end{bmatrix}$$
$$(.|., \mathbf{P}) = \begin{bmatrix} 0.8 & 0.7 \\ 0.2 & 0.3 \end{bmatrix} \quad P(.|., \mathbf{L}) = \begin{bmatrix} 0.5 & 0 \\ 0.5 & 1 \end{bmatrix}$$

There are two states that we are tracking

 $X = \{ Open, Closed \}$

Our robot can do two actions

 $A = \{ Pull, Leave \}$

We have a door detector sensor. The sensor is kinda buggy!

 $Z = \{ Open, Closed \}$

 $P(z_t|x_t)$

.... let's use our matrix format

There are two states that we are tracking

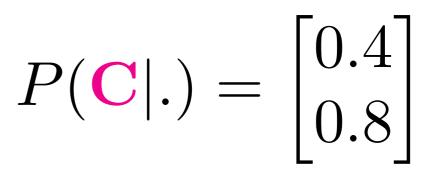
 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$ $Z = \{ Open, Closed \}$

Rewrite the measurement model as a vector

 $\begin{bmatrix} P(\boldsymbol{z_t}|\mathbf{O}) \\ P(\boldsymbol{z_t}|\mathbf{C}) \end{bmatrix}$

$$P(\mathbf{O}|.) = \begin{bmatrix} 0.6\\0.2 \end{bmatrix}$$



There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$ $Z = \{ Open, Closed \}$

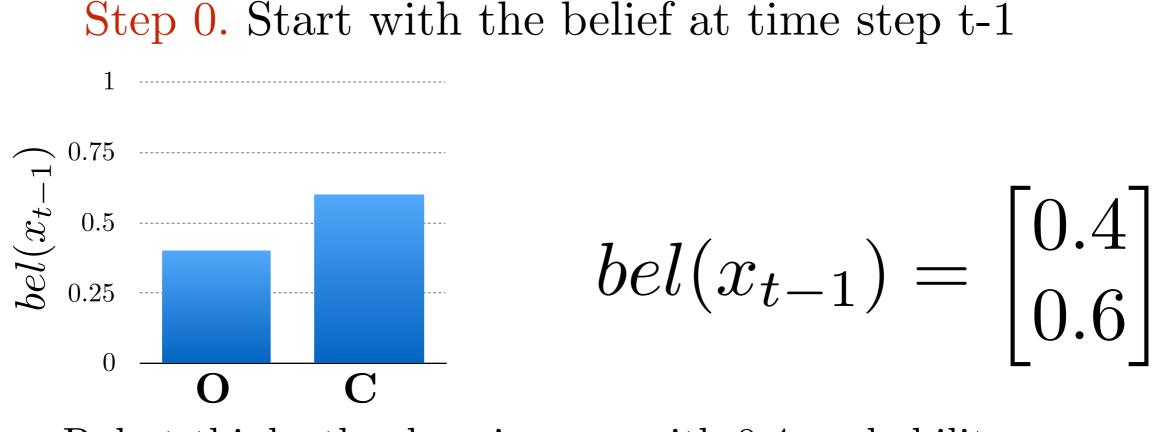
Let's get ready to Bayes filter!

There are two states that we are tracking

 $X = \{ \text{ Open, Closed} \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$



Robot thinks the door is open with 0.4 probability

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

Robot executes action Pull

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

Step 1: Prediction - push belief through dynamics given action

$$\overline{bel}(x_t) = \sum_{x_{t-1}} P(x_t | x_{t-1}, \boldsymbol{u_t}) bel(x_{t-1})$$

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

Step 1: Prediction - push belief through dynamics given action

$$\begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix} = \begin{bmatrix} P(x_t = \mathbf{O} | x_{t-1} = \mathbf{O}, \mathbf{u}_t) & P(x_t = \mathbf{O} | x_{t-1} = \mathbf{C}, \mathbf{u}_t) \\ P(x_t = \mathbf{C} | x_{t-1} = \mathbf{O}, \mathbf{u}_t) & P(x_t = \mathbf{C} | x_{t-1} = \mathbf{C}, \mathbf{u}_t) \end{bmatrix} \begin{bmatrix} P(x_{t-1} = \mathbf{O}) \\ P(x_{t-1} = \mathbf{C}) \end{bmatrix}$$
$$\overline{bel}(x_t)$$

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

Step 1: Prediction - push belief through dynamics given action

$$\begin{bmatrix} 0.74\\ 0.26 \end{bmatrix} = \begin{bmatrix} 0.8 & 0.7\\ 0.2 & 0.3 \end{bmatrix} \begin{bmatrix} 0.4\\ 0.6 \end{bmatrix}$$
$$\overline{bel}(x_t) \qquad P(.|., \mathbf{P}) \quad bel(x_{t-1})$$

Robot thinks the door is open with 0.74 probability

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

Robot receives measurement Closed

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

Step 2: Correction - apply Bayes rule given measurement

$$bel(x_t) = \eta P(z_t | x_t) \overline{bel}(x_t)$$

(normalize)

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

$$\begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix} = \boldsymbol{\eta} \begin{bmatrix} P(z_t | \mathbf{O}) \\ P(z_t | \mathbf{C}) \end{bmatrix} * \begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix}$$

bel(x_t)
$$P(\mathbf{C}|.) \qquad \overline{bel}(x_t)$$

element vise

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

$$\begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix} = \boldsymbol{\gamma} \begin{bmatrix} 0.4 \\ 0.8 \end{bmatrix} \begin{bmatrix} 0.74 \\ 0.26 \end{bmatrix}$$
$$bel(x_t) \qquad \overline{bel}(x_t)$$

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

$$\begin{bmatrix} P(x_t = \mathbf{O}) \\ P(x_t = \mathbf{C}) \end{bmatrix} = \boldsymbol{\eta} \begin{bmatrix} 0.4 \\ 0.8 \end{bmatrix} \begin{bmatrix} 0.74 \\ 0.26 \end{bmatrix} = \eta \begin{bmatrix} 0.296 \\ 0.208 \end{bmatrix} = \begin{bmatrix} 0.58 \\ 0.42 \end{bmatrix}$$
$$\underline{bel(x_t)}$$

There are two states that we are tracking

 $X = \{ Open, Closed \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ Open, Closed \}$

Step 2: Correction - apply Bayes rule given measurement

$$bel(x_t) = \begin{bmatrix} 0.58\\ 0.42 \end{bmatrix}$$

Robot thinks the door is open with 0.58 probability

There are two states that we are tracking

 $X = \{ \text{ Open, Closed} \}$

 $A = \{ Pull, Leave \}$

 $Z = \{ \text{ Open, Closed} \}$

Let's summarize

Robot thought the door is open with 0.4 probability

Robot executed **Pull** action. Robot thinks the door is open with 0.74 probability

Robot got Closed measurement. Robot thinks the door is open with 0.58 probability

Continuous

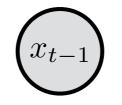
Bayes filter in a nutshell

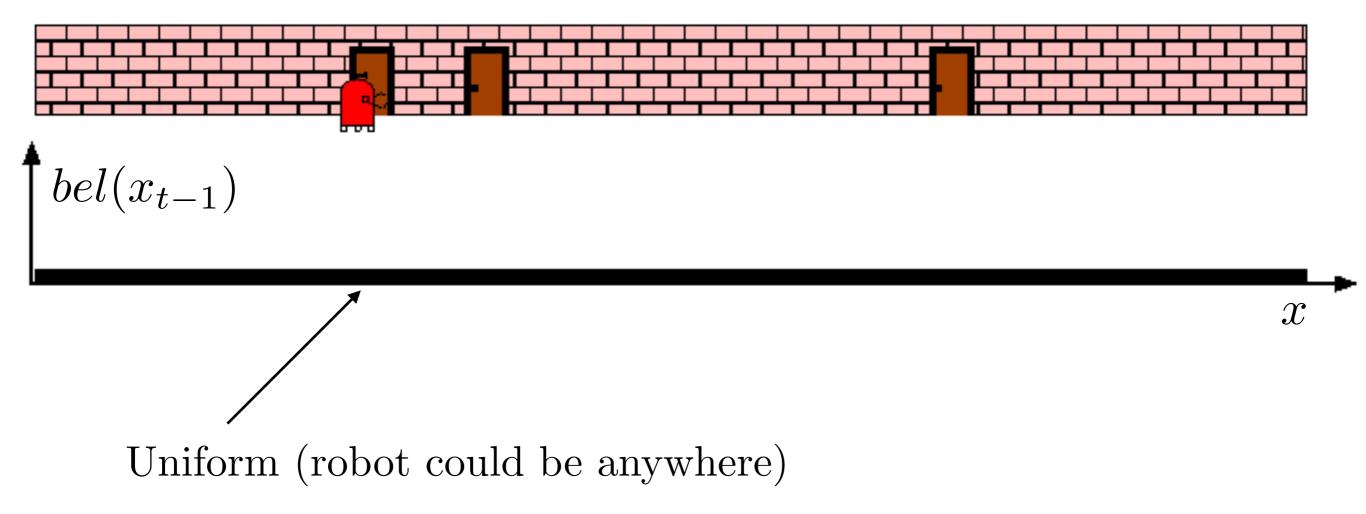
Step 0. Start with the belief at time step t-1 $bel(x_{t-1})$

Step 1: Prediction - push belief through dynamics given action $\overline{bel}(x_t) = \int P(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$

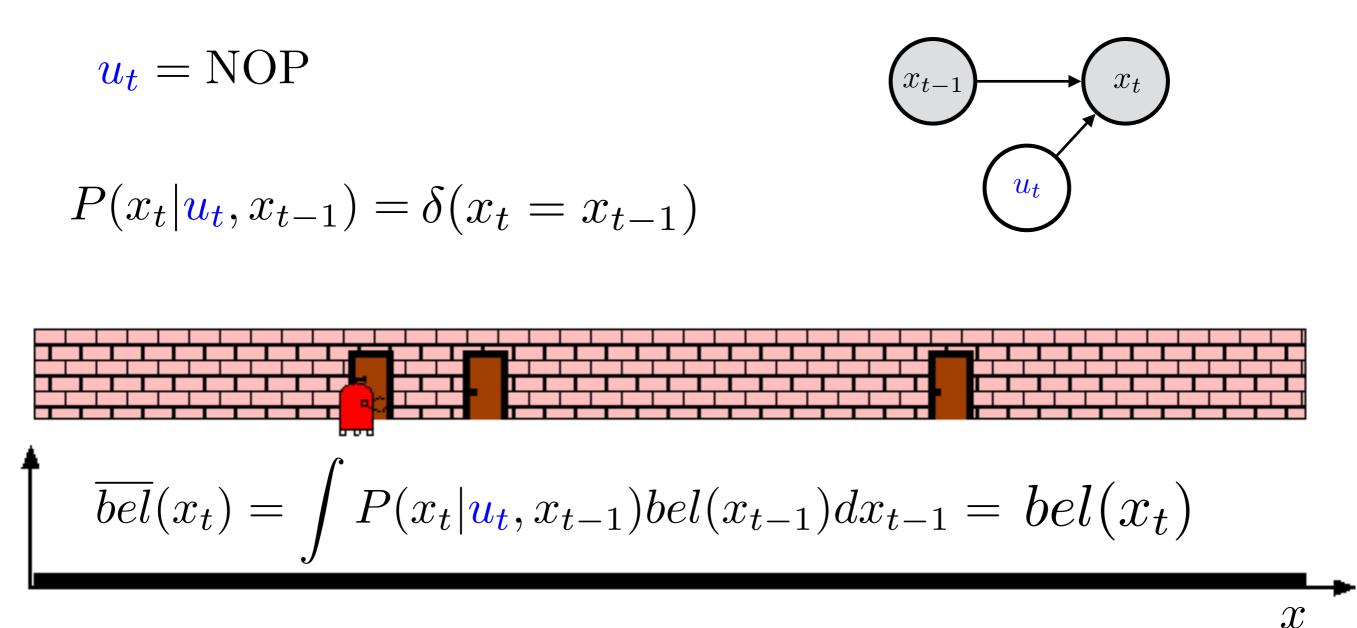
$$bel(x_t) = \eta P(z_t | x_t) \overline{bel}(x_t)$$

Robot lost in a 1-D hallway





Action at time t: NOP

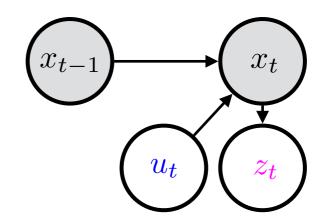


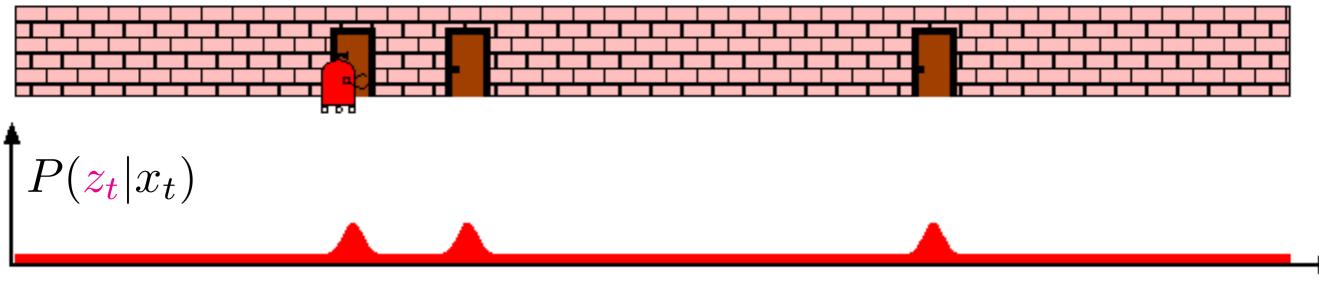
NOP action implies belief remains the same! (still uniform — no idea where I am)

Measurement at time t: "Door"

 $z_t = \text{Door}$

 $P(\mathbf{z_t}|\mathbf{x_t}) = \mathcal{N}(\text{door centre}, 0.75m)$

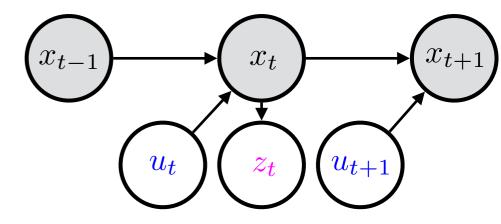




Action at time t+1: Move 3m right

 $u_{t+1} = 3m$ right

 $P(x_{t+1}|u_{t+1}, x_t) = \mathcal{N}(x_t + u_{t+1}, 0.25m)$



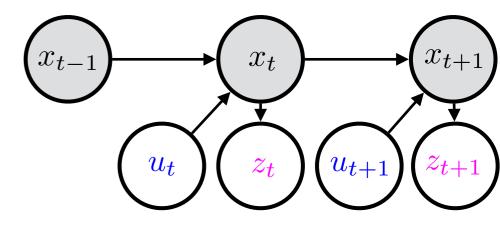


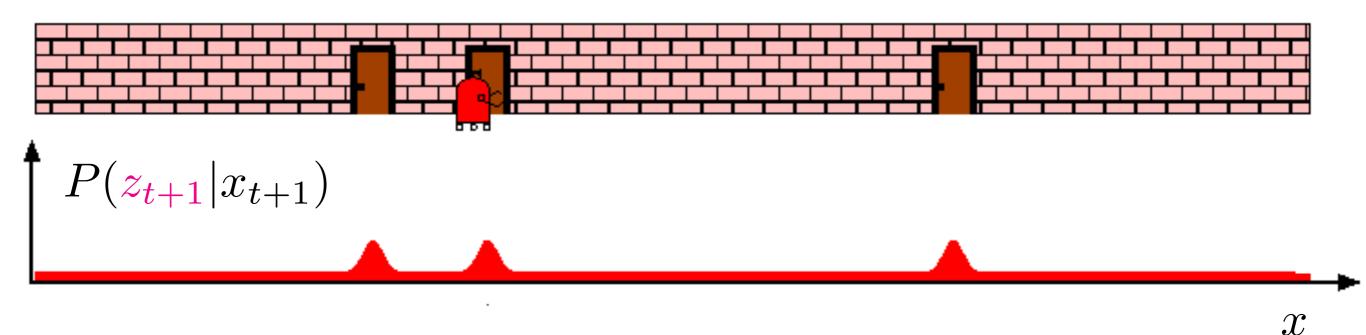
 \mathcal{X}

Measurement at time t+1: "Door"

 $z_{t+1} = \text{Door}$

 $P(z_{t+1}|x_{t+1}) = \mathcal{N}(\text{door centre}, 0.75m)$





Exercise: Discrete bayes filter

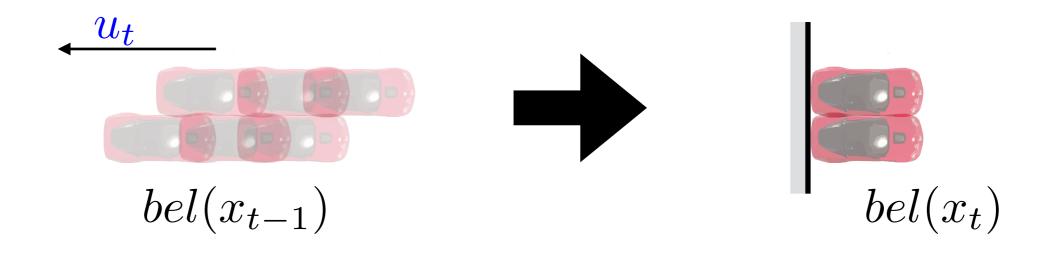
Step 1: Prediction - push belief through dynamics given action

$$\begin{bmatrix} P(\overline{x}_t = 1) \\ \vdots \\ P(\overline{x}_t = n) \end{bmatrix} = \begin{bmatrix} P(x_t = 1 | u_t, x_{t-1} = 1) & \cdots & P(x_t = 1 | u_t, x_{t-1} = n) \\ \vdots \\ P(x_t = n) \end{bmatrix} = \begin{bmatrix} P(x_t = 1 | u_t, x_{t-1} = 1) & \cdots & P(x_t = n | u_t, x_{t-1} = n) \end{bmatrix} \begin{bmatrix} P(x_{t-1} = 1) \\ \vdots \\ P(x_{t-1} = n) \end{bmatrix}$$

$$\begin{bmatrix} P(x_t = 1) \\ P(x_t = 2) \\ \vdots \\ P(x_t = n) \end{bmatrix} = \begin{bmatrix} P(z_t | x_t = 1) & 0 & \cdots & 0 \\ 0 & P(z_t | x_t = 2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P(z_t | x_t = n) \end{bmatrix} \begin{bmatrix} P(x_{t-1} = 1) \\ P(x_{t-1} = 2) \\ \vdots \\ P(x_{t-1} = n) \end{bmatrix}$$

Questions

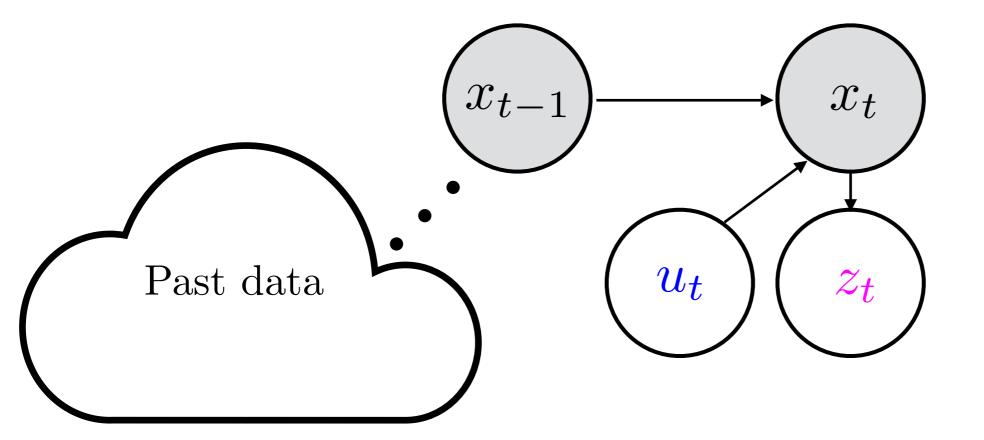
Do actions always increase uncertainty?



Do measurements always reduce uncertainty?

(What happens when you reach into your bag and don't find your keys? Example of a negative measurement)

Bayes derivation



Bayes derivation

$$bel(x_t) = P(x_t | z_{1:t-1}, u_{1:t-1}, z_t, u_t)$$
 Incorporate
new action, measurement

$$(Bayes) = \eta P(z_t | x_t, z_{1:t-1}, u_{1:t-1}, u_t) P(x_t | z_{1:t-1}, u_{1:t-1}, u_t)$$

$$(Markov) = \eta P(z_t | x_t) P(x_t | z_{1:t-1}, u_{1:t-1}, u_t)$$

$$= \eta P(z_t | x_t) \overline{bel}(x_t)$$

Bayes derivation

$$bel(x_t) = P(x_t | z_{1:t-1}, u_{1:t-1}, u_t)$$

$$(Total prob.) = \int P(x_t | x_{t-1}, \underline{z_{1:t-1}, u_{1:t-1}}, u_t) P(x_{t-1} | z_{1:t-1}, u_{1:t-1}, u_t) dx_{t-1}$$

Get rid of this

$$(Markov) = \int P(x_t | x_{t-1}, u_t) P(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

$$(Cond. indep) = \int P(x_t | x_{t-1}, u_t) P(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

Previous Belief!

$$= \int P(x_t | x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1}$$

After thoughts ...

Question: When is cond. independence not true?

$$= \int P(x_t | x_{t-1}, \mathbf{u}_t) P(x_{t-1} | z_{1:t-1}, u_{1:t-1}, \mathbf{u}_t) dx_{t-1}$$

(Cond.
indep) =
$$\int P(x_t | x_{t-1}, u_t) P(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

i.e. when can you tell something about the past based on future data?

E.g. Motion capture data of a human. Human knows the true state and generates control actions accordingly.

Bayes filter in a single line 1 $P(z_t|x_t)$

$$P(x_t | x_{t-1}, \boldsymbol{u_t})$$

Motion model

Measurement model

$$bel(x_t) = \eta P(z_t | x_t) \int P(x_t | x_{t-1}, \boldsymbol{u_t}) bel(x_{t-1}) dx_{t-1}$$

Note that order does not really matter we can flip measurement and control.

Bayes Filter Pseudocode (Asynchronous)

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- 1. Algorithm **Bayes_filter**(*Bel(x),d*):
- 2. *h*=0
- 3. If *d* is a perceptual data item *z* then
- 4. For all x do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$

$$\theta. \qquad \eta = \eta + Bel'(x)$$

7. For all x do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

9. Else if *d* is an action data item *u* then

1.
$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

12. Return Bel'(x)

Slide by Prof. Dieter Fox

Practical Issues

1. Bayes filter can be overconfident

Once belief collapses to 0/1 only motion model can shake it loose

2. Too many measurements will collapse belief

3. Correlated incorrect measurements are dangerous

Bayes filter is a powerful tool

Localization

Mapping

SLAM

This Week

Motion Models (Wed) Measurement Models (Fri)