CSE 478: Autonomous Robotics

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
Logistics

• Submit knowledge survey ASAP

• Form a 3 person team by today, Wednesday 1/8 (send a private note to instructors in Piazza)

• Assignment 0 is released and due on 1/17.
 • Familiarize yourself with ROS

• Come to recitation on Thursday, get your robot and start working on Assignment 0.
Estimate state

Plan a sequence of motions

Control robot to follow plan
Autonomous Cars
Autonomous flying vehicles
Mission: Take-off to landing
Takeoff
(Respect power constraints)

Enroute
(Avoid sensed obstacles)

Touchdown
(Plan to multiple sites)
Today’s objective

1. Learn how to architect a mobile robotic system

2. Step through a set of fundamental lessons that shape robot system / algorithm design
Task: A contract the robot has to satisfy

Given:

- Start (latitude, longitude), Goal (latitude, longitude)
- List of no-fly-zones (unsafe air space)
- Coarse terrain map of continental USA
- Sensors - GPS, Laser, etc

Objective:

- Minimize time it takes to complete mission

Constraint:

- Don’t come close to obstacles / don’t enter no-fly-zones
- Don’t exceed limits of the vehicle (flying upside down)
How do we tractably solve the task?
Begin with a blank slate
Robot interacts with environment

Sensors
- Laser
- Camera
- GPS

Actuators
- Stick
- Lever
- Pedals
Robot interacts with environment

Sensors
- Laser
- Camera
- GPS

Actuators
- Stick
- Lever
- Pedals
Lesson 0: Look at one piece at a time

Q1: Assume we know everything about the world. What commands should we send to the actuator?

Q2: How do we use raw sensor data to update what we know about the world?
Q1: Assume we know everything about the world.

What commands should we send to the actuator?

Q2: How do we use raw sensor data to update what we know about the world?
Robot interacts with environment
What is the world model?

List of everything we need to know to accomplish the task

- Where is the robot in the world? What is its state?
- What are the obstacles in the world?
- What type are the obstacles (radio towers, trees)?
- What are the no-fly-zones?
- Are there other aircrafts?
- What is the wind, temperature, etc?
What is planning?

Planning is an optimization problem in which...

we search over a sequence of actions...

towards minimizing a cost function (e.g., time)...

using a model of the robot to predict where it will go...

while making sure we are not violating constraints (e.g. crash).
How do we get a **model** of the helicopter?

Problem: Model is very complicated! Intractable to plan with it.
Insight

“All models are wrong, but some are useful”
-George Box
Lesson 1: Plan with simple models

Use domain knowledge to simplify model

Complex aerodynamical model

Flying unicycle at high speeds!

Different models at different flight regimes
Sensors
Laser
Camera
GPS

Actuators
Stick
Lever
Pedals

Robot interacts with environment

World Model

PLAN

Helicopter Models
What resolution should we plan at?

Example mission:

Fly from Phoenix to Flagstaff as fast as possible (200 km)

Avoid mountains, no-fly-zones, radio towers, wires, bad weather

Pass through narrow gaps

Problem:

Take forever to plan at high resolution ALL the way to goal
Lesson 2: Plan at multiple resolutions

Global planner

Plan at coarse (1km) resolution, compute entire route from start to goal, avoid large obstacles, no-fly-zones etc

(only consider factors that significantly affect mission time)

Local planner

Plan at high (10 m) resolution, follow the global route, avoid all obstacles, produce smooth dynamically feasible paths
Robot interacts with environment

Sensors
- Laser
- Camera
- GPS

Actuators
- Stick
- Lever
- Pedals

Helicopter Models

World Model

Global Planning

Local Planning
Lesson 3: Open loop planning is not enough

Robot will go “off” the plan for many reasons (disturbance, model errors, actuation errors, ...)

A **controller** immediately corrects for any tracking error and gets the robot back on the path
Robot interacts with environment

Sensors
- Laser
- Camera
- GPS

Global Planning

Local Planning

Control

Actuators
- Stick
- Pedals
- Lever

World Model

Helicopter Models
Q1: Assume we know everything about the world. What commands should we send to the actuator?

Q2: How do we use raw sensor data to update what we know about the world?
What is the world model?

List of everything we need to know to accomplish the task

- Where is the robot in the world? What is it’s state?
 - GPS

- What are the obstacles in the world?
 - Laser

- What type are the obstacles (radio towers, trees)?
 - Camera

- What are the no-fly-zones?
 - Radio

- Are there other aircrafts?
 - Radio

- What is the wind, temperature, etc?
 - Pitot tube, barometer, etc
Can we simply “fuse” laser readings to map the world?

(courtesy Chamberlain et al.)
Flying in a snow storm
Flying in a snow storm
Lesson 4: Use probabilistic models of the sensor

Laser reflected by snow!

Correctly fused laser data using probabilistic models
Sensors

Actuators

Robot interacts with environment

State Estimation

World Model

Global Planning

Local Planning

Helicopter Models

Control

Actuators

Laser
Camera
GPS

Stick
Lever
Pedals
What is state estimation?

Given raw sensor data, use probabilistic models to estimate world model

\[P(\text{world model} \mid \text{data}) \]
Robot interacts with environment

Sensors
- Laser
- Camera
- GPS

State Estimation

World Model

Helicopter Models

Global Planning

Local Planning

Control

Actuators
- Stick
- Lever
- Pedals
Lesson 5: Guarantee safety

What prevents the system from flying at high speeds to a dead end?

Safety planner that guarantees the robot can stay safe
Sensors

Actuators

Robot interacts with environment

World Model

Global Planning

Local Planning

Safety Planning

Control

Helicopter Models

State Estimation

Sensors

- Laser
- Camera
- GPS

Actuators

- Stick
- Pedals
- Lever
Today’s objective

1. Learn how to architect a mobile robotic system

2. Step through a set of fundamental lessons that shape robot system / algorithm design
Anatomy of a self-driving car
BOSS: CMU’s winning entry to DARPA challenge

(2007)
Tartan Racing: A Multi-Modal Approach to the DARPA Urban Challenge

April 13, 2007

Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, John Dolan, Dave Duggins, Dave Ferguson, Tugrul Galatali, Chris Geyer, Michele Gittleman, Sam Harbaugh, Martial Hebert, Tom Howard, Alonzo Kelly, David Kohanbash, Maxim Likhachev, Nick Miller, Kevin Peterson, Raj Rajkumar, Paul Rybski, Bryan Salesky, Sebastian Scherer, Young Woo-Seo, Reid Simmons, Sanjiv Singh, Jarrod Snider, Anthony Stentz, William “Red” Whittaker, and Jason Ziglar

Carnegie Mellon University

Hong Bae, Bakhtiar Litkouhi, Jim Nickolaou, Varsha Sadekar, and Shuqing Zeng

General Motors

Joshua Struble and Michael Taylor

Caterpillar

Michael Darms

Continental AG

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1967&context=robotics
BOSS in action!

1. World Model
2. Car Model
3. State Estimation
4. Global Planner
5. Local Planner
6. Safety Planner
7. Control
Additional challenges: Predict human drivers
Looking ahead...
Robot interacts with environment

Sensors

State Estimation

World Model

Global Planning

Local Planning

Safety Planning

Control

Actuators

Helicopter Models

Lidar

Camera

GPS

Stick

Lever

Pedals
Estimate state

Plan a sequence of motions

Control robot to follow plan

Weeks 2-4

Weeks 7-8

Weeks 5-6
Challenge for indoor robots: **Localization**
Challenge for indoor robots: **Localization**
Next lecture: Introduction to State Estimation