Sampling-Based Motion
Planning: From PRMs to
RRTs

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury, Steve Lavalle, Peter Allen, Pieter Abbeel

Logistics

e Lab 3

e Deadline Friday March 6th

e Demo Thursday March 5th (recitation slots)

o Extra Credit important for final project
e Final Project

e Out today!

e Demo Thursday March 12th

e Short writeup due Monday 16th
e Special Topics

Probabilistic Roadmap Path Planning

e Eixplicit Geometry based planners impractical in high
dimensional spaces.

e [ixact solutions with complex geometries provably
exponential

e Sampling-based planners can often create plans in
high-dimensional spaces efficiently

e Rather than Compute the C-Space explicitly, we
Sample it

Slide credit: Peter Allen

Completeness in Motion Planning

e Complete Planner: always answers a path planning
query correctly in bounded time (return a path if one exists,
otherwise report failure)

e Probabilistically Complete Planner: Probability of
returning a path approaches 1 as more samples are

generated.
e Resolution-Complete Planner: Probability of finding a

path approaches 1 as the resolution becomes finer.

Slide credit: Peter Allen

Sampling-Based Planners

e Do not attempt to explicitly construct the C-Space and its

boundaries.

e Simply need to know if a single robot configuration is in collision

Exploits simple tests for collision with full knowledge of the space

e (Collision detection is a separate module- can be tailored to the

application

e As collision detection improves, so do these algorithms

e Different approaches for single-query and multi-query requests

Slide credit: Peter Allen

This is the PRM Algorithm!

PRM = Probabilistic Roadmap

1. Sample vertices randomly and collision check

2. Try to connect vertices within radius (or k NN)
- collision check potential edges

3. Search graph to find a solution
- can reuse graph across multiple queries

Probabilistically Complete

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE TRO, 12(4):566-580, June 1996. 6

What is the optimal radius?

What happens if radius too large? too small?

What is the optimal radius?

log |V > 1/d " \where magic constant!

N > 2(1 4 1/d)1/d:u(cf’ree)
Cd

Set the radius to r =~y (

Also known as a Random Geometric Graph (RGG)

This is the PRM* Algorithm!

1. Sample vertices randomly
2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal

“Sampling-based Algorithms for Optimal Motion Planning”
Sertac Karaman and Emilio Frazzoli, IJRR 2011

Can we do better than random?

A A4 - L', » D '_"
Q o, o O '-",
- Qo O
s :U (-
n ~ L
[« Q O ' ,ﬁ': O 3
Q9 A o :.0 . o o : O
0 & '
¢ o o ® " s
L » <
O ‘i : “ ©
: (8] . - -(J O
4 ' 0 ",, 4|
O D R C-oo L
n 4 -
ap °° ©q .0
) ~-Q
o o O Q o <
o o8 o . ® o o 2
0 0" o Woe ° “4
J y O Q |D ’e c
" 0 o)
0 c° o
Q0 a
- -~ -~ g 4 v -

Uniform random
sampling tends to
clump

o - ’
o O O 0 v . O .
Q o" O
Q 0
C o &) o
o v (&) _1' O 0
) ” O - 5 o
y - - () - : o - l
. 5 Q .- - 4 o - O
) . Py 0
- K N o @ +
Q F' O . o
O Q 9) o
e) - -
y © o _ :
- { (: - o O a
‘ . N O Q O O _ ’
. . T L0 ‘
1|_l R , ’ 5 C' .3
{ 0 4 Q .
by o J Yo
- L. C.
- nO o o 1 <
. (%]
0 c. 0 J
O L)
e s o) { .
S - -~ ’

Ideally we would
want points to be
spread out evenly

Question: How do we do this without discretization’?

10

Halton Sequence

(Generalization of
Van de Coruput Sequence

Intuition: Create a sequence
using prime numbers that
uniformly densify space

Link for exact algorithm:
https:/ /observablehq.com /@jrus/halton

11

How do we connect vertices?

-

Halton sequences have much better coverage

(i.e. they are low dispersion)

Connect vertices that are within a radius of

(1)1/d (as opposed to:)
=7\ 17 log [V]*/*
V] T:”(v)

12

This is the gPRM Algorithm!

1. Sample vertices randomly
2. Use optimal radius formula to connect vertices
3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal
AND Asymptotic rate of convergence

“Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance”
Lucas Janson, Brian Ichter, Marco Pavone, IJRR 2017

13

What makes a good graph?

1. A good graph must be sparse (both in vertices and edges)

2. A good graph must have good coverage

Probabilistic Roadmap

3. A good graph must have the same connectivity of free space

14

The Narrow Passage: Planning’'s boogie man!

isolated clumps

Why is narrow passage mathematically hard to plan in?

Mathematical Question:

How many samples do we need to connect the space
(with high probability)?

15

How many samples do we need?’

Theorem [Hsu et al., 1999| Let 2n vertices be sampled from Xg,.q -

Then the roadmap is connected with probability at least 1 — ~ if:

i log(

n> |8

€

The shape of free C-space is dictated by v, 3, € € [0, 1]

Visibility of free space (¢)

=0

Expansion of visibility (cv, /)

=0

Narrow passage has small values of v, (7, €

Hence, needs more samples to find a path

16

How do we bias sampling?

We somehow need more samples here

/]

1. Sample near obstacle surtace?
V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. 1999

2. Add samples that are in between two obstacles?
D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners.2003.

3. Train a learner to detect the narrow passages?

B. Ichter, J. Harrison, M. Pavone. Learning Sampling Distributions for Robot Motion Planning, 2018

17

Summary of ways to

Algorithms

Lattice
PRM
PRM*
gPRM
Bridge

(Gaussian

MAPRM

Approx. Visibility
Graph

Learnt Sampler

How to sample
vertices?
Discretize
Uniform random

Uniform random

Halton sequence
Sample with bridge test
Sample near obstacles

Sample along medial axis

Sample on surface of obstacles

Use CVAE to approximate

free space

create graphs

How to connect
vertices?

connectivity rule
r-disc, k-nn

optimal r-disc, k-nn

optimal r-disc, k-nn
any visible points
r-disc, k-nn

r-disc, k-nn
any visible points

optimal r-disc, k-nn

What graph should | use?
Low dim (2-3): Discretize evenly
Higher dim(>=4): Halton sequence

Narrow passage: Bias sampling

So far we have looked at an
Explicit Evaluated Graph

Is it a good idea to evaluate every edge that we discover?

Is it a good idea to explicitly store the entire graph in memory?

20

Do we need to store this whole graph?

DIMACS

dataset

1.5 million vertices,
3.67 million edges

A* search touches a small fraction Bidirectional A* N

Key ldea:
Use implicit unevaluated graphs

Implicit graph

1. Initialize with at least one seed vertex

E.g. The start state, the goal state, both (for bi-directional search)

2. Provide a generative function for producing successors

succ(u) = {(u,v)|(u,v) € £}

function returns both
- new vertices to add to V

—

- new edges to add to K

23

Searching with implicit graph
1. Start the search with initial vertex (start, goal, or both)

2. Whenever search chooses to “expand a vertex”

- call succ(u)
- get successor vertices

- evaluate the edges

- add these vertices to the search queue

24

Explicit vs Implicit Graphs

o Explicit Graph:

— All vertices are identified individually and represented
separately.

— All edges are identified individually and represented

separately.

e Implicit Graph:

— Only a subset, possibly only one, of the vertices is given an explicit
representation. (The others are implied.)

— Only a subset, and possibly zero, of the edges is given an explicit

representation.
— A set of “operators” is provided that can be used to construct “new”

edges and vertices.

Slide credit: Steve Tanimoto o5

Planning with
differential constraints

26

Differential constraints

So far we assumed only kinematic constraints

q éé Cobs

When is this assumption true?

- when controller can track any path

- when robots move very slowly (stop and turn)

27

Differential constraints

We now introduce diflerential constraints
¢ = f(q,u)

Two new terms:
1. Introduction of control space

2. Introduction of an equality constraint

28

Differential constraints make things even harder

Holonomic constraints: Constraints that can be integrated, i.e.

q= f(g,u) — g(q,u) =0

Non-holonomic constraints: Constraints that can’t be integrated, i.e.

i.e. the system is trapped in some sub-manifold of the config space
29

Differential constraints make things even harder

X4

Emergency landing where ' ~-.___..-
UAV can only turn left ---»

“Left-turning-car”

Non-holonomic constraints: Constraints that can’t be integrated, i.e.

i.e. the system is trapped in some sub-manifold of the config space

30

How do we incorporate differential
constraints in our framework?

Only change the STEER function!

31

Recap: STEER function for geometric

steer(qi, q2)

A steer function tries to join two configurations

with a feasible path

Example: Connect them with a straight line and check for feasibility

32

STEER function incorporate dynamics!

steer(ql, QQ>

A steer function tries to join two configurations
with a dynamically feasible path

o 42
------ "
o '~~ I
q1 o '
. ’
N ¢

33

STEER function incorporate dynamics!

steer(qi, q2)

Formally called the boundary value problem (BVP)

Find a control trajectory u(t) € U

Such that ¢(0) = q1 , q(ts) = ¢o
q(t) = f(q(t),u(t)) y

How do we come up with STEER function?

There are three possible cases

Case 1: We can analytically solve the BVP :)
\ S,/

N’

Case 2: We need to numerically solve the BVP.

Case 3: We can’t even solve the BVP!

Case 1: We can analytically solve the BVP

Consider the dynamics of your racecar

O <

'V cosO
V sin 6

C tan 5

0] < dimaa

q1 = (xlvylael)

q2 = (2,12, 62)

Can we solve this analytically?

36

Case 1:

We can analytically solve the BVP

Yes! The solution is called the Dubins path (\gr&W
N

Ro.S,L,

Right Straight Left

37

Case 1: We can analytically solve the BVP

Dubins showed that ALL solutions had to be one of 6 classes

{LRL, RLR, LSL, LSR, RSL, RSR}.

Hence, given a query,
evaluate ALL 6 options,
and pick the shortest one!

38

Random sampling with Dubins steering

14 A

12 4

10 +

0 2 - 6 8 10 12
https://github.com/AtsushiSakai/PythonRobotics

14

39

Case 2: We need to numerically solve the BVP

What if you were changing the steering rate?

. . K.

0

'V cosf

Vsind
v

u

] < Cy Jul < Co

qd1 — (x1,y1,91,6’.1)

o — ($2,y2,92,9.2)

No longer called Dubins path, called Clothoid path

Can’t solve analytically ... need numerical solutions O

—_—

/ o
-
<

40

Case 2: We need to numerically solve the BVP

Create a non-linear
optimization problem

clothoid

. Represent the path

circulararc

as a curvature polynomial

Enforce end point constraints

__/ arc-length —— | N
) OP

N

https://nlopt.readthedocs.io/en/latest/ 41

f

curyature

<

-
—

¥,

Example of a state Iattice

el -

\\//
N

Case 3: We can't even solve the BVP

Typically rules out roadmap methods ‘ .
because we cannot exactly connect 2 states ‘

Why?

1. Dynamics too complicated - nonlinear optimization doesn’t
converge

2. Even if it did, too expensive to run online

43

Case 3: We can't even solve the BVP

If we are working with implicit graphs, we don’t need to
exactly connect two states.

Pretend

this was

the state
you wanted

/4 all along!

44

Incremental Sampling-Based Planners

e Multiple-query methods such as PRM valuable in highly
structured environments.
e Online planning does not require multiple queries
e Computing roadmap a priori computationally challenging/
infeasible.
e Incremental sampling-based planning algorithms single-query
counterpart to PRMs.
e Key idea:
Avoid necessity to set number of samples a priori;
return solution as soon as set of trajectories is rich enough.

Karaman, S., & Frazzoli, E. (2011), “Sampling-based algorithms for optimal motion planning”, The International
Journal of Robotics Research, 30(7), 846-894. https://doi.org/10.1177/0278364911406761

45

Rapidly Exploring Random Trees (RRTs)

http://msl.cs.uiuc.edu/rrt

Rapidly-exploring random trees: A new tool for path planning. S. M. LaValle. TR 98-11, Computer Science Dept., lowa State University, October 1998

46

http://msl.cs.uiuc.edu/rrt

RRTs

e Build a tree by iteratively connecting next states via the

execution of random controls

e Carefully sample controls to ensure good coverage

- A

Yoty
. o

47

The RRT Algorithm

GENERATE_RRT (Zlfz'm't , K, At)

1
2
3

4
3
6
7
8
9

T .init(z;nt);
for k=1 to K do
Trand < RANDOM_STATE();
Tnear < NEAREST _NEIGHBOR(xyqnd, T);
U < SELECT_INPUT(Zrand; xnear);
Tpew — NEW_STATE(x,cqr, u, At);
T .add_vertex(x ey);
T.add_edge(wnea,m Lnew u);
Return 7

Probabilistically Complete

Exponential rate of decay for the probability of failure

48

Extend Function

No obstacles, holonomic:

ali)

qo

With obstacles, holonomic:

Non-holonomic: approximately (sometimes as approximate as picking
best of a few random control sequences) solve two-point boundary value
problem

Slide credit: Pieter Abbeel

49

RRT Expansion

) R

45 1terations 2345 1terations

Notable variation: Bidirectional RRT

= Volume swept out by unidirectional RRT:

Key idea:

Grow 2 trees, 1 starting
from start, 1 from goal,
connect them, done.

= Volume swept out by bi-directional RRT:

o ®
XS) XG

= Difference becomes even more pronounced in higher dimensions

J. J. Kuffner and S. M. LaValle, “An efficient approach to path planning using balanced
bidirectional RRT search”, Technical Report CMU-RI-TR-05-34, Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA, August 2005. Slide credit: Pieter Abbeel

51

RRT*

Algorithm 6: RRT*
1V« {ivinit}; FE + 0;
2 fori=1,...,ndo
. 3 Zrand < SampleFree;;
¢ ASymptOtlca]‘]‘y 4 Tnearest < NeareSt(G = (V, E), mrand);
. 5 Tnew Steer(xnearcstamrand) 3
Optlmal 6 if ObtacleFree(Tpcarests Tnew) then
7 cha.r — Near(G = (Va E)a Tnews min{A/RRT* (log(card (V))/ card (V))l/da 77}))
° ° ° 8 V — V U {CL‘ncw};
o PI’Ob&blllSt lCaﬂy 9 Tmin ¢ Tnearest; Cmin <~ COSt(Tnearest) + c(Line(Tnearest; Tnew));
10 foreach zycar € Xpear do // Connect along a minimum-cost path
COmplete 11 if CollisionFree(Tnear, Tnew) A COSt(ZTnear) + c(Line(Znear; Tnew)) < Cmin then
12 I_ Tmin € Tnears Cmin COSt(xncar) + C(Line(mncara -'L'ncw))
: 13 E+~FEU {(xmin xnew)}'
. b H
ComPUt a’tlonally 14 foreach znear € Xnear do // Rewire the tree
. 15 if CollisionFree(Zpew, Znear) A COSt(Zpew) + c(Line(Znew, Tnear)) < Cost(Znear)
eﬂic:lent then zparent < Parent(Tpear);
16 E + (E\ {(xparcnta mncar)}) U {(mll(}w, mnear)}
17 return G = (V, E);

Karaman, S., & Frazzoli, E. (2011), “Sampling-based algorithms for optimal motion planning”, The International
Journal of Robotics Research, 30(7), 846-894. https://doi.org/10.1177/0278364911406761

Slide credit: Pieter Abbeel

52

Smoothing

Paths extracted from sampling-based motion planners tend to
be jerky:.

Remedies:

1. Shortcutting

Along the found path, pick two vertices x,,, x;, and try

to connect them directly (skipping over all
intermediate vertices)

2. Nonlinear optimization for optimal control

Allows to specify an objective function that includes
smoothness in state, control, small control inputs, etc.

Slide credit: Pieter Abbeel
53

