
1

Sampling-Based Motion
Planning: From PRMs to

RRTs

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury, Steve Lavalle, Peter Allen, Pieter Abbeel

Instructor: Chris Mavrogiannis

Logistics

• Lab 3
• Deadline Friday March 6th
• Demo Thursday March 5th (recitation slots)
• Extra Credit important for final project

• Final Project
• Out today!
• Demo Thursday March 12th
• Short writeup due Monday 16th

• Special Topics

2

• Explicit Geometry based planners impractical in high
dimensional spaces.
• Exact solutions with complex geometries provably
exponential
• Sampling-based planners can often create plans in
high-dimensional spaces efficiently
• Rather than Compute the C-Space explicitly, we
Sample it

Probabilistic Roadmap Path Planning

Slide credit: Peter Allen
3

• Complete Planner: always answers a path planning
query correctly in bounded time (return a path if one exists,
otherwise report failure)
• Probabilistically Complete Planner: Probability of
returning a path approaches 1 as more samples are
generated.
• Resolution-Complete Planner: Probability of finding a
path approaches 1 as the resolution becomes finer.

Completeness in Motion Planning

Slide credit: Peter Allen
4

• Do not attempt to explicitly construct the C-Space and its
boundaries.
• Simply need to know if a single robot configuration is in collision
• Exploits simple tests for collision with full knowledge of the space
• Collision detection is a separate module- can be tailored to the
application
• As collision detection improves, so do these algorithms
• Different approaches for single-query and multi-query requests

Sampling-Based Planners

Slide credit: Peter Allen
5

Figure 7: Visualization of the first of three articulated motion planning problems in which the HERB robot must move its right
arm from the start configuration (pictured) to any of seven grasp configurations for a mug. Shown is the progression of the
Alternate selector on one of the randomly generated roadmaps; approximately 2% of the 7D roadmap is shown in gray by
projecting onto the space of end-effector positions.

This form is derived from simplifying the induced geomet-
ric series; note that if exp(�wab)  Zba, the value Z 0

xy
is

infinite. One can also derive the inverse: given values Z 0,
calculate the values Z if an edge were removed.

This incremental formulation of (7) allows for the corre-
sponding score p(e) for edges to be updated efficiently dur-
ing each iteration of LazySP as the wlazy value for edges
chosen for evaluation are updated. In fact, if the values Z
are stored in a square matrix, the update for all pairs after an
edge weight change consists of a single vector outer product.

5 Experiments
We compared the seven edge selectors on three classes of
shortest path problems. The average number of edges evalu-
ated by each, as well as timing results from our implementa-
tions, are shown in Figure 8. In each case, the estimate was
chosen so that west  w, so that all runs produced optimal
paths. The experimental results serve primarily to illustrate
that the A* and LWA* algorithms (i.e. Expand and Forward)
are not optimally edge-efficient, but they also expose dif-
ferences in behavior and prompt future research directions.
All experiments were conducted using an open-source im-
plementation.1 Motion planning results were implemented
using OMPL (Şucan, Moll, and Kavraki 2012).

Random partially-connected graphs. We tested on a set
of 1000 randomly-generated undirected graphs with |V | =
100, with each pair of vertices sharing an edge with prob-
ability 0.05. Edges have an independent 0.5 probability of
having infinite weight, else the weight is uniformly dis-
tributed on [1, 2]; the estimated weight was unity for all
edges. For the WeightSamp selector, we drew 1000 w sam-
ples at each iteration from the above edge weight distribu-
tion. For the Partition selector, we used � = 2.

Roadmap graphs on the unit square. We considered
roadmap graphs formed via the first 100 points of the (2, 3)-
Halton sequence on the unit square with a connection radius
of 0.15, with 30 pairs of start and goal vertices chosen ran-
domly. The edge weight function was derived from 30 sam-
pled obstacle fields consisting of 10 randomly placed axis-

1https://github.com/personalrobotics/lemur

aligned boxes with dimensions uniform on [0.1, 0.3], with
each edge having infinite weight on collision, and weight
equal to its Euclidean length otherwise. One of the resulting
900 example problems is shown in Figure 2. For the Weight-
Samp selector, we drew 1000 w samples with a naı̈ve edge
weight distribution with each having an independent 0.1 col-
lision probability. For the Partition selector, we used � = 21.

Roadmap graphs for robot arm motion planning. We
considered roadmap graphs in the configuration space corre-
sponding to the 7-DOF right arm of the HERB home robot
(Srinivasa et al. 2012) across three motion planning prob-
lems inspired by a table clearing scenario (see Figure 7). The
problems consisted of first moving from the robot’s home
configuration to one of 7 feasible grasp configurations for
a mug (pictured), second transferring the mug to one of 72
feasible configurations with the mug above the blue bin, and
third returning to the home configuration. Each problem was
solved independently. This common scenario spans various
numbers of starts/goals and allows a comparison w.r.t. diffi-
culty at different problem stages as discussed later.

For each problem, 50 random graphs were constructed by
applying a random offset to the 7D Halton sequence with
N = 1000, with additional vertices for each problem start
and goal configuration. We used an edge connection radius
of 3 rad, resulting |E| ranging from 23404 to 28109. Each
edge took infinite weight on collision, and weight equal to its
Euclidean length otherwise. For the WeightSamp selector,
we drew 1000 w samples with a naı̈ve edge weight distribu-
tion in which each edge had an independent 0.1 probability
of collision. For the Partition selector, we used � = 3.

6 Discussion
The first observation that is evident from the experimen-
tal results is that lazy evaluation – whether using Forward
(LWA*) or one of the other selectors – grossly outperforms
Expand (A*). The relative penalty that Expand incurs by
evaluating all edges from each expanded vertex is a func-
tion of the graph’s branching factor.

Since the Forward and Reverse selectors are simply mir-
rors of each other, they exhibit similar performance averaged
across the PartConn and UnitSquare problem classes, which

This is the PRM Algorithm!

6

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE TRO, 12(4):566–580, June 1996.

PRM = Probabilistic Roadmap

1. Sample vertices randomly and collision check

2. Try to connect vertices within radius (or k NN) 
 - collision check potential edges

3. Search graph to find a solution 
 - can reuse graph across multiple queries

Probabilistically Complete

7

What is the optimal radius?

What happens if radius too large? too small?

8

What is the optimal radius?

Set the radius to
� � 2(1 + 1/d)1/d

µ(Cfree)
⇣d

where magic constant!

Also known as a Random Geometric Graph (RGG)

r = �

✓
log |V |
|V |

◆1/d

This is the PRM* Algorithm!

9

1. Sample vertices randomly

2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal

“Sampling-based Algorithms for Optimal Motion Planning”
Sertac Karaman and Emilio Frazzoli, IJRR 2011

Can we do better than random?

10

Uniform random
sampling tends to

clump

Ideally we would
want points to be
spread out evenly

Question: How do we do this without discretization?

Halton Sequence

11

Generalization of
Van de Coruput Sequence

Intuition: Create a sequence
using prime numbers that
uniformly densify space

Link for exact algorithm:
https://observablehq.com/@jrus/halton

How do we connect vertices?

12

Halton sequences have much better coverage

(i.e. they are low dispersion)

Connect vertices that are within a radius of

r = �

✓
1

|V |

◆1/d (as opposed to:)

r = �

✓
log |V |
|V |

◆1/d

This is the gPRM Algorithm!

13

1. Sample vertices randomly

2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal 
AND Asymptotic rate of convergence

“Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance”
Lucas Janson, Brian Ichter, Marco Pavone, IJRR 2017

What makes a good graph?

14

1. A good graph must be sparse (both in vertices and edges)

2. A good graph must have good coverage

3. A good graph must have the same connectivity of free space

15

The Narrow Passage: Planning’s boogie man!

Mathematical Question:
How many samples do we need to connect the space

(with high probability)?

isolated clumps

Why is narrow passage mathematically hard to plan in?

How many samples do we need?

16

Theorem [Hsu et al., 1999] Let 2n vertices be sampled from .
Then the roadmap is connected with probability at least if:

Xfree

1� �

n �
&
8
log(8

✏↵�)

✏↵
+

3

�
+ 2

'

The shape of free C-space is dictated by ↵, �, ✏ 2 [0, 1]

Expansion of visibility (↵,�)Visibility of free space (✏)

Narrow passage has small values of ↵, �, ✏

Hence, needs more samples to find a path

How do we bias sampling?

17

We somehow need more samples here

1. Sample near obstacle surface?
V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. 1999

2. Add samples that are in between two obstacles?
D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners.2003.

3. Train a learner to detect the narrow passages?
B. Ichter, J. Harrison, M. Pavone. Learning Sampling Distributions for Robot Motion Planning, 2018

Summary of ways to create graphs

18

How to sample
vertices?

How to connect
vertices?

PRM

PRM*

gPRM

Lattice

Bridge

MAPRM

Approx. Visibility
Graph

Gaussian

Learnt Sampler

Discretize

Uniform random

Uniform random

Halton sequence

Sample with bridge test

Sample near obstacles

Sample along medial axis

Sample on surface of obstacles

Use CVAE to approximate
free space

connectivity rule

r-disc, k-nn

optimal r-disc, k-nn

optimal r-disc, k-nn

any visible points

r-disc, k-nn

r-disc, k-nn

any visible points

optimal r-disc, k-nn

Algorithms

19

What graph should I use?

Low dim (2-3): Discretize evenly

Higher dim(>=4): Halton sequence

Narrow passage: Bias sampling

20

So far we have looked at an
Explicit Evaluated Graph

Is it a good idea to evaluate every edge that we discover?

Is it a good idea to explicitly store the entire graph in memory?

Do we need to store this whole graph?

21

completing manipulation tasks efficiently in complex environments 45

Challenge [27] (Northeast USA) comprising an approximate road
network, using transit time as the edge weight function (Figure 4.2).
In this way, a shortest path between a pair of start and destination
locations minimizes the total transit time between them. More details
about the graph are given in the experimental section in Section 4.5.
The graph is sufficiently large that minimizing search computation is
important, and the available transit time heuristic is broadly useful
but not perfectly strong. The road routing domain is of great interest,
and it is commonly used for benchmarking and easy to visualize. s

t

Figure 4.2: A graph of the Northeast
USA from the 9th DIMACS Implemen-
tation Challenge comprises 1,524,453
vertices and 3,868,020 directed edges.
A shortest path problem from a start s
in New Jersey to a destination t outside
Boston will be used as an example.

Problem Settings. The single-pair problem has been extensively stud-
ied. There are techniques that are particular to memory-constrained
settings [58] or to settings where pre-computation is available [44].
While we do not focus on such settings, the algorithms we propose
may be complementary to these techniques.

4.2 Review of Pathfinding with Distance Functions

This section contains a unified presentation of unidirectional, bidirec-
tional, and incremental search strategies by examining the properties
of the distance functions that they maintain. These properties and in-
variants can be established for arbitrary distance function approxima-
tions. Examination of these properties then informs the development
of algorithms which calculate them, which we defer to Section 4.3.

While much of this section summaries prior work, the presenta-
tion of the bidirectional termination condition (Theorem 10 in Sec-
tion 4.2.3) in particular is formulated to enable the novel theorems
presented in Section 4.3.

4.2.1 Shortest Paths via the Start Distance Function

Figure 4.3: The distance function from
the start vertex.

The pioneering pathfinding algorithms of the late 1950s address a
generalization of the SPSP problem called the single-source prob-
lem, where shortest paths are calculated from the start vertex s to all
vertices on the graph. They proceed by calculating the start distance
function d⇤ : V ! R, which gives the length of the shortest path from
s to each vertex v. In other words: Once the distance function d⇤ is com-

puted, a shortest path to any desti-
nation t can be generated trivially by
walking backwards to s guided by d⇤.

d⇤(v) = min
p2Psv

len(p, w), (4.1)

where Psv is the set of all paths from s to v, and len is given by (3.1)
as the sum of the path’s constituent weights with respect to the edge
weight function w. Where no paths to v exist, we take d⇤(v) = •.
Note that d⇤ is only well-defined on graphs with no negative-length
cycles reachable from s.

1.5 million vertices,
3.67 million edges

56 christopher m. dellin

Termination Condition. The termination condition from Theorem 12
is captured in Algorithm 7. The first conditional handles cases where
no finite path exists. This algorithm is listed as “IBiD” in the results
of Figure 4.16.

Algorithm 7 IBiD Termination Condition
1: function TerminationCondition()
2: if [Qs.Empty and ds(t)=•] or [Qt.Empty and dt(s)=•] then

3: return True . no solution path

4: (uc, vc) Qc.TopKey . return False if Qc empty
5: if Qs.TopKey + Qt.TopKey < ds(uc) + w(uc, vc) + dt(vc) then

6: return False
7: if Qs.TopKey < ds(uc) or Qt.TopKey < dt(vc) then

8: return False
9: return True

4.4 Heuristic Search

When examining how to assemble a heuristic-informed algorithm
that integrates bidirectional with incremental methods, it is instruc-
tive to examine how these efforts have been addressed in the past.

Review of Heuristic Methods. Heuristic methods such as the Graph
Traverser [31] were originally applied to pathfinding problems in
order to find non-optimal solutions more economically. These uni-
directional methods proceed similarly to Dijkstra’s algorithm, but
instead of prioritizing Open vertices based on their start distance ds,
they use a destination-directed heuristic function ht. Hart, Nilsson,
and Raphael [47] established that these approaches can be combined
(ds + ht) to yield an admissible algorithm (A*) for the shortest-path
problem, as long as ht meets certain conditions. See Figure 4.12. We
show the results of unidirectional heuristic search as “A*” in the
results of Figure 4.16.

Figure 4.12: A* search. 532,880 expan-
sions.

4.4.1 Heuristic Methods in Bidirectional Search

Attempts to provide a bidirectional algorithm which incorporates
heuristic estimates generally take one of three approaches, which we
survey here.

First, “front-to-back” methods such as Pohl’s Bidirectional Heuris-
tic Path Algorithm (BHPA) [96] conduct two conventional heuristic-
informed searches (i.e. the start search directed to the destination
vertex, and vice versa). This approach suffers from the problem that

DIMACS
dataset

A* search touches a small fraction

completing manipulation tasks efficiently in complex environments 59

apply the same idea to bidirectional search. In particular, if one com-
mits to a single potential function b, then the conventional bidirec-
tional algorithm (Section 4.2.3) can be applied directly. The question
is, what potential function should we use?

A bidirectional search customarily has available two heuristic func-
tions, one ht(v) that approximates the length of paths from v to the
destination vertex t, and one hs(v) that approximates the length of
paths from the start vertex to v. The most commonly used potential
function [54, 45] is simply the average of the two:

b(v) =
ht(v)� hs(v)

2
. (4.11)

Note that the start heuristic value is negated; when the start heuristic
is used during the reverse search, it is applied to predecessor vertices.
It can be shown that if hs and ht are consistent (i.e. satisfy (4.10)), b is
also consistent.

Figure 4.13: Illustration of behavior
of bidirectional heuristic search on a
shortest path problem reproduced from
[67]. Vertices that are start-expanded
are shown in blue, while those that are
destination-expanded are shown in red.
At left, the algorithm performs only
start-side expansions, which approxi-
mates the behavior of a unidirectional
algorithm. At right, the algorithm per-
forms distance-balanced expansions
between the two searches. The top row
shows the behavior of the algorithm
with no heuristic potential function.
Start and destination heuristic func-
tions are available, and their effect are
shown at bottom. The unidirectional
search uses the destination heuristic
ht as its potential function, while the
bidirectional search uses the averaged
potential function (4.11).

Figure 4.13 shows the behavior of the bidirectional heuristic search
algorithm on a path planning problem in an eight-connected grid
world. This example problem is reproduced from [67]. The figure
shows the effect of the combination of bidirectional and heuristic
search.

Figure 4.14: Bidirectional A* search.
515,588 expansions.

Figure 4.14 shows the result of conducting a bidirectional search
using this averaged potential function for the example road network
problem. This algorithm is listed as “H-BiDijk” (heuristic bidirec-
tional Dijkstra’s) in the results of Figure 4.16. Bidirectional A*

22

Key Idea:
Use implicit unevaluated graphs

Implicit graph

23

1. Initialize with at least one seed vertex

E.g. The start state, the goal state, both (for bi-directional search)

2. Provide a generative function for producing successors

succ(u) = {(u, v)|(u, v) 2 E}
function returns both

- new vertices to add to V
- new edges to add to E

Searching with implicit graph

24

1. Start the search with initial vertex (start, goal, or both)

2. Whenever search chooses to “expand a vertex”

- call succ(u)

- get successor vertices

- evaluate the edges

- add these vertices to the search queue

• Explicit Graph:
– All vertices are identified individually and represented
separately.
– All edges are identified individually and represented
separately.

• Implicit Graph:
– Only a subset, possibly only one, of the vertices is given an explicit
representation. (The others are implied.)
– Only a subset, and possibly zero, of the edges is given an explicit
representation.
– A set of “operators” is provided that can be used to construct “new”
edges and vertices.

Explicit vs Implicit Graphs

Slide credit: Steve Tanimoto 25

Planning with
differential constraints

26

Differential constraints

27

So far we assumed only kinematic constraints

When is this assumption true?

- when controller can track any path

- when robots move very slowly (stop and turn)

q /2 Cobs

28

Differential constraints
We now introduce differential constraints

800 S. M. LaValle: Planning Algorithms

Wrong!

(a) (b)

Figure 14.4: (a) The time-limited reachable set for the Dubins car facing to the
right; (b) this is not the time-limited reachable set for the Reeds-Shepp car!

states due to nature were specified in the forward projection. In the current
setting, possible future states are determined by the unspecified actions of the
robot. Rather than looking k stages ahead, the time-limited reachable set looks for
duration t into the future. In the present context there is essentially a continuum
of stages.

Example 14.3 (Reachable Sets for Simple Cars) Nice illustrations of reach-
able sets can be obtained from the simple car models from Section 13.1.2. Suppose
that X = C = R2 × S1 and Xobs = ∅.

Recall that the Dubins car can only drive forward. From an arbitrary con-
figuration, the time-limited reachable set appears as shown in Figure 14.4a. The
time limit t is small enough so that the car cannot rotate by more than π/2. Note
that Figure 14.4a shows a 2D projection of the reachable set that gives translation
only. The true reachable set is a 3D region in C. If t > 2π, then the car will
be able to drive in a circle. For any q, consider the limiting case as t approaches
infinity, which results in R(q,U). Imagine a car driving without reverse on an
infinitely large, flat surface. It is possible to reach any desired configuration by
driving along a circle, driving straight for a while, and then driving along a circle
again. Therefore, R(q,U) = C for any q ∈ C. The lack of a reverse gear means
that some extra maneuvering space may be needed to reach some configurations.

Now consider the Reeds-Shepp car, which is allowed to travel in reverse. Any
time-limited reachable set for this car must include all points from the correspond-
ing reachable set for the Dubins car because new actions have been added to U but
none have been removed. It is tempting to assert that the time-limited reachable
set appears as in Figure 14.4b; however, this is wrong. In an arbitrarily small
amount of time (or space) a car with reverse can be wiggled sideways. This is
achieved in practice by familiar parallel-parking maneuvers. It turns out in this
case that R(q,U , t) always contains an open set around q, which means that it
grows in all directions (see Section 15.3.2). The property is formally referred to as
small-time controllability and is covered in Section 15.4. !

q̇ = f(q, u)

Two new terms:

1. Introduction of control space 

2. Introduction of an equality constraint

Differential constraints make things even harder

29

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 15

(a) (b)

Figure 1.11: Some parking illustrations from government manuals for driver test-
ing: (a) parking a car (from the 2005Missouri Driver Guide); (b) parking a tractor
trailer (published by the Pennsylvania Division of Motor Vehicles). Both humans
and planning algorithms can solve these problems.

Flying Through the Air or in Space Driving naturally leads to flying. Plan-
ning algorithms can help to navigate autonomous helicopters through obstacles.
They can also compute thrusts for a spacecraft so that collisions are avoided around
a complicated structure, such as a space station. In Section 14.1.3, the problem of
designing entry trajectories for a reusable spacecraft is described. Mission plan-
ning for interplanetary spacecraft, including solar sails, can even be performed
using planning algorithms [436].

Designing better drugs Planning algorithms are even impacting fields as far
away from robotics as computational biology. Two major problems are protein
folding and drug design. In both cases, scientists attempt to explain behaviors
in organisms by the way large organic molecules interact. Such molecules are
generally flexible. Drug molecules are small (see Figure 1.14), and proteins usually
have thousands of atoms. The docking problem involves determining whether a
flexible molecule can insert itself into a protein cavity, as shown in Figure 1.14,
while satisfying other constraints, such as maintaining low energy. Once geometric
models are applied to molecules, the problem looks very similar to the assembly
problem in Figure 1.3 and can be solved by motion planning algorithms. See
Section 7.5 and the literature at the end of Chapter 7.

Perspective Planning algorithms have been applied to many more problems
than those shown here. In some cases, the work has progressed from modeling, to
theoretical algorithms, to practical software that is used in industry. In other cases,
substantial research remains to bring planning methods to their full potential. The
future holds tremendous excitement for those who participate in the development
and application of planning algorithms.

Non-holonomic constraints: Constraints that can’t be integrated, i.e.
i.e. the system is trapped in some sub-manifold of the config space

Holonomic constraints: Constraints that can be integrated, i.e.

q̇ = f(q, u) g(q, u) = 0

Differential constraints make things even harder

30

“Left-turning-car”

Emergency landing where
UAV can only turn left

Non-holonomic constraints: Constraints that can’t be integrated, i.e.

i.e. the system is trapped in some sub-manifold of the config space

31

How do we incorporate differential
constraints in our framework?

Only change the STEER function!

Recap: STEER function for geometric

32

q1

q2

Example: Connect them with a straight line and check for feasibility

(1� ↵)q1 + ↵q2

A steer function tries to join two configurations
with a feasible path

steer(q1, q2)

33

A steer function tries to join two configurations
with a dynamically feasible path

steer(q1, q2)

STEER function incorporate dynamics!

q1

q2

34

STEER function incorporate dynamics!

steer(q1, q2)

q1

q2

Formally called the boundary value problem (BVP)

Find a control trajectory u(t) 2 U

q(tf) = q2Such that q(0) = q1 ,

q̇(t) = f(q(t), u(t))

How do we come up with STEER function?

35

There are three possible cases

Case 1: We can analytically solve the BVP :)

Case 2: We need to numerically solve the BVP.

Case 3: We can’t even solve the BVP!

Case 1: We can analytically solve the BVP

36

˙2

4
x
y
✓

3

5 =

2

4
V cos ✓
V sin ✓
C tan �

3

5

Consider the dynamics of your racecar

q1 = (x1, y1, ✓1)

|�|  �max

q2 = (x2, y2, ✓2)

Can we solve this analytically?

800 S. M. LaValle: Planning Algorithms

Wrong!

(a) (b)

Figure 14.4: (a) The time-limited reachable set for the Dubins car facing to the
right; (b) this is not the time-limited reachable set for the Reeds-Shepp car!

states due to nature were specified in the forward projection. In the current
setting, possible future states are determined by the unspecified actions of the
robot. Rather than looking k stages ahead, the time-limited reachable set looks for
duration t into the future. In the present context there is essentially a continuum
of stages.

Example 14.3 (Reachable Sets for Simple Cars) Nice illustrations of reach-
able sets can be obtained from the simple car models from Section 13.1.2. Suppose
that X = C = R2 × S1 and Xobs = ∅.

Recall that the Dubins car can only drive forward. From an arbitrary con-
figuration, the time-limited reachable set appears as shown in Figure 14.4a. The
time limit t is small enough so that the car cannot rotate by more than π/2. Note
that Figure 14.4a shows a 2D projection of the reachable set that gives translation
only. The true reachable set is a 3D region in C. If t > 2π, then the car will
be able to drive in a circle. For any q, consider the limiting case as t approaches
infinity, which results in R(q,U). Imagine a car driving without reverse on an
infinitely large, flat surface. It is possible to reach any desired configuration by
driving along a circle, driving straight for a while, and then driving along a circle
again. Therefore, R(q,U) = C for any q ∈ C. The lack of a reverse gear means
that some extra maneuvering space may be needed to reach some configurations.

Now consider the Reeds-Shepp car, which is allowed to travel in reverse. Any
time-limited reachable set for this car must include all points from the correspond-
ing reachable set for the Dubins car because new actions have been added to U but
none have been removed. It is tempting to assert that the time-limited reachable
set appears as in Figure 14.4b; however, this is wrong. In an arbitrarily small
amount of time (or space) a car with reverse can be wiggled sideways. This is
achieved in practice by familiar parallel-parking maneuvers. It turns out in this
case that R(q,U , t) always contains an open set around q, which means that it
grows in all directions (see Section 15.3.2). The property is formally referred to as
small-time controllability and is covered in Section 15.4. !

Case 1: We can analytically solve the BVP

37

Yes! The solution is called the Dubins path

882 S. M. LaValle: Planning Algorithms

α

γ

d
Rα

Sd

Lγ

qGqI
α

γ

Rγ

Rα

qG
qI

Lβ

β

RαSdLγ RαLβRγ

Figure 15.4: The trajectories for two words are shown in W = R2.

To be more precise, the duration of each primitive should also be specified.
For L or R, let a subscript denote the total amount of rotation that accumulates
during the application of the primitive. For S, let a subscript denote the total
distance traveled. Using such subscripts, the Dubins curves can be more precisely
characterized as

{LαRβ Lγ, Rα Lβ Rγ, Lα Sd Lγ, Lα Sd Rγ, Rα Sd Lγ , Rα Sd Rγ}, (15.45)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0. Figure 15.4 illustrates two cases.
Note that β must be greater than π (if it is less, then some other word becomes
optimal).

It will be convenient to invent a compressed form of the words to group together
paths that are qualitatively similar. This will be particularly valuable when Reeds-
Shepp curves are introduced in Section 15.3.2 because there are 46 of them, as
opposed to 6 Dubins curves. Let C denote a symbol that means “curve,” and
represents either R or L. Using C, the six words in (15.44) can be compressed to
only two base words:

{CCC, CSC}. (15.46)

In this compressed form, remember that two consecutive Cs must be filled in by
distinct turns (RR and LL are not allowed as subsequences). In compressed form,
the base words can be specified more precisely as

{CαCβ Cγ, Cα Sd Cγ}, (15.47)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0.
Powerful information has been provided so far for characterizing the shortest

paths; however, for a given qI and qG, two problems remain:

1. Which of the six words in (15.45) yields the shortest path between qI and
qG?

Right Straight Left

Case 1: We can analytically solve the BVP

38

882 S. M. LaValle: Planning Algorithms

α

γ

d
Rα

Sd

Lγ

qGqI
α

γ

Rγ

Rα

qG
qI

Lβ

β

RαSdLγ RαLβRγ

Figure 15.4: The trajectories for two words are shown in W = R2.

To be more precise, the duration of each primitive should also be specified.
For L or R, let a subscript denote the total amount of rotation that accumulates
during the application of the primitive. For S, let a subscript denote the total
distance traveled. Using such subscripts, the Dubins curves can be more precisely
characterized as

{LαRβ Lγ, Rα Lβ Rγ, Lα Sd Lγ, Lα Sd Rγ, Rα Sd Lγ , Rα Sd Rγ}, (15.45)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0. Figure 15.4 illustrates two cases.
Note that β must be greater than π (if it is less, then some other word becomes
optimal).

It will be convenient to invent a compressed form of the words to group together
paths that are qualitatively similar. This will be particularly valuable when Reeds-
Shepp curves are introduced in Section 15.3.2 because there are 46 of them, as
opposed to 6 Dubins curves. Let C denote a symbol that means “curve,” and
represents either R or L. Using C, the six words in (15.44) can be compressed to
only two base words:

{CCC, CSC}. (15.46)

In this compressed form, remember that two consecutive Cs must be filled in by
distinct turns (RR and LL are not allowed as subsequences). In compressed form,
the base words can be specified more precisely as

{CαCβ Cγ, Cα Sd Cγ}, (15.47)

in which α, γ ∈ [0, 2π), β ∈ (π, 2π), and d ≥ 0.
Powerful information has been provided so far for characterizing the shortest

paths; however, for a given qI and qG, two problems remain:

1. Which of the six words in (15.45) yields the shortest path between qI and
qG?

Dubins showed that ALL solutions had to be one of 6 classes

15.3. OPTIMAL PATHS FOR SOME WHEELED VEHICLES 881

Symbol Steering: u

S 0
L 1
R -1

Figure 15.3: The three motion primitives from which all optimal curves for the
Dubins car can be constructed.

qG. Due to ρmin, this can be considered as a bounded-curvature shortest-path
problem. If ρmin = 0, then there is no curvature bound, and the shortest path
follows a straight line in R2. In terms of a cost functional of the form (8.39), the
criterion to optimize is

L(q̃, ũ) =

∫ tF

0

√

ẋ(t)2 + ẏ(t)2dt, (15.42)

in which tF is the time at which qG is reached, and a configuration is denoted as
q = (x, y, θ). If qG is not reached, then it is assumed that L(q̃, ũ) =∞.

Since the speed is constant, the system can be simplified to

ẋ = cos θ

ẏ = sin θ

θ̇ = u,

(15.43)

in which u is chosen from the interval U = [− tanφmax, tanφmax]. This implies
that (15.42) reduces to optimizing the time tF to reach qG because the integrand
reduces to 1. For simplicity, assume that tanφ = 1. The following results also
hold for any φmax ∈ (0, π/2).

It was shown in [294] that between any two configurations, the shortest path
for the Dubins car can always be expressed as a combination of no more than
three motion primitives. Each motion primitive applies a constant action over an
interval of time. Furthermore, the only actions that are needed to traverse the
shortest paths are u ∈ {−1, 0, 1}. The primitives and their associated symbols are
shown in Figure 15.3. The S primitive drives the car straight ahead. The L and
R primitives turn as sharply as possible to the left and right, respectively. Using
these symbols, each possible kind of shortest path can be designated as a sequence
of three symbols that corresponds to the order in which the primitives are applied.
Let such a sequence be called a word . There is no need to have two consecutive
primitives of the same kind because they can be merged into one. Under this
observation, ten possible words of length three are possible. Dubins showed that
only these six words are possibly optimal:

{LRL, RLR, LSL, LSR, RSL, RSR}. (15.44)

The shortest path between any two configurations can always be characterized by
one of these words. These are called the Dubins curves.

Hence, given a query,
evaluate ALL 6 options,
and pick the shortest one!

Random sampling with Dubins steering

39https://github.com/AtsushiSakai/PythonRobotics

40

Case 2: We need to numerically solve the BVP

2

664

ẋ
ẏ
✓̇
✓̈

3

775 =

2

664

V cos ✓
V sin ✓

✓̇
u

3

775
q2 = (x2, y2, ✓2, ✓̇2)

q1 = (x1, y1, ✓1, ✓̇1)

|✓̇|  C1 |u|  C2

What if you were changing the steering rate?

No longer called Dubins path, called Clothoid path

Can’t solve analytically … need numerical solutions

41

Case 2: We need to numerically solve the BVP

Create a non-linear
optimization problem

Represent the path
as a curvature polynomial

Enforce end point constraints

https://nlopt.readthedocs.io/en/latest/

Example of a state lattice

42

314 • Journal of Field Robotics—2009

Figure 2. A 3D search space, consisting of position and
heading (x, y, θ). The Reeds–Shepp car can move forward
and backward. It can drive straight or turn left or right at a
fixed curvature. Left: The designed control set precisely hits
vertices in a rectangular grid. It was derived from the car’s
basic motions by carefully choosing their length. Center:
The reachability tree to depth 2. Right: The reachability tree
(search space) obtained by copying the control set at ev-
ery vertex in a C space with four headings. Each dot repre-
sents four distinct vertices overlaid on each other, each rep-
resenting different values of heading. Although this search
space will not generate a turn of less than the chosen cur-
vature, and although heading is continuous across vertices,
the instantaneous transitions of curvature at the vertices do
not respect steering rate limitations. Moreover, considering
only four different heading values typically is impractical.

Figure 3. An example state lattice. A repeated and regu-
lar pattern of vertices and edges comprises the state lattice.
The inset shows the control set, the motions leading to some
nearby neighbors of a vertex. The overall motion plan (thick
black curve) is simply a sequence of such edges. Here,
a greater number of headings was used than in Figure 2.
Reverse motions were omitted for clarity.

Enabling a planner to be well positioned with respect
to properties 1 and 2 is related to the problem of
sampling in the space of motions, and it remains
an active area of our related work (Green & Kelly,
2007; Pivtoraiko, Knepper, & Kelly, 2007). One of
the benefits of the state lattice approach is that it
performs planning strictly in state space, which is
easy to sample effectively. Regular lattice sampling
features minimum dispersion and discrepancy,
which allows the search to proceed effectively. Con-
versely, achieving effective sampling in control space
is hard in general. However, the state lattice induces
a convenient sampling in control space, as motions
that fit the lattice are found a posteriori. Thus, mo-
tion sampling inherits sampling effectiveness from
the state lattice. An approach to satisfying proper-
ties 1 and 2 in state lattice design is presented in
Pivtoraiko and Kelly (2005b). A simplified state
lattice design, described in Section 4.2, can also be
used as a departing point in evaluating the state
lattice concept with a particular motion planner.

The general principle to address property 3 is to
reduce the number of motions in the control set as far
as possible. In the case of deterministic planning, the
size of the control set defines the branching factor of
the search space and, thus, significantly affects plan-
ning complexity.

3. MOTION PLANNING USING STATE LATTICES
This section is devoted to a discussion of constrained
motion planning using state lattices. Here we uti-
lize the search space, developed in the preceding sec-
tions, and discuss the algorithmic details of enabling
planning and efficient replanning under differential
constraints.

3.1. Search Algorithm
Because the state lattice is a directed graph, any sys-
tematic graph search algorithm is appropriate for
finding a path in it. It is typically desired that a plan-
ner return optimal paths with respect to the desired
cost criterion (e.g., time, energy, or path length) and
that it be efficient. The A∗ (Hart, Nilsson, & Raphael,
1968) and D∗ Lite (Koenig & Likhachev, 2002) heuris-
tic search algorithms were used in this work because
they satisfy these requirements.

Let the term fidelity refer to the resolution of
both the state samples and its connecting controls.
If, hypothetically, the fidelity of the state lattice were

Journal of Field Robotics DOI 10.1002/rob

Pivtoraiko
et al.
2007

43

Case 3: We can’t even solve the BVP

Why?

1. Dynamics too complicated - nonlinear optimization doesn’t  
converge

2. Even if it did, too expensive to run online

Typically rules out roadmap methods
because we cannot exactly connect 2 states

44

Case 3: We can’t even solve the BVP
If we are working with implicit graphs, we don’t need to

exactly connect two states.

Pretend
this was
the state

you wanted
all along!

Incremental Sampling-Based Planners

• Multiple-query methods such as PRM valuable in highly
structured environments.

• Online planning does not require multiple queries
• Computing roadmap a priori computationally challenging/

infeasible.
• Incremental sampling-based planning algorithms single-query

counterpart to PRMs.
• Key idea:

Avoid necessity to set number of samples a priori;
return solution as soon as set of trajectories is rich enough.

Karaman, S., & Frazzoli, E. (2011), “Sampling-based algorithms for optimal motion planning”, The International
Journal of Robotics Research, 30(7), 846–894. https://doi.org/10.1177/0278364911406761

45

Rapidly Exploring Random Trees (RRTs)

http://msl.cs.uiuc.edu/rrt

Rapidly-exploring random trees: A new tool for path planning. S. M. LaValle. TR 98-11, Computer Science Dept., Iowa State University, October 1998

46

http://msl.cs.uiuc.edu/rrt

•Build a tree by iteratively connecting next states via the
execution of random controls

•Carefully sample controls to ensure good coverage

RRTs

47

The RRT Algorithm

48

Probabilistically Complete

Exponential rate of decay for the probability of failure

Extend Function

Slide credit: Pieter Abbeel
49

230 S. M. LaValle: Planning Algorithms

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

RRT Expansion

50

Notable variation: Bidirectional RRT

Slide credit: Pieter Abbeel

Key idea:
Grow 2 trees, 1 starting
from start, 1 from goal,
connect them, done.

J. J. Kuffner and S. M. LaValle, “An efficient approach to path planning using balanced
bidirectional RRT search”, Technical Report CMU-RI-TR-05-34, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, August 2005. 51

Karaman, S., & Frazzoli, E. (2011), “Sampling-based algorithms for optimal motion planning”, The International
Journal of Robotics Research, 30(7), 846–894. https://doi.org/10.1177/0278364911406761

RRT*

• Asymptotically
optimal

• Probabilistically
complete

• Computationally
efficient

52
Slide credit: Pieter Abbeel

Paths extracted from sampling-based motion planners tend to
be jerky.

Remedies:

1. Shortcutting

Along the found path, pick two vertices xt1, xt2 and try
to connect them directly (skipping over all
intermediate vertices)

2. Nonlinear optimization for optimal control

Allows to specify an objective function that includes
smoothness in state, control, small control inputs, etc.

Smoothing

Slide credit: Pieter Abbeel
53

