Planning on Roadmaps

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury, Steve Lavalle



Logistics

e Lab 3
e Deadline Friday March 6th
e Demo Thursday March 5th (recitation slots)
e Extra Credit important for final project
e Final Project
e Out this weekend
e Demo Thursday March 12th
e Short writeup due Monday 16th
e Guest lecture Friday
e Prof. Sidd Srinivasa
e Lazy Search
e Lazy Search is part of Lab 3!



Piano Mover's Problem




Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace W, where either W = R? or W = R3.
2. An obstacle region O C W.

3. A robot defined in WW. Either a rigid body A or a
collection of m links: Ay, As, ..., A,,.

4. The configuration space C (Cops and Ctree are then
defined).

5. An initial configuration qr € Ctree.

6. A goal configuration qg € Ctree- The initial and
goal configuration are often called a query (qr, g ).

Compute a (continuous) path, 7 : [0,1] — Crree, such
that 7(0) = qr and 7(1) = qg.

Also may want to minimize cost ¢(7)



But | just want to know
how to plan for my racecar!

Alright, let's look at differential constraints!



Differential constraints

So far we assumed only kinematic constraints

q éé Cobs

When is this assumption true?

- when controller can track any path

- when robots move very slowly (stop and turn)



Differential constraints

We now introduce differential constraints

q:f(%u)

Two new terms:
1. Introduction of control space

2. Introduction of an equality constraint



Motion planning under differential constraints

1. Given world, obstacles, C-space, robot geometry (same)

2. Introduce state space X. Compute free and obstacle state space.
3. Given an action space [J

4. Given a state transition equations ¢ = f (q7 u)

5. Given initial and final state, cost function

6. Compute action trajectory that satisfies boundary conditions,
stays in free state space and minimizes cost.



Differential constraints make things even harder

Holonomic constraint: Can be expressed as an equation involving only
system coordinates and possibly time.

¢(q,q,t) =0 - ¢(q,t) =0
Reduces # of DoFs by one

Nonholonomic constraint: A constraint that is not holonomic.

¢(q,q,t) =0

Constrains the way a configuration can be reached.




Differential constraints make things harder

X4

Emergency landing where ' ~-.___..-
UAV can only turn left  ---»

“Left-turning-car”

Nonholonomic constraint: state depends on path taken to achieve it;

expression constrains time derivatives of configuration.

(system is trapped in some sub-manifold of the configuration space)
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Plan that incorporates differential constraints

Formally called the boundary value problem (BVP)

Find a control trajectory u(t) € U

Such that ¢(0) = q1 , q(tf) = ¢
q(t) = f(q(t),u(t))
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How do we solve the BVP?

There are three possible cases

Case 1: We can analytically solve the BVP :)
\ S,/

N’

Case 2: We need to numerically solve the BVP.

Case 3: We can’t even solve the BVP!



Case 1: We can analytically solve the BVP :)

Consider the dynamics of your racecar

O <

'V cosO
V sin 6

_C tan 5_

0] < dimaa

q1 = (xlvylael)

q2 = (2,12, 62)
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Solution is called the Dubins Path

Dubins Path: Shortest curve connecting two points in R? satistying:
e A maximum path curvature constraint
e Prescribed initial and terminal tangents to path
e Vehicle can only travel forward

Dubins showed that if a solution exists, the shortest path
comprises only maximum-curvature (L, R) and/or straight-
line (S) segments.

There are 6 classes of possibly optimal paths

{LRL, RLR, LSL, LSR, RSL, RSR)}.
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Dubins Path

Ru.S,L,

Example Dubins path
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Planning with Nonholonomic Constraints

{LRL, RLR, LSL, LSR, RSL, RSR)}.

Given a query, generate ALL 6 options, and pick the shortest one!

We provide code for generating ,
Dubins paths for Lab 3! |

R.LsR,
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Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace W, where either W = R? or W = R3.
2. An obstacle region O C W.

3. A robot defined in WW. Either a rigid body A or a
collection of m links: Ay, As, ..., A,,.

4. The configuration space C (Cops and Ctree are then
defined).

5. An initial configuration qr € Ctree.

6. A goal configuration qg € Ctree- The initial and
goal configuration are often called a query (qr, g ).

Compute a (continuous) path, 7 : [0,1] — Crree, such
that 7(0) = qr and 7(1) = qg.

Also may want to minimize cost ¢(7)
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Theoretical guarantees that we desire

Completeness

A planner is complete if for any input, it correctly reports whether
or not a feasible path exists is finite time.

Optimality

Returns the best solution in finite time.
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Is there any planner that guarantees this?

Yes! 2D Visibility Graphs!

qr
qG

E.g. 2D polygon robots / obstacles can be solved

with visibility graphs

Typical runtime: O(N2 10g N)
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So, are we done ... ?

No! Planning in general is hard
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Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al. 79)

@ NP PSPACE

EXPTIME

Certain 3D robot planning

under uncertainty is
NEXPTIME-hard!

Even planning for translating (Canny et al. 87)

rectangles is PSPACE-hard!
(Hopcroft et al. 84)
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Why is it so hard?

1. Computing the C-space obstacle in high dimensions is hard

2. Planning in continuous high-dimension space is hard

Exponential dependency on dimension
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Why is it so hard?

We won’t! Instead we will use a collision checker!

A
Q
q)
¢ )
q)
g )
q)
¢ )
q)
¢ )
q)

We will bring it to discrete space by sampling configurations!
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Research in Motion Planning;:

Make good approximations

(that have guarantees)



Today's objective

1. General framework for motion planning
2. Inputs to any planner: Collision checking and steering

3. Planning on roadmaps - one class of instantiations of the

framework
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Why an abstract framework?

Algorithms we will cover
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General framework for motion planning
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General framework for motion planning

A lanni
r;;llggreiatnhnr:]ng Create graph  Search graph Interleave
x YL
RRT*P
e.g. fancy e.g. fancy e.g. fancy

—  random X heuristic X way of
sampler densitying

Whats the best Whats the best Whats the best

we can do? we can do? we can do”?
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For this lecture....

Assume you are given a super awesome search subroutine!

Optimal Path = SHORTESTPATH(V,E, start, goal)

(Next lecture we will talk about how we get this)

Assume complexity is O(‘V‘ log ‘V‘ —+ |ED

29



API for motion planning

Input

1. A collision checker

coll(q)
-

2. Steering method

steer(q1, q2)

dinit

|

Planner

-

Qgoal

Output

Collision
free path
joining
start and goal
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Let's take a look at the inputs

We need to give the planner a collision checker

0 in collision, i.e. q¢ € Cpps
coll(q) = | free
ree, 1.e. ¢ € Crree

What work does this function have to do?

Collision checking is expensive!
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Let's take a look at the inputs

We need to give the planner a steer function

Steer(ql, qQ)

A steer function tries to join two configurations with a feasible path

Computes simple path, calls coll(g), and returns success if path is free

Example: Connect them with a straight line and check for feasibility



Can steer be smart about collision checking?

steer(qi, ¢2) has to assure us line is collision free (up to a resolution)

Things we can try:
1. Step forward along the line and check each point

2. Step backwards along the line and check each point
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Can steer be smart about collision checking?

Say we chunk the line into 16 parts

d1

Any collision checking strategy corresponds to sequence

-1
—
(

[ ] 7 3

(Naive)

(Bisection)

a=1{(

T 7167167167

a =0,

I 2 3

8 4

] 2
—

16”16 1

e

° 7 3

16
15
6
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Can steer be smart about collision checking?

(Bisection)

a =0,

g strategy corresponds to sequence

I 2 3

8 4

*=0 1616 16"
12

16”16 1

e

° 7 3

16
15
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-1
—
(

[ ] 7 3
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Answer: Sample Densely (Van Der Corput Sequence)

Naive

Sequence Binary
. d—
1/16
1/8

3/16 HOV\L an we ensure that we

1/4
5/16
3/8
7/16
1/2
9/16
5/8
11/16
3/4
13/16
7/8
15/16

't better coverage?

O ~J O O i W DN H =

el el e e
Oy O i W N — O

Alternate between bounds of Config Space
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Now we are ready to talk about planner!

dinit
Input l Output
1. A collision checker
coll (q) Collision
f h
Planner r.ee. I.)at
joining

2. Steering method start and goal

steer(q1, ¢2)

dgoal
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Framework for planner

1. Create a graph

(Think about what makes a good graph as we go along)

2. Search the graph (assume solved for now)

38



Creating a graph: Abstract algorithm
G=(V,FE)

Vertices: set of configurations Edges: paths connecting
configurations
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Creating a graph: Abstract algorithm

() —

Vertices: set of configurations

1. Sample a set of collision

(V, E)

Edges: paths connecting

configurations

free vertices V (add start and goal)

Sample a configuration g
if coll(q) =1
V +— VU{q}
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Creating a graph: Abstract algorithm

() —

Vertices: set of configurations

1. Sample a set of collision

2. Connect “neighboring” vertices to get edges E

s

(V, E)

Edges: paths connecting

configurations

free vertices V (add start and goal)

for each candidate pair (v1,vs)
if steer(vy,vy) succeeds
E <+ EU (Ul, ?JQ)
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Strategy 1: Discretize configuration space

Create a lattice. Connect neighboring points (4-conn, 8-conn, ..

11

Theoretical guarantees: Resolution complete

What are the pros? What are the cons?

)

42



Strategy 2: Uniformly randomly sample

If C-space is a real vector space

for each dimension ¢
sample q(i) ~ [Ib, ub]

What are the pros of random sampling? Cons?

(Question:
How do we decide which vertices to connect?
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Strategy 2: Uniformly randomly sample

Connect vertices that are a within a radius

(Alternatively can connect k-nearest neighbors)
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This is the PRM Algorithm!

PRM = Probabilistic Roadmap

1. Sample vertices randomly

2. Connect vertices within radius (or k NN)

3. Search graph to find a solution

Theoretical Guarantees: It depends ...

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics & Automation,

12(4):566-580, June 1996.
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Questions we can ask PRM

1. When is it a good idea to collision
CheCk every Single edge? Probabilistic Roadmap

Ans: Multi-query!

2. How should we efliciently find
nearest neighbors?

Ans: Use a KD-Tree data-structure

0 5 10 15 20 25 30 35

3. How should we choose which X matars]
vertices to connect?

Ans: Up Next!

40

45

50
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What is the optimal radius?

What happens if radius too large? too small?
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What is the optimal radius?

log |V > 1/d " \where magic constant!

N > 2(1 4 1/d)1/d:u(cf’ree)
Cd

Set the radius to r =~y (

Also known as a Random Geometric Graph (RGG)



This is the PRM* Algorithm!

1. Sample vertices randomly
2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal

“Sampling-based Algorithms for Optimal Motion Planning”
Sertac Karaman and Emilio Frazzoli, IJRR 2011
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Can we do better than random?
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Uniform random Ideally we would
sampling tends to want points to be
clump spread out evenly
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Halton Sequence

(Generalization of
Van de Corput Sequence

Intuition: Create a sequence
using prime numbers that
uniformly densify space

Link for exact algorithm:
https:/ /observablehq.com /@jrus/halton
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How do we connect vertices?

-

Halton sequences have much better coverage

(i.e. they are low dispersion)

Connect vertices that are within a radius of

1
r = —
T\

>1/d

(as opposed to:)

. log [V \ "/*
AN
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This is the gPRM Algorithm!

1. Sample vertices randomly
2. Use optimal radius formula to connect vertices
3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal
AND Asymptotic rate of convergence

“Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance”
Lucas Janson, Brian Ichter, Marco Pavone, IJRR 2017
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What makes a good graph?

1. A good graph must be sparse (both in vertices and edges)

2. A good graph must have good coverage

Probabilistic Roadmap

3. A good graph must have good connectivity of free space
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The Narrow Passage: Planning’'s boogie man!

isolated clumps

Why is narrow passage mathematically hard to plan in?

Mathematical Question:

How many samples do we need to connect the space
(with high probability)?
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How many samples do we need?’

Theorem [Hsu et al., 1999| Let 2n vertices be sampled from Xg,.q -

Then the roadmap is connected with probability at least 1 — ~ if:

i log(

n> |8

€

The shape of free C-space is dictated by v, 3, € € [0, 1]

Visibility of free space (¢)

=0

Expansion of visibility (cv, /)

=0

Narrow passage has small values of v, (7, €

Hence, needs more samples to find a path
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How do we bias sampling?

We somehow need more samples here

/]

1. Sample near obstacle surtace?
V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. 1999

2. Add samples that are in between two obstacles?
D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners.2003.

3. Train a learner to detect the narrow passages?

B. Ichter, J. Harrison, M. Pavone. Learning Sampling Distributions for Robot Motion Planning, 2018
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Summary of ways to

Lattice
PRM
PRM*
gPRM
Bridge

(Gaussian

MAPRM

Approx. Visibility
Graph

Learnt Sampler

How to sample
vertices?

Discretize
Uniform random

Uniform random

Halton sequence

Sample with bridge test
Sample near obstacles

Sample along medial axis
Sample on surface of obstacles

Use CVAE to approximate
free space

create graphs

How to connect
vertices”?

connectivity rule
r-disc, k-nn

optimal r-disc, k-nn

optimal r-disc, k-nn
any visible points
r-disc, k-nn

r-disc, k-nn
any visible points

optimal r-disc, k-nn
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