Planning on Roadmaps

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury, Steve Lavalle
Logistics

- Lab 3
 - Deadline Friday March 6th
 - Demo Thursday March 5th (recitation slots)
 - Extra Credit important for final project

- Final Project
 - Out this weekend
 - Demo Thursday March 12th
 - Short writeup due Monday 16th

- Guest lecture Friday
 - Prof. Sidd Srinivasa
 - Lazy Search
 - Lazy Search is part of Lab 3!
Piano Mover’s Problem

\[C_{\text{free}} \]

\[C_{\text{obs}} \]
Geometric Path Planning Problem

Also known as Piano Mover’s Problem (Reif 79)

Given:
1. A workspace \(\mathcal{W} \), where either \(\mathcal{W} = \mathbb{R}^2 \) or \(\mathcal{W} = \mathbb{R}^3 \).
2. An obstacle region \(\mathcal{O} \subset \mathcal{W} \).
3. A robot defined in \(\mathcal{W} \). Either a rigid body \(\mathcal{A} \) or a collection of \(m \) links: \(\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m \).
4. The configuration space \(\mathcal{C} \) (\(\mathcal{C}_{\text{obs}} \) and \(\mathcal{C}_{\text{free}} \) are then defined).
5. An initial configuration \(\mathbf{q}_I \in \mathcal{C}_{\text{free}} \).
6. A goal configuration \(\mathbf{q}_G \in \mathcal{C}_{\text{free}} \). The initial and goal configuration are often called a query \((\mathbf{q}_I, \mathbf{q}_G) \).

Compute a (continuous) path, \(\tau : [0, 1] \to \mathcal{C}_{\text{free}} \), such that \(\tau(0) = \mathbf{q}_I \) and \(\tau(1) = \mathbf{q}_G \).

Also may want to minimize cost \(c(\tau) \)
But I just want to know how to plan for my racecar!

Alright, let’s look at differential constraints!
Differential constraints

So far we assumed only kinematic constraints

\[q \notin C_{obs} \]

When is this assumption true?

- when controller can track any path

- when robots move very slowly (stop and turn)
Differential constraints

We now introduce differential constraints

\[\dot{q} = f(q, u) \]

Two new terms:

1. Introduction of control space
2. Introduction of an equality constraint
Motion planning under differential constraints

1. Given world, obstacles, C-space, robot geometry (same)

2. Introduce state space X. Compute free and obstacle state space.

3. Given an action space U

4. Given a state transition equations $\dot{q} = f(q, u)$

5. Given initial and final state, cost function

\[J(q(t), u(t)) = \int c(q(t), u(t))dt \]

6. Compute action trajectory that satisfies boundary conditions, stays in free state space and minimizes cost.
Differential constraints make things even harder

Holonomic constraint: Can be expressed as an equation involving only system coordinates and possibly time.

\[\phi(q, \dot{q}, t) = 0 \quad \text{or} \quad \phi(q, t) = 0 \]

Reduces \# of DoFs by one

Nonholonomic constraint: A constraint that is *not* holonomic.

\[\phi(q, \dot{q}, t) = 0 \]

Constrains the way a configuration can be reached.
Differential constraints make things **harder**

Emergency landing where UAV can only turn left

“Left-turning-car”

Nonholonomic constraint: state depends on path taken to achieve it; expression constrains time derivatives of configuration. (system is trapped in some sub-manifold of the configuration space)
Plan that incorporates differential constraints

Formally called the boundary value problem (BVP)

Find a control trajectory \(u(t) \in U \)

Such that \(q(0) = q_1 \), \(q(t_f) = q_2 \)

\(\dot{q}(t) = f(q(t), u(t)) \)
How do we solve the BVP?

There are three possible cases

Case 1: We can analytically solve the BVP :) 🎉

Case 2: We need to numerically solve the BVP. 🤔

Case 3: We can’t even solve the BVP! 😱
Case 1: We can analytically solve the BVP :)
Solution is called the Dubins Path

Dubins Path: Shortest curve connecting two points in \mathbb{R}^2 satisfying:

- A maximum path curvature constraint
- Prescribed initial and terminal tangents to path
- Vehicle can only travel forward

Dubins showed that if a solution exists, the shortest path comprises only **maximum-curvature** (L, R) and/or **straight-line** (S) segments.

There are 6 classes of possibly optimal paths

$$\{LRL, RLR, LSL, LSR, RSL, RSR\}.$$
To be more precise, the duration of each primitive should also be specified. For \(L \) or \(R \), let subscript denote the total amount of rotation that accumulates during the application of the primitive. For \(S \), let subscript denote the total distance traveled. Using such subscripts, the Dubins curves can be more precisely characterized as

\[
\{ L_\alpha R_\beta L_\gamma, R_\alpha L_\beta R_\gamma, L_\alpha S_d L_\gamma, L_\alpha S_d R_\gamma, R_\alpha S_d L_\gamma, R_\alpha S_d R_\gamma \},
\]

in which \(\alpha, \gamma \in [0, 2\pi) \), \(\beta \in (\pi, 2\pi) \), and \(d \geq 0 \). Figure 15.4 illustrates two cases. Note that \(\beta \) must be greater than \(\pi \) (if it is less, then some other word becomes optimal).

It will be convenient to invent a compressed form of the words to group together paths that are qualitatively similar. This will be particularly valuable when Reeds-Shepp curves are introduced in Section 15.3.2 because there are 46 of them, as opposed to 6 Dubins curves. Let \(C \) denote a symbol that means "curve," and represents either \(R \) or \(L \). Using \(C \), the six words in (15.45) can be compressed to only two base words:

\[
\{ CCC, CSC \}.
\]

(15.46)

In this compressed form, remember that two consecutive \(C \)s must be filled by distinct turns (\(RR \) and \(LL \) are not allowed as subsequences). In compressed form, the base words can be specified more precisely as

\[
\{ C_\alpha C_\beta C_\gamma, C_\alpha S_d C_\gamma \},
\]

in which \(\alpha, \gamma \in [0, 2\pi) \), \(\beta \in (\pi, 2\pi) \), and \(d \geq 0 \).

Powerful information has been provided so far for characterizing the shortest paths; however, for a given \(q_I \) and \(q_G \), two problems remain:

1. Which of the six words in (15.45) yields the shortest path between \(q_I \) and \(q_G \)?

Example Dubins path

\[R_\alpha S_d L_\gamma \]
Planning with Nonholonomic Constraints

\{LRL, RLR, LSL, LSR, RSL, RSR\}.

Given a query, generate ALL 6 options, and pick the shortest one!

We provide code for generating Dubins paths for Lab 3!
Geometric Path Planning Problem

Also known as
Piano Mover’s Problem (Reif 79)

Given:
1. A workspace \mathcal{W}, where either $\mathcal{W} = \mathbb{R}^2$ or $\mathcal{W} = \mathbb{R}^3$.
2. An obstacle region $\mathcal{O} \subset \mathcal{W}$.
3. A robot defined in \mathcal{W}. Either a rigid body \mathcal{A} or a collection of m links: $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_m$.
4. The configuration space \mathcal{C} (\mathcal{C}_{obs} and $\mathcal{C}_{\text{free}}$ are then defined).
5. An initial configuration $\mathbf{q}_I \in \mathcal{C}_{\text{free}}$.
6. A goal configuration $\mathbf{q}_G \in \mathcal{C}_{\text{free}}$. The initial and goal configuration are often called a query $(\mathbf{q}_I, \mathbf{q}_G)$.

Compute a (continuous) path, $\tau : [0, 1] \to \mathcal{C}_{\text{free}}$, such that $\tau(0) = \mathbf{q}_I$ and $\tau(1) = \mathbf{q}_G$.

Also may want to minimize cost $c(\tau)$.
Theoretical guarantees that we desire

Completeness

A planner is complete if for any input, it correctly reports whether or not a feasible path exists is finite time.

Optimality

Returns the best solution in finite time.
Is there any planner that guarantees this?

Yes! 2D Visibility Graphs!

E.g. 2D polygon robots / obstacles can be solved with visibility graphs

Typical runtime: $O(N^2 \log N)$
So, are we done ...?

No! Planning in general is hard
Hardness of motion planning

Piano Mover’s problem is PSPACE-hard (Reif et al. 79)

Certain 3D robot planning under uncertainty is NEXPTIME-hard!

Even planning for translating rectangles is PSPACE-hard!

(Hopcroft et al. 84)
Why is it so hard?

1. Computing the C-space obstacle in high dimensions is hard

2. Planning in continuous high-dimension space is hard

Exponential dependency on dimension
Why is it so hard?

1. Computing the C-space obstacle in high dimensions is hard

 We won’t! Instead we will use a collision checker!

2. Planning in continuous high dimension space is hard

 We will bring it to discrete space by sampling configurations!
Research in Motion Planning:
Make good approximations
(that have guarantees)
Today’s objective

1. General framework for motion planning

2. Inputs to any planner: Collision checking and steering

3. Planning on roadmaps - one class of instantiations of the framework
Why an abstract framework?

Algorithms we will cover

Framework extends to more and more non-trivial algorithms
General framework for motion planning

Create a graph

Search the graph

Interleave
General framework for motion planning

Any planning algorithm

Create graph
Search graph
Interleave

Whats the best we can do?

RRT*-XYZ

e.g. fancy random sampler
×
e.g. fancy heuristic
×
e.g. fancy way of densifying
For this lecture....

Assume you are given a super awesome search subroutine!

Optimal Path = \textsc{ShortestPath}(V,E, \text{start}, \text{goal})

(Next lecture we will talk about how we get this)

Assume complexity is $O(|V| \log |V| + |E|)$
API for motion planning

Input

1. A collision checker
 \(\text{coll}(q) \)

2. Steering method
 \(\text{steer}(q_1, q_2) \)

Output

Collision free path joining start and goal

\(q_{\text{init}} \)

\(q_{\text{goal}} \)
Let’s take a look at the inputs

We need to give the planner a collision checker

\[
coll(q) = \begin{cases}
0 & \text{in collision, i.e. } q \in C_{obs} \\
1 & \text{free, i.e. } q \in C_{free}
\end{cases}
\]

What work does this function have to do?

Collision checking is expensive!
Let’s take a look at the inputs

We need to give the planner a steer function

\[\text{steer}(q_1, q_2) \]

A steer function tries to join two configurations with a feasible path
Computes simple path, calls \(\text{coll}(q) \), and returns success if path is free

Example: Connect them with a straight line and check for feasibility
Can steer be smart about collision checking?

steer\((q_1, q_2)\) has to assure us line is collision free (up to a resolution)

Things we can try:

1. Step forward along the line and check each point
2. Step backwards along the line and check each point

\[(1 - \alpha)q_1 + \alpha q_2 \]
Can steer be smart about collision checking?

Say we chunk the line into 16 parts

\[(1 - \alpha)q_1 + \alpha q_2\]

Any collision checking strategy corresponds to sequence

(Naive) \[\alpha = 0, \frac{1}{16}, \frac{2}{16}, \frac{3}{16}, \ldots, \frac{15}{16}\]

(Bisection) \[\alpha = 0, \frac{8}{16}, \frac{4}{16}, \frac{12}{16}, \ldots, \frac{15}{16}\]
Can steer be smart about collision checking?

Say we chunk the line into 16 parts

\[q_1 + \alpha q_2 \]

Any collision checking strategy corresponds to sequence

\[\alpha = 0, \frac{1}{16}, \frac{2}{16}, \frac{3}{16}, \ldots, \frac{15}{16} \]

(Bisection) \(\alpha = 0, \frac{8}{16}, \frac{4}{16}, \frac{12}{16}, \ldots, \frac{15}{16} \)

Can we get arbitrarily close to every element?
Answer: Sample Densely (Van Der Corput Sequence)

<table>
<thead>
<tr>
<th>i</th>
<th>Naive Sequence</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3/16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5/16</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7/16</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9/16</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11/16</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13/16</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7/8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15/16</td>
<td></td>
</tr>
</tbody>
</table>

How can we ensure that we get better coverage?

Alternate between bounds of Config Space
Now we are ready to talk about planner!

1. A collision checker \(\text{coll}(q) \)
2. Steering method \(\text{steer}(q_1, q_2) \)

Input

Output

Collision free path joining start and goal

\(q_{\text{init}} \)

\(q_{\text{goal}} \)
Framework for planner

1. Create a graph

(Think about what makes a good graph as we go along)

2. Search the graph (assume solved for now)
Creating a graph: Abstract algorithm

\[G = (V, E) \]

Vertices: set of configurations

Edges: paths connecting configurations
Creating a graph: Abstract algorithm

\[G = (V, E) \]

Vertices: set of configurations

Edges: paths connecting configurations

1. Sample a set of collision free vertices \(V \) (add start and goal)

Sample a configuration \(q \)

if \(\text{coll}(q) = 1 \)

\[V \leftarrow V \cup \{q\} \]
Creating a graph: Abstract algorithm

\[G = (V, E) \]

Vertices: set of configurations

Edges: paths connecting configurations

1. Sample a set of collision free vertices \(V \) (add start and goal)

2. Connect “neighboring” vertices to get edges \(E \)

for each candidate pair \((v_1, v_2) \)

if \(\text{steer}(v_1, v_2) \) succeeds

\[E \leftarrow E \cup (v_1, v_2) \]
Strategy 1: Discretize configuration space

Create a lattice. Connect neighboring points (4-conn, 8-conn, ...)

Theoretical guarantees: Resolution complete

What are the pros? What are the cons?
Strategy 2: Uniformly randomly sample

If C-space is a real vector space
for each dimension i
sample $q(i) \sim [lb, ub]$

What are the pros of random sampling? Cons?

Question:
How do we decide which vertices to connect?
Strategy 2: Uniformly randomly sample

Connect vertices that are within a radius (Alternatively can connect k-nearest neighbors)
This is the PRM Algorithm!

1. Sample vertices randomly
2. Connect vertices within radius (or k NN)
3. Search graph to find a solution

Theoretical Guarantees: It depends ...

Questions we can ask PRM

1. When is it a good idea to collision check every single edge?
 Ans: Multi-query!

2. How should we efficiently find nearest neighbors?
 Ans: Use a KD-Tree data-structure

3. How should we choose which vertices to connect?
 Ans: Up Next!
What is the optimal radius?

What happens if radius too large? too small?
What is the optimal radius?

Set the radius to

$$r = \gamma \left(\frac{\log |V|}{|V|} \right)^{1/d}$$

where magic constant!

$$\gamma \geq 2(1 + 1/d)^{1/d} \frac{\mu(C_{free})}{\zeta_d}$$

Also known as a Random Geometric Graph (RGG)
This is the PRM* Algorithm!

1. Sample vertices randomly

2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal

“Sampling-based Algorithms for Optimal Motion Planning”
Sertac Karaman and Emilio Frazzoli, IJRR 2011
Can we do better than random?

Uniform random sampling tends to clump

Ideally we would want points to be spread out evenly
Halton Sequence

Generalization of Van de Corput Sequence

Intuition: Create a sequence using prime numbers that uniformly densify space

Link for exact algorithm:
https://observablehq.com/@jrus/halton
How do we connect vertices?

Halton sequences have much better coverage
(i.e. they are low dispersion)

Connect vertices that are within a radius of

\[r = \gamma \left(\frac{1}{|V|} \right)^{1/d} \]
(as opposed to:)

\[r = \gamma \left(\frac{\log |V|}{|V|} \right)^{1/d} \]
This is the gPRM Algorithm!

1. Sample vertices randomly

2. Use optimal radius formula to connect vertices

3. Search graph to find a solution

Theorem: Probabilistically complete AND Asymptotically optimal AND Asymptotic rate of convergence

“Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance” Lucas Janson, Brian Ichter, Marco Pavone, IJRR 2017
What makes a good graph?

1. A good graph must be *sparse* (both in vertices and edges)

2. A good graph must have *good coverage*

3. A good graph must have *good connectivity* of free space
The Narrow Passage: Planning’s boogie man!

Why is narrow passage mathematically hard to plan in?

Mathematical Question:

How many samples do we need to connect the space (with high probability)?
How many samples do we need?

Theorem [Hsu et al., 1999] Let $2n$ vertices be sampled from X_{free}. Then the roadmap is connected with probability at least $1 - \gamma$ if:

$$n \geq \left[8 \frac{\log\left(\frac{8}{\varepsilon \alpha \gamma} \right)}{\varepsilon \alpha} + \frac{3}{\beta} + 2 \right]$$

The shape of free C-space is dictated by α, β, $\varepsilon \in [0, 1]$

Visibility of free space (ε)
Expansion of visibility (α, β)

Narrow passage has small values of α, β, ε

Hence, needs more samples to find a path
How do we bias sampling?

We somehow need more samples here

1. Sample near obstacle surface?

 V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. 1999

2. Add samples that are in between two obstacles?

3. Train a learner to detect the narrow passages?

 B. Ichter, J. Harrison, M. Pavone. Learning Sampling Distributions for Robot Motion Planning, 2018
Summary of ways to create graphs

<table>
<thead>
<tr>
<th>How to sample vertices?</th>
<th>How to connect vertices?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice</td>
<td>Discretize</td>
</tr>
<tr>
<td>PRM</td>
<td>Uniform random</td>
</tr>
<tr>
<td>PRM</td>
<td>Uniform random</td>
</tr>
<tr>
<td>gPRM</td>
<td>Halton sequence</td>
</tr>
<tr>
<td>Bridge</td>
<td>Sample with bridge test</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Sample near obstacles</td>
</tr>
<tr>
<td>MAPRM</td>
<td>Sample along medial axis</td>
</tr>
<tr>
<td>Approx. Visibility Graph</td>
<td>Sample on surface of obstacles</td>
</tr>
<tr>
<td>Learnt Sampler</td>
<td>Use CVAE to approximate free space</td>
</tr>
</tbody>
</table>

- connectivity rule
- r-disc, k-nn
- optimal r-disc, k-nn