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Heuristic Search

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury, Steve Lavalle, Max Likhachev

Instructor: Chris Mavrogiannis
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Create a graph

General framework for motion planning

Search the graph

Interleave
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Any planning  
algorithm 

Create graph Search graph Interleave

What’s the best 
we can do?

What’s the best 
we can do?

What’s the best 
we can do?

General framework for motion planning

RRT*-XYZ
e.g. fancy 
random 
sampler

e.g. fancy 
heuristic

e.g. fancy 
way of 

densifying
⇥ ⇥=



For this lecture….
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We will focus on the search assuming everything we need is given

Optimal Path = SHORTESTPATH(V,E, start, goal)



If you are serious about heuristic search
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This lecture: 
Skewed view of search  

that will be helpful for robot motion planning



Today’s objective
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1. Best-First search as a meta-algorithm

3. A* as another instance of Best-First Search

2. Dijkstra’s Algorithm as a Best-First Search

4. Heuristics for guiding Search



High-order bit
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Expansion of a search wavefront from start to goal

Courtesy wikipedia

Dijkstra A* Weighted A*



What do we want?
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1. Search to systematically reason over the space of paths

(minimize planning effort)

2. Find a (near)-optimal path quickly
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Best-First search
This is a meta-algorithm 

BFS maintains a priority queue of promising nodes

Each node s ranked by a function f(s)

Element 
(Node)

Priority Value 
 (f-value)

Node A f(A)

Node B f(B)

….. ……

Populate queue initially with start node
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Best-First search

Element 
(Node)

Priority Value 
 (f-value)

Node A f(A)

Node D f(D)

Node B f(B) 

Node C f(C)

A
C

D

Search explores graph by expanding to most promising node min f(s)

Terminate when you find the goal
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Best-First search

Key Idea: Choose f(s) wisely!

- minimize the number of expansions 

- when goal found, it has (near) optimal path  



Notation
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Given:

Start sstart Goal sgoal

Cost c(s, s’) 

Objects created:

OPEN: priority queue of nodes that have not been visited

CLOSED: list of visited nodes

g(s): estimate of the least cost from start to a given node

Graph G(V,E)



While sgoal not expanded do

Insert s’ to OPEN

Insert sstart into OPEN

Remove s with the smallest f(s) from OPEN
Insert s to CLOSED
For every successor s’ do

If g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’)

Best-First Search
Set g(sstart) = 0; all other g-values to inf; Set OPEN/CLOSED to empty
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Dijkstra’s Algorithm
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Best-First  
with 

f(s) = g(s)

estimate of the least cost 
from start to a given node
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm

Nice property:  
Only process nodes ONCE. Only process cheaper nodes than goal.
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Can we have a better f(s)?

Yes!  

Wouldn’t it be better if f(s)  
“knew” the goal?



Heuristics
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What if we had a heuristic h(s) that estimated the cost to goal?

Set the evaluation function f(s) = g(s) + h(s)



Example of heuristics?
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1. Minimum number of nodes to go to goal 

3. Solution to a relaxed problem

2. Euclidean distance to goal

4. Domain knowledge / Learning ….



A* [Hart, Nillson, Raphael, ’68]
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Let L be the length of the shortest path

Dijkstra

Expand every state 
 g(s) < L

A*

Expand every state  
f(s) = g(s) + h(s) < L

but A* only expands relevant states, i.e., does much less work!

Both find the optimal path …



A* Search

Computes optimal g-values for relevant states!

While sgoal not expanded do

Insert s’ to OPEN

Insert sstart into OPEN

Remove s with the smallest f(s) = g(s)+h(s) from OPEN
Insert s to CLOSED
For every successor s’, not in CLOSED do

If g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’)

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given



CLOSED = {} 
OPEN = {sstart} 

next state to expand: sstart

S2 S1

Sgoal

2

g=∞ 
h=2

g= ∞ 
h=1

g= ∞ 
h=02

S4 S3
3

g= ∞ 
h=2

g= ∞ 
h=1

1
Sstart

1

1

g=0 
h=3

A* Search



CLOSED = {} 
OPEN = {sstart} 

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=∞ 
h=2

g= ∞ 
h=1

g= ∞ 
h=02

S4 S3
3

g= ∞ 
h=2

g= ∞ 
h=1

1
Sstart

1

1

g=0 
h=3

A* Search



CLOSED = {sstart} 
OPEN = {s2} 

next state to expand: s2

S2 S1

Sgoal

2

g=1 
h=2

g= ∞ 
h=1

g= ∞ 
h=02

S4 S3
3

g= ∞ 
h=2

g= ∞ 
h=1

1
Sstart

1

1

g=0 
h=3

A* Search



S2 S1

Sgoal

2

g=1 
h=2

g= 3 
h=1

g= ∞ 
h=02

S4 S3
3

g= 2 
h=2

g= ∞ 
h=1

1
Sstart

1

1

g=0 
h=3CLOSED = {sstart,s2} 

OPEN = {s1,s4} 
next state to expand: s1

A* Search



S2 S1

Sgoal

2

g=1 
h=2

g= 3 
h=1

g= 5 
h=02

S4 S3
3

g= 2 
h=2

g= ∞ 
h=1

1
Sstart

1

1

g=0 
h=3CLOSED = {sstart,s2,s1} 

OPEN = {s4,sgoal} 
next state to expand: s4

A* Search



S2 S1

Sgoal

2

g=1 
h=2

g= 3 
h=1

g= 5 
h=02

S4 S3
3

g= 2 
h=2

g= 5 
h=1

1
Sstart

1

1

g=0 
h=3CLOSED = {sstart,s2,s1,s4} 

OPEN = {s3,sgoal} 
next state to expand: sgoal

A* Search



S2 S1

Sgoal

2

g=1 
h=2

g= 3 
h=1

g= 5 
h=02

S4 S3
3

g= 2 
h=2

g= 5 
h=1

1
Sstart

1

1

g=0 
h=3CLOSED = {sstart,s2,s1,s4,sgoal} 

OPEN = {s3} 
done

A* Search



S2 S1

Sgoal

2

g=1 
h=2

g= 3 
h=1

g= 5 
h=02

S4 S3
3

g= 2 
h=2

g= 5 
h=1

1
Sstart

1

1

g=0 
h=3

A* Search

Output path that minimizes Σg



S2 S1

Sgoal

2

g=1 
h=2

g= 3 
h=1

g= 5 
h=02

S4 S3
3

g= 2 
h=2

g= 5 
h=1

1
Sstart

1

1

g=0 
h=3

A* Search

PATH = {sstart,s2,s1,sgoal} 



Properties of heuristics
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What properties should h(s) satisfy? How does it affect search?

Admissible:  h(s) <= h*(s)  

If this true, the path returned by A* is optimal

h(goal) = 0

Consistency:  h(s) <= c(s,s’) + h(s’)  

If this true, A* is optimal AND efficient (will not re-expand a node)

h(goal) = 0s
s’

goal

c(s,s’)

h(s) h(s’) (triangle inequality)



Admissible vs Consistent
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Admissible

Consistent

Theorem: ALL consistent heuristics are admissible, 
not vice versa! 
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Takeaway: 
Heuristics are great because they focus 

search on relevant states  

AND 

still give us optimal solution
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Design of Informative Heuristics

• For grid-based navigation:
– Euclidean distance
– Manhattan distance: h(x,y) = abs(x-xgoal) + abs(y-ygoal)
– Diagonal distance: h(x,y) = max(abs(x-xgoal), abs(y-ygoal))
– More informed distances???

Carnegie Mellon University

Which heuristics are admissible for
4-connected grid?
8-connected grid?

Courtesy Max Likhachev 
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Is admissibility always what we want?

Admissible Inadmissible
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Solution  
Quality

Number of  
states  

expanded

Can inadmissible heuristics help us 
with this tradeoff?



Courtesy Max Likhachev 37



Courtesy Max Likhachev 38



Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

Courtesy Max Likhachev 39



Effect of the Heuristic Function

sgoal
sstart

… …

A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly  
running out of memory (memory: O(n))

Courtesy Max Likhachev 40



Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal

sstart sgoal
…

…

solution is always ε-suboptimal: 
cost(solution) ≤ ε·cost(optimal solution)

Courtesy Max Likhachev 41



Effect of the Heuristic Function

Courtesy Max Likhachev 42



Effect of the Heuristic Function

Weighted A* Search: expands states in the order of f = g+εh 
values, ε > 1 = bias towards states that are closer to goal

 20DOF simulated robotic arm 
state-space size: over 1026 states 

 planning with ARA* (anytime version of weighted A*)
Courtesy Max Likhachev 43



Effect of the Heuristic Function
• planning in 8D (<x,y> for each foothold) 
• heuristic is Euclidean distance from the center of the body to the goal location 
• cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A* 
Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin 

Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza

Courtesy Max Likhachev 
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