Heuristic Search

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury, Steve Lavalle, Max Likhachev

General framework for motion planning

Create a graph

Search the graph

Interleave

General framework for motion planning

What's the best we can do? What's the best What's the best we can do? we can do?

For this lecture....

We will focus on the search assuming everything we need is given

Optimal Path = SHORTESTPATH(V, E, start, goal)

If you are serious about heuristic search

This lecture: Skewed view of search that will be helpful for robot motion planning

Today's objective

- 1. Best-First search as a meta-algorithm
- 2. Dijkstra's Algorithm as a Best-First Search
- 3. A* as another instance of Best-First Search
 - 4. Heuristics for guiding Search

High-order bit

Expansion of a search wavefront from start to goal

7

What do we want?

1. Search to systematically reason over the space of paths

2. Find a (near)-optimal path quickly

(minimize planning effort)

Best-First search

This is a meta-algorithm

BFS maintains a priority queue of promising nodes

Each node s ranked by a function f(s)

Populate queue initially with start node

Element (Node)	Priority Value (f-value)
Node A	f(A)
Node B	f(B)
	•••••

Best-First search

Search explores graph by expanding to most promising node min f(s)

Terminate when you find the goal

Element (Node)	Priority Value (f-value)
Node A	f(A)
Node D	f(D)
Node B	f(B)
Node C	f(C)

Best-First search

Key Idea: Choose f(s) wisely!
when goal found, it has (near) optimal path
minimize the number of expansions

Notation

Given:

Start s_{start} Goal s_{goal} Cost c(s, s')Graph G(V,E)Objects created:

OPEN: priority queue of nodes that have not been visited

CLOSED: list of visited nodes

g(s): estimate of the least cost from start to a given node

Best-First Search

Set $g(s_{start}) = 0$; all other g-values to inf; Set OPEN/CLOSED to empty

Insert s_{start} into OPEN

While s_{goal} not expanded do

Dijkstra's Algorithm

Best-First

with

f(s) = g(s)

estimate of the least cost from start to a given node

Dijkstra's Algorithm

- optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$ the cost $c(s_l, s_{goal})$ of an edge from s_1 to s_{goal} 2 S_2 S_1 Sstar Sgoal 1 3 S_4 S_3

Dijkstra's Algorithm

optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$ the cost $c(s_l, s_{goal})$ of an edge from s_1 to s_{goal} *g*=3 g=I2 S_2 S_1 g=0g=5S_{star} 1 S goa 3 S_{4}

 $g=\mathfrak{I}$

Nice property:

g=2

Only process nodes ONCE. Only process cheaper nodes than goal.

Can we have a better f(s)?

Yes!

Wouldn't it be better if f(s) "knew" the goal?

Heuristics

What if we had a heuristic h(s) that estimated the cost to goal?

Set the evaluation function f(s) = g(s) + h(s)

Example of heuristics?

1. Minimum number of nodes to go to goal

2. Euclidean distance to goal

- 3. Solution to a relaxed problem
- 4. Domain knowledge / Learning

A* [Hart, Nillson, Raphael, '68]

Let L be the length of the shortest path

Dijkstra

 $\begin{array}{l} {\rm Expand\ every\ state}\\ g(s) < L \end{array}$

A*

 $\begin{array}{l} {\rm Expand\ every\ state} \\ {\rm f(s)} = {\rm g(s)} + {\rm h(s)} < {\rm L} \end{array}$

Both find the optimal path ...

but A* only expands relevant states, i.e., does much less work!

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While s_{goal} not expanded do Remove s with the smallest f(s) = g(s)+h(s) from OPEN Insert s to CLOSED For every successor s', not in CLOSED do If g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s')Insert s' to OPEN

Computes **optimal** g-values for **relevant** states!

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While \underline{s}_{aoal} not expanded do

Remove s with the smallest f(s) = g(s)+h(s) from OPEN Insert s to CLOSED For every successor s', not in CLOSED do If g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s')Insert s' to OPEN

 $CLOSED = \{\}$ $OPEN = \{s_{start}\}$ next state to expand: s_{start}

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While \underline{s}_{aoal} not expanded do Remove s with the smallest f(s) = g(s) + h(s) from OPEN Insert s to CLOSEDFor every successor s', not in CLOSED do If g(s') > g(s) + c(s,s')q(s') = q(s) + c(s,s') $g(s_2) > g(s_{start}) + c(s_{start}, s_2)$ Insert s' to *OPEN* $g=\infty$ $g = \infty$ h=2h=12 g=0 S_1 S_2 $g = \infty$ h=32 h=0 $CLOSED = \{\}$ (S_{goal} S 1 $OPEN = \{s_{start}\}$ start *next state to expand: s*_{start} 3 S_4 S_3 $g = \infty$ $g = \infty$

h=2

h=1

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While \underline{s}_{qoal} not expanded do

$$CLOSED = \{s_{start}\}$$
$$OPEN = \{s_2\}$$
next state to expand: s_2

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While \underline{s}_{aoal} not expanded do

Remove s with the smallest f(s) = g(s)+h(s) from OPEN Insert s to CLOSED For every successor s', not in CLOSED do If g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s')Insert s' to OPEN

 $CLOSED = \{s_{start}, s_2\}$ $OPEN = \{s_1, s_4\}$ next state to expand: s_1

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While \underline{s}_{aoal} not expanded do

Remove s with the smallest f(s) = g(s)+h(s) from OPEN Insert s to CLOSED For every successor s', not in CLOSED do If g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s')Insert s' to OPEN

 $CLOSED = \{s_{start}, s_2, s_1\}$ $OPEN = \{s_4, s_{goal}\}$ next state to expand: s_4

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While \underline{s}_{aoal} not expanded do

Remove s with the smallest f(s) = g(s)+h(s) from OPEN Insert s to CLOSED For every successor s', not in CLOSED do If g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s')Insert s' to OPEN

 $CLOSED = \{s_{start}, s_2, s_1, s_4\}$ $OPEN = \{s_3, s_{goal}\}$ $next state to expand: s_{goal}$

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While \underline{s}_{aoal} not expanded do

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While s_{qoal} not expanded do

Set f-values, g-values to inf; Set OPEN/CLOSED to empty; h given Insert s_{start} into OPEN

While \underline{s}_{qoal} not expanded do

$$PATH = \{s_{start}, s_2, s_1, s_{goal}\}$$

Properties of heuristics

What properties should h(s) satisfy? How does it affect search?

Admissible:
$$h(s) \le h^*(s)$$
 $h(goal) = 0$

If this true, the path returned by A* is optimal
goal
$$h(s) | h(s')$$
 (triangle inequality)
 $s \in c(s,s')$ (consistency: $h(s) <= c(s,s') + h(s')$ (goal) = 0

If this true, A* is optimal AND efficient (will not re-expand a node)

Theorem: ALL consistent heuristics are admissible, not vice versa!

Heuristics are great because they focus search on relevant states

AND

still give us optimal solution

Design of Informative Heuristics

- For grid-based navigation:
 - Euclidean distance

- Manhattan distance: $h(x,y) = abs(x-x_{goal}) + abs(y-y_{goal})$
- Diagonal distance: $h(x,y) = max(abs(x-x_{goal}), abs(y-y_{goal}))$

Is admissibility always what we want?

Admissible

Inadmissible

Can inadmissible heuristics help us with this tradeoff?

- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

A* Search: expands states in the order of f = g+h values

A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly running out of memory (memory: O(n))

Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

 $\epsilon = 1.5$

Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

20DOF simulated robotic arm state-space size: over 10²⁶ states

Courtesy Max Likhachev

- planning in 8D (<x,y> for each foothold)
- heuristic is Euclidean distance from the center of the body to the goal location
- cost of edges based on kinematic stability of the robot and quality of footholds

Uses R* - A randomized version of weighted A* Joint work between Max Likhachev, Subhrajit Bhattacharya, Joh Bohren, Sachin Chitta, Daniel D. Lee, Aleksandr Kushleyev, and Paul Vernaza