
1

Introduction to
Motion Planning

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury, Steve Lavalle

Instructor: Chris Mavrogiannis

2

Estimate
state

Control
robot to

follow plan

Plan a
sequence of

motions

3

Sensors Actuators

Robot interacts
with

environment
Laser

GPS

Camera

World
Model

State
Estimation

Helicopter
Models

Control

Local
Planning

Global
Planning

Safety
Planning

Stick

PedalsLever

4

A prospective grad student:
“Is planning just A*?”

Challenge: Flying from Seattle to Pittsburgh?

5

Piece 1: How do I get out of this classroom?

Piece 2: Even if we have an in-depth plan get to our terminal,
and some idea how to check-in and board plane, 

do you
 bother to plan your path through Pittsburgh terminal?

(from Leslie Kaebling)

Piece 3: What if you wanted a rental car? 
That’s something you have to plan in advance right?

Challenge: Flying from Seattle to Pittsburgh?

6

Piece 1: How do I get out of this classroom?

Piece 2: Even if we have an in-depth plan get to our terminal,
and some idea how to check-in and board plane, 

do you
 bother to plan your path through Pittsburgh terminal?

(from Leslie Kaebling)

Piece 3: What if you wanted a rental car? 
That’s something you have to plan in advance right?

Motion Planning

7

Today’s objective

8

1. Broad scope and challenges in motion planning

2. Formalize motion planning

3. Hardness of planning, extensions to differential constraints

Games

9

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 5

1 2 3 4

5 6 7 8

9 11 12

13

10

14 15

(a) (b)

Figure 1.1: The Rubik’s cube (a), sliding-tile puzzle (b), and other related puzzles
are examples of discrete planning problems.

in recent years to use the term agent, possibly with adjectives to yield an intelligent
agent or software agent. Control theory usually refers to the decision maker as a
controller. The plan in this context is sometimes referred to as a policy or control
law. In a game-theoretic context, it might make sense to refer to decision makers
as players. Regardless of the terminology used in a particular discipline, this book
is concerned with planning algorithms that find a strategy for one or more decision
makers. Therefore, remember that terms such as robot, agent, and controller are
interchangeable.

1.2 Motivational Examples and Applications

Planning problems abound. This section surveys several examples and applications
to inspire you to read further.

Why study planning algorithms? There are at least two good reasons. First, it
is fun to try to get machines to solve problems for which even humans have great
difficulty. This involves exciting challenges in modeling planning problems, design-
ing efficient algorithms, and developing robust implementations. Second, planning
algorithms have achieved widespread successes in several industries and academic
disciplines, including robotics, manufacturing, drug design, and aerospace appli-
cations. The rapid growth in recent years indicates that many more fascinating
applications may be on the horizon. These are exciting times to study planning
algorithms and contribute to their development and use.

Discrete puzzles, operations, and scheduling Chapter 2 covers discrete
planning, which can be applied to solve familiar puzzles, such as those shown in
Figure 1.1. They are also good at games such as chess or bridge [898]. Discrete
planning techniques have been used in space applications, including a rover that
traveled on Mars and the Earth Observing One satellite [207, 382, 896]. When

10

Games

Recipe for discrete planning in Games

11

2.1. INTRODUCTION TO DISCRETE FEASIBLE PLANNING 29

plied, transforms the initial state xI to some state inXG. The model is summarized
as:

Formulation 2.1 (Discrete Feasible Planning)

1. A nonempty state space X, which is a finite or countably infinite set of states.

2. For each state x ∈ X, a finite action space U(x).

3. A state transition function f that produces a state f(x, u) ∈ X for every
x ∈ X and u ∈ U(x). The state transition equation is derived from f as
x′ = f(x, u).

4. An initial state xI ∈ X.

5. A goal set XG ⊂ X.

It is often convenient to express Formulation 2.1 as a directed state transition
graph. The set of vertices is the state space X. A directed edge from x ∈ X to
x′ ∈ X exists in the graph if and only if there exists an action u ∈ U(x) such that
x′ = f(x, u). The initial state and goal set are designated as special vertices in
the graph, which completes the representation of Formulation 2.1 in graph form.

2.1.2 Examples of Discrete Planning

Example 2.1 (Moving on a 2D Grid) Suppose that a robot moves on a grid
in which each grid point has integer coordinates of the form (i, j). The robot
takes discrete steps in one of four directions (up, down, left, right), each of which
increments or decrements one coordinate. The motions and corresponding state
transition graph are shown in Figure 2.1, which can be imagined as stepping from
tile to tile on an infinite tile floor.

This will be expressed using Formulation 2.1. Let X be the set of all integer
pairs of the form (i, j), in which i, j ∈ Z (Z denotes the set of all integers). Let
U = {(0, 1), (0,−1), (1, 0), (−1, 0)}. Let U(x) = U for all x ∈ X. The state
transition equation is f(x, u) = x + u, in which x ∈ X and u ∈ U are treated as
two-dimensional vectors for the purpose of addition. For example, if x = (3, 4)
and u = (0, 1), then f(x, u) = (3, 5). Suppose for convenience that the initial state
is xI = (0, 0). Many interesting goal sets are possible. Suppose, for example, that
XG = {(100, 100)}. It is easy to find a sequence of actions that transforms the
state from (0, 0) to (100, 100).

The problem can be made more interesting by shading in some of the square
tiles to represent obstacles that the robot must avoid, as shown in Figure 2.2. In
this case, any tile that is shaded has its corresponding vertex and associated edges
deleted from the state transition graph. An outer boundary can be made to fence
in a bounded region so that X becomes finite. Very complicated labyrinths can
be constructed. !

From Games to Robotics

12

Discrete state space -
no recipe for going to continuous state action space

Rules of game already known -
no notion of model uncertainty

Easy to simulate moves -
no expensive physics / geometric computation

The Piano Mover’s Problem

13

[Schwartz and Sharir, ’83]

14
https://www.youtube.com/watch?v=UBAGTsnzAbk

1990s!
(Bruce Donald)

https://www.youtube.com/watch?v=UBAGTsnzAbk

15

8 S. M. LaValle: Planning Algorithms

Figure 1.4: An application of motion planning to the sealing process in automotive
manufacturing. Planning software developed by the Fraunhofer Chalmers Centre
(FCC) is used at the Volvo Cars plant in Sweden (courtesy of Volvo Cars and
FCC).

Volvo Cars plant in Sweden (courtesy of Volvo Cars and FCC)

High-dimensional planning

16

12 S. M. LaValle: Planning Algorithms

Figure 1.8: Across the top, a motion computed by a planning algorithm, for a
digital actor to reach into a refrigerator [498]. In the lower left, a digital actor
plays chess with a virtual robot [544]. In the lower right, a planning algorithm
computes the motions of 100 digital actors moving across terrain with obstacles
[591].

Virtual humans and humanoid robots Beyond video games, there is broader
interest in developing virtual humans. See Figure 1.8. In the field of computer
graphics, computer-generated animations are a primary focus. Animators would
like to develop digital actors that maintain many elusive style characteristics of
human actors while at the same time being able to design motions for them from
high-level descriptions. It is extremely tedious and time consuming to specify all
motions frame-by-frame. The development of planning algorithms in this context
is rapidly expanding.

Why stop at virtual humans? The Japanese robotics community has inspired
the world with its development of advanced humanoid robots. In 1997, Honda
shocked the world by unveiling an impressive humanoid that could walk up stairs
and recover from lost balance. Since that time, numerous corporations and in-
stitutions have improved humanoid designs. Although most of the mechanical
issues have been worked out, two principle difficulties that remain are sensing and
planning. What good is a humanoid robot if it cannot be programmed to accept
high-level commands and execute them autonomously? Figure 1.9 shows work
from the University of Tokyo for which a plan computed in simulation for a hu-

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 13

(a) (b)

Figure 1.9: (a) This is a picture of the H7 humanoid robot and one of its developers,
S. Kagami. It was developed in the JSK Laboratory at the University of Tokyo.
(b) Bringing virtual reality and physical reality together. A planning algorithm
computes stable motions for a humanoid to grab an obstructed object on the floor
[561].

manoid robot is actually applied on a real humanoid. Figure 1.10 shows humanoid
projects from the Japanese automotive industry.

Parking cars and trailers The planning problems discussed so far have not
involved differential constraints, which are the main focus in Part IV. Consider
the problem of parking slow-moving vehicles, as shown in Figure 1.11. Most peo-
ple have a little difficulty with parallel parking a car and much greater difficulty
parking a truck with a trailer. Imagine the difficulty of parallel parking an airport
baggage train! See Chapter 13 for many related examples. What makes these
problems so challenging? A car is constrained to move in the direction that the
rear wheels are pointing. Maneuvering the car around obstacles therefore becomes
challenging. If all four wheels could turn to any orientation, this problem would
vanish. The term nonholonomic planning encompasses parking problems and many
others. Figure 1.12a shows a humorous driving problem. Figure 1.12b shows an
extremely complicated vehicle for which nonholonomic planning algorithms were
developed and applied in industry.

“Wreckless” driving Now consider driving the car at high speeds. As the speed
increases, the car must be treated as a dynamical system due to momentum. The
car is no longer able to instantaneously start and stop, which was reasonable for
parking problems. Although there exist planning algorithms that address such
issues, there are still many unsolved research problems. The impact on industry

(Kuffner, 2003)

(Lau and Kuffner, 2005) Honda H7

Real-time planning

17

Willow garage, 2009
https://www.youtube.com/watch?v=qbQDJ1c_Nxk&feature=youtu.be

https://www.youtube.com/watch?v=qbQDJ1c_Nxk&feature=youtu.be

Real-time planning

18https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be

Stanford DARPA Challenge, 2007

https://www.youtube.com/watch?v=qXZt-B7iUyw&feature=youtu.be

Real time helicopter planning

19

20

Figure 7: Visualization of the first of three articulated motion planning problems in which the HERB robot must move its right
arm from the start configuration (pictured) to any of seven grasp configurations for a mug. Shown is the progression of the
Alternate selector on one of the randomly generated roadmaps; approximately 2% of the 7D roadmap is shown in gray by
projecting onto the space of end-effector positions.

This form is derived from simplifying the induced geomet-
ric series; note that if exp(�wab) Zba, the value Z 0

xy
is

infinite. One can also derive the inverse: given values Z 0,
calculate the values Z if an edge were removed.

This incremental formulation of (7) allows for the corre-
sponding score p(e) for edges to be updated efficiently dur-
ing each iteration of LazySP as the wlazy value for edges
chosen for evaluation are updated. In fact, if the values Z
are stored in a square matrix, the update for all pairs after an
edge weight change consists of a single vector outer product.

5 Experiments
We compared the seven edge selectors on three classes of
shortest path problems. The average number of edges evalu-
ated by each, as well as timing results from our implementa-
tions, are shown in Figure 8. In each case, the estimate was
chosen so that west w, so that all runs produced optimal
paths. The experimental results serve primarily to illustrate
that the A* and LWA* algorithms (i.e. Expand and Forward)
are not optimally edge-efficient, but they also expose dif-
ferences in behavior and prompt future research directions.
All experiments were conducted using an open-source im-
plementation.1 Motion planning results were implemented
using OMPL (Şucan, Moll, and Kavraki 2012).

Random partially-connected graphs. We tested on a set
of 1000 randomly-generated undirected graphs with |V | =
100, with each pair of vertices sharing an edge with prob-
ability 0.05. Edges have an independent 0.5 probability of
having infinite weight, else the weight is uniformly dis-
tributed on [1, 2]; the estimated weight was unity for all
edges. For the WeightSamp selector, we drew 1000 w sam-
ples at each iteration from the above edge weight distribu-
tion. For the Partition selector, we used � = 2.

Roadmap graphs on the unit square. We considered
roadmap graphs formed via the first 100 points of the (2, 3)-
Halton sequence on the unit square with a connection radius
of 0.15, with 30 pairs of start and goal vertices chosen ran-
domly. The edge weight function was derived from 30 sam-
pled obstacle fields consisting of 10 randomly placed axis-

1https://github.com/personalrobotics/lemur

aligned boxes with dimensions uniform on [0.1, 0.3], with
each edge having infinite weight on collision, and weight
equal to its Euclidean length otherwise. One of the resulting
900 example problems is shown in Figure 2. For the Weight-
Samp selector, we drew 1000 w samples with a naı̈ve edge
weight distribution with each having an independent 0.1 col-
lision probability. For the Partition selector, we used � = 21.

Roadmap graphs for robot arm motion planning. We
considered roadmap graphs in the configuration space corre-
sponding to the 7-DOF right arm of the HERB home robot
(Srinivasa et al. 2012) across three motion planning prob-
lems inspired by a table clearing scenario (see Figure 7). The
problems consisted of first moving from the robot’s home
configuration to one of 7 feasible grasp configurations for
a mug (pictured), second transferring the mug to one of 72
feasible configurations with the mug above the blue bin, and
third returning to the home configuration. Each problem was
solved independently. This common scenario spans various
numbers of starts/goals and allows a comparison w.r.t. diffi-
culty at different problem stages as discussed later.

For each problem, 50 random graphs were constructed by
applying a random offset to the 7D Halton sequence with
N = 1000, with additional vertices for each problem start
and goal configuration. We used an edge connection radius
of 3 rad, resulting |E| ranging from 23404 to 28109. Each
edge took infinite weight on collision, and weight equal to its
Euclidean length otherwise. For the WeightSamp selector,
we drew 1000 w samples with a naı̈ve edge weight distribu-
tion in which each edge had an independent 0.1 probability
of collision. For the Partition selector, we used � = 3.

6 Discussion
The first observation that is evident from the experimen-
tal results is that lazy evaluation – whether using Forward
(LWA*) or one of the other selectors – grossly outperforms
Expand (A*). The relative penalty that Expand incurs by
evaluating all edges from each expanded vertex is a func-
tion of the graph’s branching factor.

Since the Forward and Reverse selectors are simply mir-
rors of each other, they exhibit similar performance averaged
across the PartConn and UnitSquare problem classes, which

Generality of planning algorithms

Challenges that we will focus on

21

1. Search in continuous space such that a  
feasible path exists? optimal path?

2. Solve this problems in real-time

Planning ingredients

22

23

Configuration Space

The Configuration Space

24

(a)Translating Triangle

2 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

Figure 5.1: A robot translating in the plane: (a) a tri-
angular robot moves in a workspace with a single rect-
angular obstacle. (b) The C-space obstacle.

Figure 5.2: A two-joint planar arm: (a) links are pinned
and there are no joint limits. (b) The C-space.

surfaces. Let the closed set A(q) ⊂ W denote the set
of points occupied by the robot when at configuration
q ∈ C; this set is usually modeled using the same primi-
tives as used for O. The C-space obstacle region, Cobs, is
defined as

Cobs = {q ∈ C | A(q) ∩O ≠ ∅}. (5.1)

Since O and A(q) are closed sets in W , the obstacle
region is a closed set in C. The set of configurations that
avoid collision is Cfree = C \ Cobs, and is called the free
space.

Simple examples of C-spaces

Translating Planar Rigid Bodies: The robot’s
configuration can be specified by a reference point (x, y)
on the planar rigid body relative to some fixed coordi-
nate frame. Therefore the C-space is equivalent to R2.
Figure 5.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle
in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints
on all q ∈ C. Motion planning for the robot is now
equivalent to motion planning for a point in the C-space.

Planar Arms: Figure 5.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so

that they can only rotate around the joints and there are
no joint limits. For this arm, specifying the rotational
parameters θ1 and θ2 provides the configuration. Each
joint angle θi corresponds to a point on the unit circle
S1 and the C-space is S1×S1 = T 2, the two-dimensional
torus as Figure 5.2 shows. For a higher number of links
without joint limits, the C-space can be similarly defined
as:

C = S
1 × S

1 × · · ·× S
1. (5.2)

If a joint has limits, then each corresponding S1 is often
replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration:

C = R
2 × S

1 × S
1 × · · ·× S

1 (5.3)

Additional examples of C-spaces are provided in Sec-
tion 5.6.1, where topological properties of configuration
spaces are discussed.

5.1.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
Piano Mover’s problem [84], is defined as follows.
Given:

1. A workspace W , where either W = R2 or W = R3.

2. An obstacle region O ⊂W .

3. A robot defined in W . Either a rigid body A or a
collection of m links: A1,A2, . . . ,Am.

4. The configuration space C (Cobs and Cfree are then
defined).

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree. The initial and
goal configuration are often called a query (qI , qG).

Compute a (continuous) path, τ : [0, 1] → Cfree, such
that τ(0) = qI and τ(1) = qG.

5.1.3 Complexity of Motion Planning

The main complications in motion planning are that it is
not easy to directly compute Cobs and Cfree and the di-
mensionality of the C-space is often quite high. In terms
of computational complexity, the Piano Mover’s problem
was studied early on and it was shown to be PSPACE-hard
by Reif [84]. A series of polynomial time algorithms for
problems with fixed dimension suggested an exponential
dependence on the problem dimensionality [92, 93]. A

(b) 2-joint planar arm

(c) Racecar (d) Manipulator

The Configuration Space

25

The configuration space or C-space is the manifold that
contains the set of transformations achievable by the robot.

Complete specification of the
location of every point on robot geometry

Cq 2

<latexit sha1_base64="M/lqN+7raDD/gzFD4QB3PGIwDW4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48VTFtoQ9lsN+3S3U3c3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OZ+54kqzWL5YKYJDQQeSRYxgk0uPfaZHFRrbt2dA60SryA1KNAaVL/6w5ikgkpDONa657mJCTKsDCOczir9VNMEkwke0Z6lEguqg2x+6wydWWWIoljZkgbN1d8TGRZaT0VoOwU2Y73s5eJ/Xi810XWQMZmkhkqyWBSlHJkY5Y+jIVOUGD61BBPF7K2IjLHCxNh4KjYEb/nlVdK+qHuN+uV9o9a8KeIowwmcwjl4cAVNuIMW+EBgDM/wCm+OcF6cd+dj0Vpyiplj+APn8wcg1I5O</latexit>

Configuration

The Configuration Space

26

The configuration space is a topological space

128 S. M. LaValle: Planning Algorithms

ulate further study (see the literature overview at the end of the chapter). To
advance further in this chapter, it is not necessary to understand all of the ma-
terial of this section; however, the more you understand, the deeper will be your
understanding of motion planning in general.

4.1.1 Topological Spaces

Recall the concepts of open and closed intervals in the set of real numbers R. The
open interval (0, 1) includes all real numbers between 0 and 1, except 0 and 1.
However, for either endpoint, an infinite sequence may be defined that converges
to it. For example, the sequence 1/2, 1/4, . . ., 1/2i converges to 0 as i tends to
infinity. This means that we can choose a point in (0, 1) within any small, positive
distance from 0 or 1, but we cannot pick one exactly on the boundary of the
interval. For a closed interval, such as [0, 1], the boundary points are included.

The notion of an open set lies at the heart of topology. The open set definition
that will appear here is a substantial generalization of the concept of an open
interval. The concept applies to a very general collection of subsets of some larger
space. It is general enough to easily include any kind of configuration space that
may be encountered in planning.

A set X is called a topological space if there is a collection of subsets of X called
open sets for which the following axioms hold:

1. The union of any number of open sets is an open set.

2. The intersection of a finite number of open sets is an open set.

3. Both X and ∅ are open sets.

Note that in the first axiom, the union of an infinite number of open sets may be
taken, and the result must remain an open set. Intersecting an infinite number of
open sets, however, does not necessarily lead to an open set.

For the special case of X = R, the open sets include open intervals, as ex-
pected. Many sets that are not intervals are open sets because taking unions and
intersections of open intervals yields other open sets. For example, the set

∞
⋃

i=1

(
1

3i
,
2

3i

)

, (4.1)

which is an infinite union of pairwise-disjoint intervals, is an open set.

Closed sets Open sets appear directly in the definition of a topological space.
It next seems that closed sets are needed. Suppose X is a topological space. A
subset C ⊂ X is defined to be a closed set if and only if X \C is an open set. Thus,
the complement of any open set is closed, and the complement of any closed set
is open. Any closed interval, such as [0, 1], is a closed set because its complement,
(−∞, 0) ∪ (1,∞), is an open set. For another example, (0, 1) is an open set;

(Planning Algorithms, Ch 4.1.1)

Intuition: Most general notion of space that allows for definition of
continuity, connectedness and convergence

The Configuration Space

27

The configuration space is a manifold

134 S. M. LaValle: Planning Algorithms

graphs that are not isomorphic produce topological graphs that are not homeomor-
phic. This allows many distinct, interesting topological spaces to be constructed.
A few are shown in Figure 4.3. !

4.1.2 Manifolds

In motion planning, efforts are made to ensure that the resulting configuration
space has nice properties that reflect the true structure of the space of transforma-
tions. One important kind of topological space, which is general enough to include
most of the configuration spaces considered in Part II, is called a manifold. Intu-
itively, a manifold can be considered as a “nice” topological space that behaves at
every point like our intuitive notion of a surface.

Manifold definition A topological space M ⊆ Rm is a manifold4 if for every
x ∈ M , an open set O ⊂ M exists such that: 1) x ∈ O, 2) O is homeomorphic to
Rn, and 3) n is fixed for all x ∈ M . The fixed n is referred to as the dimension
of the manifold, M . The second condition is the most important. It states that
in the vicinity of any point, x ∈ M , the space behaves just like it would in the
vicinity of any point y ∈ Rn; intuitively, the set of directions that one can move
appears the same in either case. Several simple examples that may or may not be
manifolds are shown in Figure 4.4.

One natural consequence of the definitions is that m ≥ n. According to Whit-
ney’s embedding theorem [449], m ≤ 2n+1. In other words, R2n+1 is “big enough”
to hold any n-dimensional manifold.5 Technically, it is said that the n-dimensional
manifold M is embedded in Rm, which means that an injective mapping exists from
M to Rm (if it is not injective, then the topology of M could change).

As it stands, it is impossible for a manifold to include its boundary points
because they are not contained in open sets. A manifold with boundary can be
defined requiring that the neighborhood of each boundary point of M is homeo-
morphic to a half-space of dimension n (which was defined for n = 2 and n = 3 in
Section 3.1) and that the interior points must be homeomorphic to Rn.

The presentation now turns to ways of constructing some manifolds that fre-
quently appear in motion planning. It is important to keep in mind that two

4Manifolds that are not subsets of Rm may also be defined. This requires thatM is a Hausdorff
space and is second countable, which means that there is a countable number of open sets from
which any other open set can be constructed by taking a union of some of them. These conditions
are automatically satisfied when assuming M ⊆ Rm; thus, it avoids these extra complications
and is still general enough for our purposes. Some authors use the term manifold to refer to a
smooth manifold. This requires the definition of a smooth structure, and the homeomorphism
is replaced by diffeomorphism. This extra structure is not needed here but will be introduced
when it is needed in Section 8.3.

5One variant of the theorem is that for smooth manifolds, R2n is sufficient. This bound is
tight because RPn (n-dimensional projective space, which will be introduced later in this section),
cannot be embedded in R2n−1.

(Planning Algorithms, Ch 4.1.2)

Intuition: Manifold is a nice topological space that locally behaves
like a surface

28

Example 1: Translating triangle

(cartesian product)

R⇥ R = R2

2 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

Figure 5.1: A robot translating in the plane: (a) a tri-
angular robot moves in a workspace with a single rect-
angular obstacle. (b) The C-space obstacle.

Figure 5.2: A two-joint planar arm: (a) links are pinned
and there are no joint limits. (b) The C-space.

surfaces. Let the closed set A(q) ⊂ W denote the set
of points occupied by the robot when at configuration
q ∈ C; this set is usually modeled using the same primi-
tives as used for O. The C-space obstacle region, Cobs, is
defined as

Cobs = {q ∈ C | A(q) ∩O ≠ ∅}. (5.1)

Since O and A(q) are closed sets in W , the obstacle
region is a closed set in C. The set of configurations that
avoid collision is Cfree = C \ Cobs, and is called the free
space.

Simple examples of C-spaces

Translating Planar Rigid Bodies: The robot’s
configuration can be specified by a reference point (x, y)
on the planar rigid body relative to some fixed coordi-
nate frame. Therefore the C-space is equivalent to R2.
Figure 5.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle
in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints
on all q ∈ C. Motion planning for the robot is now
equivalent to motion planning for a point in the C-space.

Planar Arms: Figure 5.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so

that they can only rotate around the joints and there are
no joint limits. For this arm, specifying the rotational
parameters θ1 and θ2 provides the configuration. Each
joint angle θi corresponds to a point on the unit circle
S1 and the C-space is S1×S1 = T 2, the two-dimensional
torus as Figure 5.2 shows. For a higher number of links
without joint limits, the C-space can be similarly defined
as:

C = S
1 × S

1 × · · ·× S
1. (5.2)

If a joint has limits, then each corresponding S1 is often
replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration:

C = R
2 × S

1 × S
1 × · · ·× S

1 (5.3)

Additional examples of C-spaces are provided in Sec-
tion 5.6.1, where topological properties of configuration
spaces are discussed.

5.1.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
Piano Mover’s problem [84], is defined as follows.
Given:

1. A workspace W , where either W = R2 or W = R3.

2. An obstacle region O ⊂W .

3. A robot defined in W . Either a rigid body A or a
collection of m links: A1,A2, . . . ,Am.

4. The configuration space C (Cobs and Cfree are then
defined).

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree. The initial and
goal configuration are often called a query (qI , qG).

Compute a (continuous) path, τ : [0, 1] → Cfree, such
that τ(0) = qI and τ(1) = qG.

5.1.3 Complexity of Motion Planning

The main complications in motion planning are that it is
not easy to directly compute Cobs and Cfree and the di-
mensionality of the C-space is often quite high. In terms
of computational complexity, the Piano Mover’s problem
was studied early on and it was shown to be PSPACE-hard
by Reif [84]. A series of polynomial time algorithms for
problems with fixed dimension suggested an exponential
dependence on the problem dimensionality [92, 93]. A

29

Example 2: 2-joint planar arm

S1 ⇥ S1

4.1. BASIC TOPOLOGICAL CONCEPTS 135

Yes

NoYes

Yes

Yes No

Yes No

Figure 4.4: Some subsets of R2 that may or may not be manifolds. For the three
that are not, the point that prevents them from being manifolds is indicated.

manifolds will be considered equivalent if they are homeomorphic (recall the donut
and coffee cup).

Cartesian products There is a convenient way to construct new topological
spaces from existing ones. Suppose that X and Y are topological spaces. The
Cartesian product, X × Y , defines a new topological space as follows. Every
x ∈ X and y ∈ Y generates a point (x, y) in X × Y . Each open set in X × Y
is formed by taking the Cartesian product of one open set from X and one from
Y . Exactly one open set exists in X × Y for every pair of open sets that can be
formed by taking one from X and one from Y . Furthermore, these new open sets
are used as a basis for forming the remaining open sets of X × Y by allowing any
unions and finite intersections of them.

A familiar example of a Cartesian product is R×R, which is equivalent to R2.
In general, Rn is equivalent to R×Rn−1. The Cartesian product can be taken over
many spaces at once. For example, R × R × · · · × R = Rn. In the coming text,
many important manifolds will be constructed via Cartesian products.

1D manifolds The set R of reals is the most obvious example of a 1D manifold
because R certainly looks like (via homeomorphism) R in the vicinity of every
point. The range can be restricted to the unit interval to yield the manifold (0, 1)
because they are homeomorphic (recall Example 4.5).

Another 1D manifold, which is not homeomorphic to (0, 1), is a circle, S1. In
this case Rm = R2, and let

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. (4.5)

If you are thinking like a topologist, it should appear that this particular circle
is not important because there are numerous ways to define manifolds that are

Circle

2 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

Figure 5.1: A robot translating in the plane: (a) a tri-
angular robot moves in a workspace with a single rect-
angular obstacle. (b) The C-space obstacle.

Figure 5.2: A two-joint planar arm: (a) links are pinned
and there are no joint limits. (b) The C-space.

surfaces. Let the closed set A(q) ⊂ W denote the set
of points occupied by the robot when at configuration
q ∈ C; this set is usually modeled using the same primi-
tives as used for O. The C-space obstacle region, Cobs, is
defined as

Cobs = {q ∈ C | A(q) ∩O ≠ ∅}. (5.1)

Since O and A(q) are closed sets in W , the obstacle
region is a closed set in C. The set of configurations that
avoid collision is Cfree = C \ Cobs, and is called the free
space.

Simple examples of C-spaces

Translating Planar Rigid Bodies: The robot’s
configuration can be specified by a reference point (x, y)
on the planar rigid body relative to some fixed coordi-
nate frame. Therefore the C-space is equivalent to R2.
Figure 5.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle
in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints
on all q ∈ C. Motion planning for the robot is now
equivalent to motion planning for a point in the C-space.

Planar Arms: Figure 5.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so

that they can only rotate around the joints and there are
no joint limits. For this arm, specifying the rotational
parameters θ1 and θ2 provides the configuration. Each
joint angle θi corresponds to a point on the unit circle
S1 and the C-space is S1×S1 = T 2, the two-dimensional
torus as Figure 5.2 shows. For a higher number of links
without joint limits, the C-space can be similarly defined
as:

C = S
1 × S

1 × · · ·× S
1. (5.2)

If a joint has limits, then each corresponding S1 is often
replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration:

C = R
2 × S

1 × S
1 × · · ·× S

1 (5.3)

Additional examples of C-spaces are provided in Sec-
tion 5.6.1, where topological properties of configuration
spaces are discussed.

5.1.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
Piano Mover’s problem [84], is defined as follows.
Given:

1. A workspace W , where either W = R2 or W = R3.

2. An obstacle region O ⊂W .

3. A robot defined in W . Either a rigid body A or a
collection of m links: A1,A2, . . . ,Am.

4. The configuration space C (Cobs and Cfree are then
defined).

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree. The initial and
goal configuration are often called a query (qI , qG).

Compute a (continuous) path, τ : [0, 1] → Cfree, such
that τ(0) = qI and τ(1) = qG.

5.1.3 Complexity of Motion Planning

The main complications in motion planning are that it is
not easy to directly compute Cobs and Cfree and the di-
mensionality of the C-space is often quite high. In terms
of computational complexity, the Piano Mover’s problem
was studied early on and it was shown to be PSPACE-hard
by Reif [84]. A series of polynomial time algorithms for
problems with fixed dimension suggested an exponential
dependence on the problem dimensionality [92, 93]. A

= T2

30

Example 3: Racecar

R2 ⇥ S1

SE(2)special euclidean group

Guess the C-space

31

16 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

Type of Robot C-space Representation
Mobile robot translating in the plane R2

Mobile robot translating and rotating in the plane SE(2) or R2 × S1

Rigid body translating in the three-space R3

A spacecraft SE(3) or R3 × SO(3)
An n-joint revolute arm T n

A planar mobile robot with an attached n-joint arm SE(2)× T n

Table 5.1: Some common robots and their C-spaces

roadmap method selects candidate vertices to connect
a new configuration given a distance-defined neighbor-
hood. Similarly, the rapidly-exploring dense trees ex-
pands the tree from the nearest node of the tree to
a newly sampled configuration. Usually, a metric, ρ :
C × C → R, is defined, which satisfies the standard ax-
ioms: nonnegativity, reflexivity, symmetry, and the tri-
angle inequality.

Two difficult issues that arise in constructing a met-
ric are: 1) the topology of C must be respected, and 2)
several different quantities, such as linear and angular
displacements, must be compared in some way. To illus-
trate the second issue, consider defining a metric ρz for
a space constructed as Z = X × Y as

ρz(z, z′) = ρz(x, y, x′, y′) = c1ρx(x, x′) + c2ρy(y, y′).
(5.12)

Above, c1 and c2 are arbitrary positive constants that
indicate the relative weights of the two components. For
a 2D rotation, θi, expressed as ai = cos θi and bi = sin θi,
a useful metric is:

ρ(a1, b1, a2, b2) = cos−1(a1a2 + b1b2). (5.13)

The 3D equivalent is obtained by defining

ρ0(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2), (5.14)

in which each hi = (ai, bi, ci, di) is a unit quater-
nion. The metric is defined as ρ(h1, h2) =
min(ρ0(h1, h2), ρ0(h1,−h2)), by respecting the required
identification of antipodal points. This computes the
shortest distance in R4, for a path constrained to the
unit sphere.

In some algorithms, defining volume on C may also be
important. In general, this leads to a measure space, for
which the volume function (called measure) must sat-
isfy axioms that resemble the probability axioms, but
without normalization. For transformation groups, one
must be careful to define volumes in a way that is invari-
ant with respect to transformations. Such volumes are

called Haar measure. Defining volumes via balls using
the metric definitions (5.13) and (5.14) actually satisfy
this concern.

Probabilistic vs. Deterministic Sampling

The C-space may be sampled probabilistically or deter-
ministically. Either way, the requirement is usually that
a dense sequence, α, of samples is obtained. This means
that in the limit as the number of samples tends to in-
finity, the samples get arbitrarily close to every point in
C. For probabilistic sampling, this denseness (with prob-
ability one) ensures probabilistic completeness of a plan-
ning algorithm. For deterministic sampling, it ensures
resolution completeness, which means that if a solution
exists, the algorithm is guaranteed to find it; otherwise,
it may run forever.

For probabilistic sampling, samples are selected ran-
domly over C, using a uniform probability density func-
tion. To obtain uniformity in a meaningful way, the Haar
measure should be used. This is straightforward in many
cases; SO(3) however is tricky. A uniform with respect
to Haar measure random quaternion is selected as fol-
lows. Choose three points u1, u2, u3 ∈ [0, 1] uniformly at
random, and let [4]

h = (
√

1− u1 sin 2πu2,
√

1− u1 cos 2πu2,√
u1 sin 2πu3,

√
u1 cos 2πu3).

(5.15)

Even though random samples are uniform in some
sense, they are also required to have some irregular-
ity to satisfy statistical tests. This has motivated the
development of deterministic sampling schemes that of-
fer better performance [76]. Instead of being concerned
with randomness, deterministic sampling techniques are
designed to optimize criteria, such as discrepancy and
dispersion. Discrepancy penalizes regularity in the sam-
ple, which frequently causes trouble in numerical inte-
gration. Dispersion gives the radius of the largest empty
(not containing samples) ball. Thus, driving dispersion

(Kavraki and LaValle)

32

Obstacles

Obstacle specification

33

Robot operates in a 2D / 3D workspace W = R2 or R3

Subset of this space is obstacles O ⇢ W

semi-algebraic models (polygons, polyhedra)

Geometric shape of the robot
(set of points occupied by robot at a config) A(q) ⇢ W

2 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

Figure 5.1: A robot translating in the plane: (a) a tri-
angular robot moves in a workspace with a single rect-
angular obstacle. (b) The C-space obstacle.

Figure 5.2: A two-joint planar arm: (a) links are pinned
and there are no joint limits. (b) The C-space.

surfaces. Let the closed set A(q) ⊂ W denote the set
of points occupied by the robot when at configuration
q ∈ C; this set is usually modeled using the same primi-
tives as used for O. The C-space obstacle region, Cobs, is
defined as

Cobs = {q ∈ C | A(q) ∩O ≠ ∅}. (5.1)

Since O and A(q) are closed sets in W , the obstacle
region is a closed set in C. The set of configurations that
avoid collision is Cfree = C \ Cobs, and is called the free
space.

Simple examples of C-spaces

Translating Planar Rigid Bodies: The robot’s
configuration can be specified by a reference point (x, y)
on the planar rigid body relative to some fixed coordi-
nate frame. Therefore the C-space is equivalent to R2.
Figure 5.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle
in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints
on all q ∈ C. Motion planning for the robot is now
equivalent to motion planning for a point in the C-space.

Planar Arms: Figure 5.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so

that they can only rotate around the joints and there are
no joint limits. For this arm, specifying the rotational
parameters θ1 and θ2 provides the configuration. Each
joint angle θi corresponds to a point on the unit circle
S1 and the C-space is S1×S1 = T 2, the two-dimensional
torus as Figure 5.2 shows. For a higher number of links
without joint limits, the C-space can be similarly defined
as:

C = S
1 × S

1 × · · ·× S
1. (5.2)

If a joint has limits, then each corresponding S1 is often
replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration:

C = R
2 × S

1 × S
1 × · · ·× S

1 (5.3)

Additional examples of C-spaces are provided in Sec-
tion 5.6.1, where topological properties of configuration
spaces are discussed.

5.1.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
Piano Mover’s problem [84], is defined as follows.
Given:

1. A workspace W , where either W = R2 or W = R3.

2. An obstacle region O ⊂W .

3. A robot defined in W . Either a rigid body A or a
collection of m links: A1,A2, . . . ,Am.

4. The configuration space C (Cobs and Cfree are then
defined).

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree. The initial and
goal configuration are often called a query (qI , qG).

Compute a (continuous) path, τ : [0, 1] → Cfree, such
that τ(0) = qI and τ(1) = qG.

5.1.3 Complexity of Motion Planning

The main complications in motion planning are that it is
not easy to directly compute Cobs and Cfree and the di-
mensionality of the C-space is often quite high. In terms
of computational complexity, the Piano Mover’s problem
was studied early on and it was shown to be PSPACE-hard
by Reif [84]. A series of polynomial time algorithms for
problems with fixed dimension suggested an exponential
dependence on the problem dimensionality [92, 93]. A

C-space obstacle region
Cfree = C \ Cobs

Example 1: Point in Plane

34

qinit

qgoal

Cobs

Cobs

*Inpired by Matt Mason’s Mechanics of Robotics Manipulation

Example 2: Round Robot in Plane

35

qgoal

qinit

*Inpired by Matt Mason’s Mechanics of Robotics Manipulation

Cobs

Example 3: Translating triangle

36

2 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

Figure 5.1: A robot translating in the plane: (a) a tri-
angular robot moves in a workspace with a single rect-
angular obstacle. (b) The C-space obstacle.

Figure 5.2: A two-joint planar arm: (a) links are pinned
and there are no joint limits. (b) The C-space.

surfaces. Let the closed set A(q) ⊂ W denote the set
of points occupied by the robot when at configuration
q ∈ C; this set is usually modeled using the same primi-
tives as used for O. The C-space obstacle region, Cobs, is
defined as

Cobs = {q ∈ C | A(q) ∩O ≠ ∅}. (5.1)

Since O and A(q) are closed sets in W , the obstacle
region is a closed set in C. The set of configurations that
avoid collision is Cfree = C \ Cobs, and is called the free
space.

Simple examples of C-spaces

Translating Planar Rigid Bodies: The robot’s
configuration can be specified by a reference point (x, y)
on the planar rigid body relative to some fixed coordi-
nate frame. Therefore the C-space is equivalent to R2.
Figure 5.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle
in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints
on all q ∈ C. Motion planning for the robot is now
equivalent to motion planning for a point in the C-space.

Planar Arms: Figure 5.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so

that they can only rotate around the joints and there are
no joint limits. For this arm, specifying the rotational
parameters θ1 and θ2 provides the configuration. Each
joint angle θi corresponds to a point on the unit circle
S1 and the C-space is S1×S1 = T 2, the two-dimensional
torus as Figure 5.2 shows. For a higher number of links
without joint limits, the C-space can be similarly defined
as:

C = S
1 × S

1 × · · ·× S
1. (5.2)

If a joint has limits, then each corresponding S1 is often
replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration:

C = R
2 × S

1 × S
1 × · · ·× S

1 (5.3)

Additional examples of C-spaces are provided in Sec-
tion 5.6.1, where topological properties of configuration
spaces are discussed.

5.1.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
Piano Mover’s problem [84], is defined as follows.
Given:

1. A workspace W , where either W = R2 or W = R3.

2. An obstacle region O ⊂W .

3. A robot defined in W . Either a rigid body A or a
collection of m links: A1,A2, . . . ,Am.

4. The configuration space C (Cobs and Cfree are then
defined).

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree. The initial and
goal configuration are often called a query (qI , qG).

Compute a (continuous) path, τ : [0, 1] → Cfree, such
that τ(0) = qI and τ(1) = qG.

5.1.3 Complexity of Motion Planning

The main complications in motion planning are that it is
not easy to directly compute Cobs and Cfree and the di-
mensionality of the C-space is often quite high. In terms
of computational complexity, the Piano Mover’s problem
was studied early on and it was shown to be PSPACE-hard
by Reif [84]. A series of polynomial time algorithms for
problems with fixed dimension suggested an exponential
dependence on the problem dimensionality [92, 93]. A

A(q)

O ⇢ W

Cobs

Can be efficiently computed using Minkowski sum

37

Example 4: SE(2) robot

O ⇢ W

A(q) ⇢ W

38

Example 4: SE(2) robot

https://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of_Motion_Planning.php

(Courtesy Matt Klingensmith)

https://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of_Motion_Planning.php

39

Example 5: 2-link planar arm

Courtesy Tapomayukh Bhattacharya

40

Example 3: 2-link planar arm

Courtesy Tapomayukh Bhattacharya

41

Geometric Path Planning Problem

Geometric Path Planning Problem

42

Also known as
Piano Mover’s Problem (Reif 79)

2 CHAPTER 5. MOTION PLANNING BY LYDIA E. KAVRAKI AND STEVEN M. LAVALLE

Figure 5.1: A robot translating in the plane: (a) a tri-
angular robot moves in a workspace with a single rect-
angular obstacle. (b) The C-space obstacle.

Figure 5.2: A two-joint planar arm: (a) links are pinned
and there are no joint limits. (b) The C-space.

surfaces. Let the closed set A(q) ⊂ W denote the set
of points occupied by the robot when at configuration
q ∈ C; this set is usually modeled using the same primi-
tives as used for O. The C-space obstacle region, Cobs, is
defined as

Cobs = {q ∈ C | A(q) ∩O ≠ ∅}. (5.1)

Since O and A(q) are closed sets in W , the obstacle
region is a closed set in C. The set of configurations that
avoid collision is Cfree = C \ Cobs, and is called the free
space.

Simple examples of C-spaces

Translating Planar Rigid Bodies: The robot’s
configuration can be specified by a reference point (x, y)
on the planar rigid body relative to some fixed coordi-
nate frame. Therefore the C-space is equivalent to R2.
Figure 5.1 gives an example of a C-space for a triangular
robot and a single polygonal obstacle. The obstacle
in the C-space can be traced by sliding the robot
around the workspace obstacle to find the constraints
on all q ∈ C. Motion planning for the robot is now
equivalent to motion planning for a point in the C-space.

Planar Arms: Figure 5.2 gives an example of a two-
joint planar arm. The bases of both links are pinned, so

that they can only rotate around the joints and there are
no joint limits. For this arm, specifying the rotational
parameters θ1 and θ2 provides the configuration. Each
joint angle θi corresponds to a point on the unit circle
S1 and the C-space is S1×S1 = T 2, the two-dimensional
torus as Figure 5.2 shows. For a higher number of links
without joint limits, the C-space can be similarly defined
as:

C = S
1 × S

1 × · · ·× S
1. (5.2)

If a joint has limits, then each corresponding S1 is often
replaced with R, even though it is a finite interval. If
the base of the planar arm is mobile and not pinned,
then the additional translation parameters must also be
considered in the arm’s configuration:

C = R
2 × S

1 × S
1 × · · ·× S

1 (5.3)

Additional examples of C-spaces are provided in Sec-
tion 5.6.1, where topological properties of configuration
spaces are discussed.

5.1.2 Geometric Path Planning Problem

The basic motion planning problem, also known as the
Piano Mover’s problem [84], is defined as follows.
Given:

1. A workspace W , where either W = R2 or W = R3.

2. An obstacle region O ⊂W .

3. A robot defined in W . Either a rigid body A or a
collection of m links: A1,A2, . . . ,Am.

4. The configuration space C (Cobs and Cfree are then
defined).

5. An initial configuration qI ∈ Cfree.

6. A goal configuration qG ∈ Cfree. The initial and
goal configuration are often called a query (qI , qG).

Compute a (continuous) path, τ : [0, 1] → Cfree, such
that τ(0) = qI and τ(1) = qG.

5.1.3 Complexity of Motion Planning

The main complications in motion planning are that it is
not easy to directly compute Cobs and Cfree and the di-
mensionality of the C-space is often quite high. In terms
of computational complexity, the Piano Mover’s problem
was studied early on and it was shown to be PSPACE-hard
by Reif [84]. A series of polynomial time algorithms for
problems with fixed dimension suggested an exponential
dependence on the problem dimensionality [92, 93]. A

Also may want to minimize cost
c(⌧)

Can we solve this for some problems?

43

6.2. POLYGONAL OBSTACLE REGIONS 263

qG

qI

Figure 6.12: To solve a query, qI and qG are connected to all visible roadmap
vertices, and graph search is performed.

qG

qI

Figure 6.13: The shortest path in the extended roadmap is the shortest path
between qI and qG.

which takes only O(n2 lg n) time. The idea is to perform a radial sweep from each
reflex vertex, v. A ray is started at θ = 0, and events occur when the ray touches
vertices. A set of bitangents through v can be computed in this way in O(n lg n)
time. Since there are O(n) reflex vertices, the total running time is O(n2 lg n). See
Chapter 15 of [264] for more details. There exists an algorithm that can compute
the shortest-path roadmap in time O(n lg n+m), in which m is the total number
of edges in the roadmap [384]. If the obstacle region is described by a simple poly-
gon, the time complexity can be reduced to O(n); see [709] for many shortest-path
variations and references.

To improve numerical robustness, the shortest-path roadmap can be imple-
mented without the use of trigonometric functions. For a sequence of three points,
p1, p2, p3, define the left-turn predicate, fl : R2 × R2 × R2 → {true, false}, as

6.2. POLYGONAL OBSTACLE REGIONS 263

qG

qI

Figure 6.12: To solve a query, qI and qG are connected to all visible roadmap
vertices, and graph search is performed.

qG

qI

Figure 6.13: The shortest path in the extended roadmap is the shortest path
between qI and qG.

which takes only O(n2 lg n) time. The idea is to perform a radial sweep from each
reflex vertex, v. A ray is started at θ = 0, and events occur when the ray touches
vertices. A set of bitangents through v can be computed in this way in O(n lg n)
time. Since there are O(n) reflex vertices, the total running time is O(n2 lg n). See
Chapter 15 of [264] for more details. There exists an algorithm that can compute
the shortest-path roadmap in time O(n lg n+m), in which m is the total number
of edges in the roadmap [384]. If the obstacle region is described by a simple poly-
gon, the time complexity can be reduced to O(n); see [709] for many shortest-path
variations and references.

To improve numerical robustness, the shortest-path roadmap can be imple-
mented without the use of trigonometric functions. For a sequence of three points,
p1, p2, p3, define the left-turn predicate, fl : R2 × R2 × R2 → {true, false}, as

Yes! E.g. 2D polygon robots / obstacles can be solved
with visibility graphs

44

So, are we done?

No! Planning is hard

Hardness of motion planning

45

Piano Mover’s problem is PSPACE-hard (Reif et al.)300 S. M. LaValle: Planning Algorithms

P NP PSPACE EXPTIME

Figure 6.40: It is known that P ⊂ EXPTIME is a strict subset; however, it is not
known precisely how large NP and PSPACE are.

or EXPTIME. A language A is called X-hard if every language B in class X is
polynomial-time reducible to A. In short, this means that in polynomial time,
any language in B can be translated into instances for language A, and then the
decisions for A can be correctly translated back in polynomial time to correctly
decide B. Thus, if A can be decided, then within a polynomial-time factor, every
language in X can be decided. The hardness concept can even be applied to
a language (problem) that does not belong to the class. For example, we can
declare that a language A is NP-hard even if A ̸∈NP (it could be harder and lie in
EXPTIME, for example). If it is known that the language is both hard for some
class X and is also a member of X, then it is called X-complete (i.e., NP-complete,
PSPACE-complete, etc.).8 Note that because of this uncertainty regarding P, NP,
and PSPACE, one cannot say that a problem is intractable if it is NP-hard or
PSPACE-hard, but one can, however, if the problem is EXPTIME-hard. One
additional remark: it is useful to remember that PSPACE-hard implies NP-hard.

Lower bounds for motion planning The general motion planning problem,
Formulation 4.1, was shown in 1979 to be PSPACE-hard by Reif [817]. In fact, the
problem was restricted to polyhedral obstacles and a finite number of polyhedral
robot bodies attached by spherical joints. The coordinates of all polyhedra are
assumed to be in Q (this enables a finite-length string encoding of the problem
instance). The proof introduces a fascinating motion planning instance that in-
volves many attached, dangling robot parts that must work their way through a
complicated system of tunnels, which together simulates the operation of a sym-
metric Turing machine. Canny later established that the problem in Formulation
4.1 (expressed using polynomials that have rational coefficients) lies in PSPACE
[173]. Therefore, the general motion planning problem is PSPACE-complete.

Many other lower bounds have been shown for a variety of planning problems.
One famous example is the Warehouseman’s problem shown in Figure 6.41. This

8If you remember hearing that a planning problem is NP-something, but cannot remember
whether it was NP-hard or NP-complete, then it is safe to say NP-hard because NP-complete
implies NP-hard. This can similarly be said for other classes, such as PSPACE-complete vs.
PSPACE-hard.

6.5. COMPLEXITY OF MOTION PLANNING 301

Figure 6.41: Even motion planning for a bunch of translating rectangles inside of
a rectangular box in R2 is PSPACE-hard (and hence, NP-hard).

problem involves a finite number of translating, axis-aligned rectangles in a rect-
angular world. It was shown in [461] to be PSPACE-hard. This example is a
beautiful illustration of how such a deceptively simple problem formulation can
lead to such a high lower bound. More recently, it was even shown that planning
for Sokoban, which is a warehouseman’s problem on a discrete 2D grid, is also
PSPACE-hard [255]. Other general motion planning problems that were shown
to be PSPACE-hard include motion planning for a chain of bodies in the plane
[460, 490] and motion planning for a chain of bodies among polyhedral obsta-
cles in R3. Many lower bounds have been established for a variety of extensions
and variations of the general motion planning problem. For example, in [172] it
was established that a certain form of planning under uncertainty for a robot in
a 3D polyhedral environment is NEXPTIME-hard, which is harder than any of
the classes shown in Figure 6.40; the hardest problems in this NEXPTIME are
believed to require doubly exponential time to solve.

The lower bound or hardness results depend significantly on the precise repre-
sentation of the problem. For example, it is possible to make problems look easier
by making instance encodings that are exponentially longer than they should be.
The running time or space required is expressed in terms of n, the input size. If
the motion planning problem instances are encoded with exponentially more bits
than necessary, then a language that belongs to P is obtained. As long as the
instance encoding is within a polynomial factor of the optimal encoding (this can
be made precise using Kolmogorov complexity [630]), then this bizarre behavior
is avoided. Another important part of the representation is to pay attention to
how parameters in the problem formulation can vary. We can redefine motion

Even planning for translating
rectangles is PSPACE-hard!

(Hopcroft et al. 84)

Certain 3D robot planning
under uncertainty is
NEXPTIME-hard!

(Canny et al. 87)

Why is it hard?

46

1. Computing the C-space obstacle is hard

2. Planning in continuous high-dimension space is hard

Exponential dependency on dimension

47

Research in Motion Planning: 

Tractable approximations with
provable guarantees

Differential constraints

48

In geometric path planning, we were only dealing with C-space

q 2 C

ẋ = f(x, u)x = (q, q̇)

Let the state space x be the following augmented C-space

We now introduce differential constraints

q̇
q̈

�
= f(

q
q

�
, u)

800 S. M. LaValle: Planning Algorithms

Wrong!

(a) (b)

Figure 14.4: (a) The time-limited reachable set for the Dubins car facing to the
right; (b) this is not the time-limited reachable set for the Reeds-Shepp car!

states due to nature were specified in the forward projection. In the current
setting, possible future states are determined by the unspecified actions of the
robot. Rather than looking k stages ahead, the time-limited reachable set looks for
duration t into the future. In the present context there is essentially a continuum
of stages.

Example 14.3 (Reachable Sets for Simple Cars) Nice illustrations of reach-
able sets can be obtained from the simple car models from Section 13.1.2. Suppose
that X = C = R2 × S1 and Xobs = ∅.

Recall that the Dubins car can only drive forward. From an arbitrary con-
figuration, the time-limited reachable set appears as shown in Figure 14.4a. The
time limit t is small enough so that the car cannot rotate by more than π/2. Note
that Figure 14.4a shows a 2D projection of the reachable set that gives translation
only. The true reachable set is a 3D region in C. If t > 2π, then the car will
be able to drive in a circle. For any q, consider the limiting case as t approaches
infinity, which results in R(q,U). Imagine a car driving without reverse on an
infinitely large, flat surface. It is possible to reach any desired configuration by
driving along a circle, driving straight for a while, and then driving along a circle
again. Therefore, R(q,U) = C for any q ∈ C. The lack of a reverse gear means
that some extra maneuvering space may be needed to reach some configurations.

Now consider the Reeds-Shepp car, which is allowed to travel in reverse. Any
time-limited reachable set for this car must include all points from the correspond-
ing reachable set for the Dubins car because new actions have been added to U but
none have been removed. It is tempting to assert that the time-limited reachable
set appears as in Figure 14.4b; however, this is wrong. In an arbitrarily small
amount of time (or space) a car with reverse can be wiggled sideways. This is
achieved in practice by familiar parallel-parking maneuvers. It turns out in this
case that R(q,U , t) always contains an open set around q, which means that it
grows in all directions (see Section 15.3.2). The property is formally referred to as
small-time controllability and is covered in Section 15.4. !

Motion planning under differential constraints

49

1. Given world, obstacles, C-space, robot geometry (same)

2. Introduce state space X. Compute free and obstacle state space.

3. Given an action space U

4. Given a state transition equations ẋ = f(x, u)

6. Compute action trajectory that satisfies boundary conditions,
stays in free state space and minimizes cost.

5. Given initial and final state, cost function

J(x(t), u(t)) =

Z
c(x(t), u(t))dt

Differential constraints make things even harder

50

1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 15

(a) (b)

Figure 1.11: Some parking illustrations from government manuals for driver test-
ing: (a) parking a car (from the 2005Missouri Driver Guide); (b) parking a tractor
trailer (published by the Pennsylvania Division of Motor Vehicles). Both humans
and planning algorithms can solve these problems.

Flying Through the Air or in Space Driving naturally leads to flying. Plan-
ning algorithms can help to navigate autonomous helicopters through obstacles.
They can also compute thrusts for a spacecraft so that collisions are avoided around
a complicated structure, such as a space station. In Section 14.1.3, the problem of
designing entry trajectories for a reusable spacecraft is described. Mission plan-
ning for interplanetary spacecraft, including solar sails, can even be performed
using planning algorithms [436].

Designing better drugs Planning algorithms are even impacting fields as far
away from robotics as computational biology. Two major problems are protein
folding and drug design. In both cases, scientists attempt to explain behaviors
in organisms by the way large organic molecules interact. Such molecules are
generally flexible. Drug molecules are small (see Figure 1.14), and proteins usually
have thousands of atoms. The docking problem involves determining whether a
flexible molecule can insert itself into a protein cavity, as shown in Figure 1.14,
while satisfying other constraints, such as maintaining low energy. Once geometric
models are applied to molecules, the problem looks very similar to the assembly
problem in Figure 1.3 and can be solved by motion planning algorithms. See
Section 7.5 and the literature at the end of Chapter 7.

Perspective Planning algorithms have been applied to many more problems
than those shown here. In some cases, the work has progressed from modeling, to
theoretical algorithms, to practical software that is used in industry. In other cases,
substantial research remains to bring planning methods to their full potential. The
future holds tremendous excitement for those who participate in the development
and application of planning algorithms.

These are examples of non-holonomic systems

the system is trapped in some sub-manifold of the config space

Differential constraints make things even harder

51

These are examples of non-holonomic system

“Left-turning-car”

Emergency landing where
UAV can only turn left

the system is trapped in some sub-manifold of the config space

800 S. M. LaValle: Planning Algorithms

Wrong!

(a) (b)

Figure 14.4: (a) The time-limited reachable set for the Dubins car facing to the
right; (b) this is not the time-limited reachable set for the Reeds-Shepp car!

states due to nature were specified in the forward projection. In the current
setting, possible future states are determined by the unspecified actions of the
robot. Rather than looking k stages ahead, the time-limited reachable set looks for
duration t into the future. In the present context there is essentially a continuum
of stages.

Example 14.3 (Reachable Sets for Simple Cars) Nice illustrations of reach-
able sets can be obtained from the simple car models from Section 13.1.2. Suppose
that X = C = R2 × S1 and Xobs = ∅.

Recall that the Dubins car can only drive forward. From an arbitrary con-
figuration, the time-limited reachable set appears as shown in Figure 14.4a. The
time limit t is small enough so that the car cannot rotate by more than π/2. Note
that Figure 14.4a shows a 2D projection of the reachable set that gives translation
only. The true reachable set is a 3D region in C. If t > 2π, then the car will
be able to drive in a circle. For any q, consider the limiting case as t approaches
infinity, which results in R(q,U). Imagine a car driving without reverse on an
infinitely large, flat surface. It is possible to reach any desired configuration by
driving along a circle, driving straight for a while, and then driving along a circle
again. Therefore, R(q,U) = C for any q ∈ C. The lack of a reverse gear means
that some extra maneuvering space may be needed to reach some configurations.

Now consider the Reeds-Shepp car, which is allowed to travel in reverse. Any
time-limited reachable set for this car must include all points from the correspond-
ing reachable set for the Dubins car because new actions have been added to U but
none have been removed. It is tempting to assert that the time-limited reachable
set appears as in Figure 14.4b; however, this is wrong. In an arbitrarily small
amount of time (or space) a car with reverse can be wiggled sideways. This is
achieved in practice by familiar parallel-parking maneuvers. It turns out in this
case that R(q,U , t) always contains an open set around q, which means that it
grows in all directions (see Section 15.3.2). The property is formally referred to as
small-time controllability and is covered in Section 15.4. !

Regions of inevitable collision

52

Xobs

Consider a car going at 100 mph
towards a wall 10 m ahead

5.4. DIFFERENTIAL CONSTRAINTS 9

Figure 5.10: Examples of sphere and star spaces.

Navigation functions can be constructed for sphere
boundary spaces centered at qI that contain only spher-
ical obstacles as Figure 5.10 shows. Then they can be
extended to a large family of C-spaces that are diffeo-
morphic to sphere-spaces, such as star-shaped spaces as
in Figure 5.10. A more elaborate description of strate-
gies for feedback motion planning will be presented in
chapters 35, 36 and 37.

Putting the issue of local minima aside, another major
challenge for such potential function based approaches is
constructing and representing the C-space in the first
place. This issue makes the applications of these tech-
niques too complicated for high-dimensional problems.

5.4 Differential Constraints

Robot motions must usually conform to both global and
local constraints. Global constraints on C have been con-
sidered in the form of obstacles and possibly joint lim-
its. Local constraints are modeled with differential equa-
tions, and are therefore called differential constraints.
These limit the velocities, and possibly accelerations,
at every point due to kinematic considerations, such as
wheels in contact, and dynamical considerations, such as
the conservation of angular momentum.

5.4.1 Concepts and Terminology

Let q̇ denote a velocity vector. Differential constraints
on C can be expressed either implicitly in the form
gi(q, q̇) = 0 or parametrically in the form ẋ = f(q, u).
The implicit form is more general but often more diffi-
cult to understand and utilize. In the parametric form, a
vector-valued equation indicates the velocity that is ob-
tained for a given q and u, in which u is an input, chosen
from some input space, U . Let T denote an interval of
time, starting at t = 0.

To model dynamics, the concepts are extended into
a phase space, X , of the C-space. Usually each point
x ∈ X represents both a configuration and velocity,

q
q̇ = 0

q̇ < 0

q̇ > 0

q̇ Xric

Xric

Xric

Xobs

Xric

Figure 5.11: The region of inevitable collision grows
quadratically with the speed.

x = (q, q̇). Both implicit and parametric representa-
tions are possible, yielding gi(x, ẋ) = 0 and ẋ = f(x, u),
respectively. The latter is a common control system def-
inition. Note that ẋ = (q̇, q̈), which implies that ac-
celeration constraints and full system dynamics can be
expressed.

Planning in the state space X could lead to a straight-
forward definition of Xobs by declaring x ∈ Xobs if and
only if q ∈ Cobs for x = (q, q̇). However, another in-
teresting possibility exists which provides some intuition
about the difficulty of planning with dynamics. This
possibility is based on the notion of a region of inevitable
collision, which is defined as:

Xric = {x(0) ∈ X | for any ũ ∈ U∞, ∃t > 0

such that x(t) ∈ Xobs},
(5.4)

in which x(t) is the state at time t obtained by integrat-
ing the control function ũ : T → U from x(0). The set
U∞ is a predefined set of all possible control functions.
Xric denotes the set of states in which the robot is ei-
ther in collision or, because of momentum, it cannot do
anything to avoid collision. It can be considered as an
invisible obstacle region that grows with speed.

Under the general heading of planning under differen-
tial constraints, there are many important categories of
problems that have received considerable attention in re-
search literature. The term nonholonomic planning was
introduced for wheeled mobile robots [58]. A simple ex-
ample is that a car cannot move sideways, thereby mak-
ing parallel parking more difficult. In general, a nonholo-
nomic constraint is a differential equality constraint that

53

Research in Motion Planning: 

Tractable approximations with
provable guarantees

