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Evolution of controllers
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Uses model
Stability 

Guarantee
Minimize 

Cost

PID No No No

Pure Pursuit Circular arcs 
Yes - with 

assumptions
No

Lyapunov Non-linear Yes No

LQR Linear Yes Quadratic

MPC Non-linear Yes Yes



Evolution of controllers
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Heuristic 
Rules

Trajectory 
Optimization

PID iLQR

Increasing complexity of problem ….



Recap: Model predictive control (MPC)
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How are the controls executed?
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Step 1: Solve optimization problem to a horizon
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How are the controls executed?
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xt xt+1

Step 2: Execute the first control

Step 1: Solve optimization problem to a horizon



How are the controls executed?
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xt xt+1

Step 3: Repeat!
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Step 2: Execute the first control

Step 1: Solve optimization problem to a horizon



What is the cost? What constraints?
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xk+1 = f(xk, uk+1)

min
ut+1,...ut+H

t+H�1X
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J(xk, uk+1)

g(xk, uk+1)  0

(plan till horizon H)

Cost

Constraints
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What is the cost? What constraints?



Examples of complex cost functions
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Proximity to 
obstacles

(Ratliff et al. 2009)

Curvature
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This posture envelope is intended to be representative of a
factory automation application (no high curvatures). Termi-
nation was based on achieving a weighted residual norm of
0.01 defined as:

r =
√

(wx!xf )2 + (wy!yf )2 + (wθ!θf )2 + (wκ!κf )2.

(56)

The weights were adjusted so that 0.01 units of position or
0.0001 rads of heading or 0.0001 rads/meter of curvature er-
ror alone would exceed the threshold. Figure 8 depicts some
example curves in the envelope computed.
Computation times over this envelope are summarized in

Figure 9. These are essentially worst-case results because no
lookup tables and only the above simplistic initial estimate
(an arc of roughly the right length) were used. Of course,
many applications would sequentially compute many nearby
trajectories and run-times would be significantly faster.
Solutions for driving in reverse are generated naturally by

choice of sign of the initial distance estimate. Reversing both
xand distance in the above cases generates the y-axis mirror
image of the solutions. It is also relatively easy to control the
number of loops and the direction to which the initial turn will
tend. Figure 10, for example, shows two solutions separated
by one revolution that were generated by simply modulating
the terminal heading.

4.4. Unconstrained Optimization

This case is characterized by the use of eq. (31). This is a fairly
general technique in its own right because it is equivalent to
the penalty function approach to constrained optimization; we
simply convert the constraints to costs with high associated
weights. There are always the right number of equations no
matter how many curve parameters are used. Figure 11 illus-
trates an example motivated by the forktruck application. A
load is discovered to be 5 m to the right of expectations when
only 5 m away. A new trajectory must be generated to move
diagonally but end up at zero heading and curvature.
When there is one parameter too few, the weights are

configured to ignore terminal curvature and the goal pose is
achievedwith nonzero terminal curvature (see Figure 12). The
five-parameter case computes the same answer as constraint
satisfaction.
In the eight-parameter case, the path smoothness perfor-

mance index is introduced and weights are adjusted to per-
mit terminal heading and curvature error. In this case, the
smoothness (total area under squared curvature) is enhanced
significantly because the temporarily high initial curvature is
balanced by a long intermediate period of low curvature.

4.5. Constrained Optimization

This case is defined by the use of eq. (30). Figures 13 and
14 present results on a curvaceous trajectory chosen so as to

Fig. 8. Example polynomial spirals. These different end
postures have feasible solutions.
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Fig. 9. Cubic polynomial spiral run times. Run times on a
1 GHz Pentium 4 for 1600 constraint satisfaction test cases.
All were less than 1.4 ms based on an arc initial estimate.

Fig. 10. Multiple solutions. Two different symmetric curves
(left) and asymmetric curves (right) each reaching the same
relative destination posture.

(Kelly et al. 2003)
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Problem: Costs can be non-convex 
(terrible local minima)



Instead: Create a gigantic library of paths
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Discretize steering angle 
into d bins ( set d=7)

Branch every t sec 
for N*t horizon 

(N=5)

Get 7^5 = 16,807  
control trajectories

(a) (b)

(c) (d)

Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space
cluttered with obstacles and test whether at least one of
the paths in the path set is collision-free. In this simple
paradigm, a single planning step precedes execution of the
full plan. This formulation of the static paradigm is designed
to obey the assumptions made by many other works on path
diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the
beginning of each path plan while computing the subsequent
replan step. In most implementations of this planning ap-
proach, new plans, which look ahead five seconds or more,
are generated at about 10 Hz. Consequently, only a small
fraction of each plan is ever executed on the robot. Although
the remainder of the path is never executed, it still serves
two important functions. First, the planner must look ahead
beyond its minimum stopping distance in order to guarantee
safety. Second, the remaining path segment approximates
what future invocations of the planner might choose to do,
although there is no guarantee that the next cycle’s path set
will contain the remaining path section. This property causes
complex emergent behavior to dominate performance and
confound simple theoretical analysis. Thus, we are led to
the simulation-based analysis which makes up the bulk of
this work.

We are not aware of any previous work in deterministically
generating dynamic path sets that optimize performance,
although our own earlier work [11] adopts a probabilistic
approach to this task. Our goal in this work is to discover the
fundamental principles governing the performance achiev-
able under the constraints imposed by the local planning
problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been
appreciated as an aspect of the path set planning problem
that can make or break the planner on challenging problems.
But what is path diversity?

Green and Kelly [9] define relative completeness, as “the
prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”
The authors go on to introduce an approximate-area metric
between paths, and they show that relative completeness is
related to the dispersion of paths. Additionally, they provide
a greedy algorithm for selecting a diverse path subset from
a large, densely-sampled path set. We will refer to these as
the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”
defining it as “the probability of the survival of paths, aver-
aged over all possible obstacle environments.” In this context,
a path set survives when at least one of its member paths
is free of collision. The essence of the algorithms presented
in that paper is to minimize mutual overlap between paths,
recognizing that points of overlap represent vulnerabilities
where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],
[10], [16]) face the path diversity problem in the dynamic
paradigm, but none explicitly address it. All of these works
use a path set composed of constant-curvature arcs, either
in the continuum or discretely sampled. The intuition sup-
porting arc-based path sets appears to be that an arbitrary
path can be approximated to desired precision by a curve
of piecewise-constant curvature. While the basis of this
argument is correct, the planner is not made aware of all
these possibilities. Rather, the planner believes at each cycle
that it must commit to follow a circular arc out to the path set
horizon. Consequently, the robot saddled with an arc-based
planner cannot plan to follow an S-curve, a J-curve, or any
other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the
problem of path diversity to a greater degree by incorporating
a set of paths which is diverse in shape space for the purpose
of achieving arbitrary configurations. Although path diversity
is not of explicit concern in these two papers, it is an ancillary
benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban
Challenge utilized path set variants in planning. Several
competitors relied on constant-curvature arcs [2], [15], [18].
Team MIT generated non-fixed random path sets using
Rapidly-exploring Random Trees [13], while VictorTango
pre-computed a path set in the form of an ego-graph designed
for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-
lenge victory utilizing both the static and dynamic path set
approaches. For path following, they dynamically generated a
path set adapted for lane following by generating trajectories
constrained to end parallel to the direction of motion [7],
resembling the approach of 2005 DARPA Grand Challenge
winner, Stanley [17]. As in the dynamic path set paradigm,
Boss followed only the first part of each control before
planning a new trajectory. In unconstrained off-road areas,
Boss employed a lattice planner, in which a fixed path set is
tessellated through space. After planning a motion through
the lattice, Boss tried to follow the path without replanning,
as in the static path set paradigm.

u(t)

Integrate dynamics to get x(t)



How will we use it for MPC?
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1. Iterate (2-3) for every path in library.  

2. Compute constraint. If violated, chuck out path 

3. Compute cost.  

4. Pick path with least cost. 

5. Execute first control action. Robot moves. Replan. 
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Problem: Library too big!!

Solution: Subsample library

But what is the right sampling strategy?



Strategy 1: Uniformly subsample
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Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space
cluttered with obstacles and test whether at least one of
the paths in the path set is collision-free. In this simple
paradigm, a single planning step precedes execution of the
full plan. This formulation of the static paradigm is designed
to obey the assumptions made by many other works on path
diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the
beginning of each path plan while computing the subsequent
replan step. In most implementations of this planning ap-
proach, new plans, which look ahead five seconds or more,
are generated at about 10 Hz. Consequently, only a small
fraction of each plan is ever executed on the robot. Although
the remainder of the path is never executed, it still serves
two important functions. First, the planner must look ahead
beyond its minimum stopping distance in order to guarantee
safety. Second, the remaining path segment approximates
what future invocations of the planner might choose to do,
although there is no guarantee that the next cycle’s path set
will contain the remaining path section. This property causes
complex emergent behavior to dominate performance and
confound simple theoretical analysis. Thus, we are led to
the simulation-based analysis which makes up the bulk of
this work.

We are not aware of any previous work in deterministically
generating dynamic path sets that optimize performance,
although our own earlier work [11] adopts a probabilistic
approach to this task. Our goal in this work is to discover the
fundamental principles governing the performance achiev-
able under the constraints imposed by the local planning
problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been
appreciated as an aspect of the path set planning problem
that can make or break the planner on challenging problems.
But what is path diversity?

Green and Kelly [9] define relative completeness, as “the
prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”
The authors go on to introduce an approximate-area metric
between paths, and they show that relative completeness is
related to the dispersion of paths. Additionally, they provide
a greedy algorithm for selecting a diverse path subset from
a large, densely-sampled path set. We will refer to these as
the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”
defining it as “the probability of the survival of paths, aver-
aged over all possible obstacle environments.” In this context,
a path set survives when at least one of its member paths
is free of collision. The essence of the algorithms presented
in that paper is to minimize mutual overlap between paths,
recognizing that points of overlap represent vulnerabilities
where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],
[10], [16]) face the path diversity problem in the dynamic
paradigm, but none explicitly address it. All of these works
use a path set composed of constant-curvature arcs, either
in the continuum or discretely sampled. The intuition sup-
porting arc-based path sets appears to be that an arbitrary
path can be approximated to desired precision by a curve
of piecewise-constant curvature. While the basis of this
argument is correct, the planner is not made aware of all
these possibilities. Rather, the planner believes at each cycle
that it must commit to follow a circular arc out to the path set
horizon. Consequently, the robot saddled with an arc-based
planner cannot plan to follow an S-curve, a J-curve, or any
other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the
problem of path diversity to a greater degree by incorporating
a set of paths which is diverse in shape space for the purpose
of achieving arbitrary configurations. Although path diversity
is not of explicit concern in these two papers, it is an ancillary
benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban
Challenge utilized path set variants in planning. Several
competitors relied on constant-curvature arcs [2], [15], [18].
Team MIT generated non-fixed random path sets using
Rapidly-exploring Random Trees [13], while VictorTango
pre-computed a path set in the form of an ego-graph designed
for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-
lenge victory utilizing both the static and dynamic path set
approaches. For path following, they dynamically generated a
path set adapted for lane following by generating trajectories
constrained to end parallel to the direction of motion [7],
resembling the approach of 2005 DARPA Grand Challenge
winner, Stanley [17]. As in the dynamic path set paradigm,
Boss followed only the first part of each control before
planning a new trajectory. In unconstrained off-road areas,
Boss employed a lattice planner, in which a fixed path set is
tessellated through space. After planning a motion through
the lattice, Boss tried to follow the path without replanning,
as in the static path set paradigm.

R.A. Knepper Path and Trajectory Diversity 3

Not all path sets are 
created equal
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Why is this not a good library?



R.A. Knepper Path and Trajectory Diversity 3

Not all path sets are 
created equal

Introduction ConclusionResultsAlgorithmsApproach Theory

Strategy 2: Get more diversity
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Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space
cluttered with obstacles and test whether at least one of
the paths in the path set is collision-free. In this simple
paradigm, a single planning step precedes execution of the
full plan. This formulation of the static paradigm is designed
to obey the assumptions made by many other works on path
diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the
beginning of each path plan while computing the subsequent
replan step. In most implementations of this planning ap-
proach, new plans, which look ahead five seconds or more,
are generated at about 10 Hz. Consequently, only a small
fraction of each plan is ever executed on the robot. Although
the remainder of the path is never executed, it still serves
two important functions. First, the planner must look ahead
beyond its minimum stopping distance in order to guarantee
safety. Second, the remaining path segment approximates
what future invocations of the planner might choose to do,
although there is no guarantee that the next cycle’s path set
will contain the remaining path section. This property causes
complex emergent behavior to dominate performance and
confound simple theoretical analysis. Thus, we are led to
the simulation-based analysis which makes up the bulk of
this work.

We are not aware of any previous work in deterministically
generating dynamic path sets that optimize performance,
although our own earlier work [11] adopts a probabilistic
approach to this task. Our goal in this work is to discover the
fundamental principles governing the performance achiev-
able under the constraints imposed by the local planning
problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been
appreciated as an aspect of the path set planning problem
that can make or break the planner on challenging problems.
But what is path diversity?

Green and Kelly [9] define relative completeness, as “the
prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”
The authors go on to introduce an approximate-area metric
between paths, and they show that relative completeness is
related to the dispersion of paths. Additionally, they provide
a greedy algorithm for selecting a diverse path subset from
a large, densely-sampled path set. We will refer to these as
the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”
defining it as “the probability of the survival of paths, aver-
aged over all possible obstacle environments.” In this context,
a path set survives when at least one of its member paths
is free of collision. The essence of the algorithms presented
in that paper is to minimize mutual overlap between paths,
recognizing that points of overlap represent vulnerabilities
where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],
[10], [16]) face the path diversity problem in the dynamic
paradigm, but none explicitly address it. All of these works
use a path set composed of constant-curvature arcs, either
in the continuum or discretely sampled. The intuition sup-
porting arc-based path sets appears to be that an arbitrary
path can be approximated to desired precision by a curve
of piecewise-constant curvature. While the basis of this
argument is correct, the planner is not made aware of all
these possibilities. Rather, the planner believes at each cycle
that it must commit to follow a circular arc out to the path set
horizon. Consequently, the robot saddled with an arc-based
planner cannot plan to follow an S-curve, a J-curve, or any
other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the
problem of path diversity to a greater degree by incorporating
a set of paths which is diverse in shape space for the purpose
of achieving arbitrary configurations. Although path diversity
is not of explicit concern in these two papers, it is an ancillary
benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban
Challenge utilized path set variants in planning. Several
competitors relied on constant-curvature arcs [2], [15], [18].
Team MIT generated non-fixed random path sets using
Rapidly-exploring Random Trees [13], while VictorTango
pre-computed a path set in the form of an ego-graph designed
for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-
lenge victory utilizing both the static and dynamic path set
approaches. For path following, they dynamically generated a
path set adapted for lane following by generating trajectories
constrained to end parallel to the direction of motion [7],
resembling the approach of 2005 DARPA Grand Challenge
winner, Stanley [17]. As in the dynamic path set paradigm,
Boss followed only the first part of each control before
planning a new trajectory. In unconstrained off-road areas,
Boss employed a lattice planner, in which a fixed path set is
tessellated through space. After planning a motion through
the lattice, Boss tried to follow the path without replanning,
as in the static path set paradigm.

R.A. Knepper Path and Trajectory Diversity 3

Not all path sets are 
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Proposed problem formulation
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Given a dense path set D
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(c) (d)

Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space
cluttered with obstacles and test whether at least one of
the paths in the path set is collision-free. In this simple
paradigm, a single planning step precedes execution of the
full plan. This formulation of the static paradigm is designed
to obey the assumptions made by many other works on path
diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the
beginning of each path plan while computing the subsequent
replan step. In most implementations of this planning ap-
proach, new plans, which look ahead five seconds or more,
are generated at about 10 Hz. Consequently, only a small
fraction of each plan is ever executed on the robot. Although
the remainder of the path is never executed, it still serves
two important functions. First, the planner must look ahead
beyond its minimum stopping distance in order to guarantee
safety. Second, the remaining path segment approximates
what future invocations of the planner might choose to do,
although there is no guarantee that the next cycle’s path set
will contain the remaining path section. This property causes
complex emergent behavior to dominate performance and
confound simple theoretical analysis. Thus, we are led to
the simulation-based analysis which makes up the bulk of
this work.

We are not aware of any previous work in deterministically
generating dynamic path sets that optimize performance,
although our own earlier work [11] adopts a probabilistic
approach to this task. Our goal in this work is to discover the
fundamental principles governing the performance achiev-
able under the constraints imposed by the local planning
problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been
appreciated as an aspect of the path set planning problem
that can make or break the planner on challenging problems.
But what is path diversity?

Green and Kelly [9] define relative completeness, as “the
prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”
The authors go on to introduce an approximate-area metric
between paths, and they show that relative completeness is
related to the dispersion of paths. Additionally, they provide
a greedy algorithm for selecting a diverse path subset from
a large, densely-sampled path set. We will refer to these as
the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”
defining it as “the probability of the survival of paths, aver-
aged over all possible obstacle environments.” In this context,
a path set survives when at least one of its member paths
is free of collision. The essence of the algorithms presented
in that paper is to minimize mutual overlap between paths,
recognizing that points of overlap represent vulnerabilities
where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],
[10], [16]) face the path diversity problem in the dynamic
paradigm, but none explicitly address it. All of these works
use a path set composed of constant-curvature arcs, either
in the continuum or discretely sampled. The intuition sup-
porting arc-based path sets appears to be that an arbitrary
path can be approximated to desired precision by a curve
of piecewise-constant curvature. While the basis of this
argument is correct, the planner is not made aware of all
these possibilities. Rather, the planner believes at each cycle
that it must commit to follow a circular arc out to the path set
horizon. Consequently, the robot saddled with an arc-based
planner cannot plan to follow an S-curve, a J-curve, or any
other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the
problem of path diversity to a greater degree by incorporating
a set of paths which is diverse in shape space for the purpose
of achieving arbitrary configurations. Although path diversity
is not of explicit concern in these two papers, it is an ancillary
benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban
Challenge utilized path set variants in planning. Several
competitors relied on constant-curvature arcs [2], [15], [18].
Team MIT generated non-fixed random path sets using
Rapidly-exploring Random Trees [13], while VictorTango
pre-computed a path set in the form of an ego-graph designed
for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-
lenge victory utilizing both the static and dynamic path set
approaches. For path following, they dynamically generated a
path set adapted for lane following by generating trajectories
constrained to end parallel to the direction of motion [7],
resembling the approach of 2005 DARPA Grand Challenge
winner, Stanley [17]. As in the dynamic path set paradigm,
Boss followed only the first part of each control before
planning a new trajectory. In unconstrained off-road areas,
Boss employed a lattice planner, in which a fixed path set is
tessellated through space. After planning a motion through
the lattice, Boss tried to follow the path without replanning,
as in the static path set paradigm.

What is coverage? Why do we want coverage?

argmax
S⇢D

Coverage(S,D)

Find a sparse subset

R.A. Knepper Path and Trajectory Diversity 3
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S ⇢ D

You want to cover the space well so that you maximize 
the likelihood of finding a collision-free path.



Why do we want coverage?
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We want to make sure the sparse set has a path ⇠S ⇠D“close to”

such that J(⇠S)  J(⇠D) + ✏

R.A. Knepper Path and Trajectory Diversity 3
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⇠S

Let’s say the dense set has an optimal path 
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Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space
cluttered with obstacles and test whether at least one of
the paths in the path set is collision-free. In this simple
paradigm, a single planning step precedes execution of the
full plan. This formulation of the static paradigm is designed
to obey the assumptions made by many other works on path
diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the
beginning of each path plan while computing the subsequent
replan step. In most implementations of this planning ap-
proach, new plans, which look ahead five seconds or more,
are generated at about 10 Hz. Consequently, only a small
fraction of each plan is ever executed on the robot. Although
the remainder of the path is never executed, it still serves
two important functions. First, the planner must look ahead
beyond its minimum stopping distance in order to guarantee
safety. Second, the remaining path segment approximates
what future invocations of the planner might choose to do,
although there is no guarantee that the next cycle’s path set
will contain the remaining path section. This property causes
complex emergent behavior to dominate performance and
confound simple theoretical analysis. Thus, we are led to
the simulation-based analysis which makes up the bulk of
this work.

We are not aware of any previous work in deterministically
generating dynamic path sets that optimize performance,
although our own earlier work [11] adopts a probabilistic
approach to this task. Our goal in this work is to discover the
fundamental principles governing the performance achiev-
able under the constraints imposed by the local planning
problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been
appreciated as an aspect of the path set planning problem
that can make or break the planner on challenging problems.
But what is path diversity?

Green and Kelly [9] define relative completeness, as “the
prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”
The authors go on to introduce an approximate-area metric
between paths, and they show that relative completeness is
related to the dispersion of paths. Additionally, they provide
a greedy algorithm for selecting a diverse path subset from
a large, densely-sampled path set. We will refer to these as
the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”
defining it as “the probability of the survival of paths, aver-
aged over all possible obstacle environments.” In this context,
a path set survives when at least one of its member paths
is free of collision. The essence of the algorithms presented
in that paper is to minimize mutual overlap between paths,
recognizing that points of overlap represent vulnerabilities
where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],
[10], [16]) face the path diversity problem in the dynamic
paradigm, but none explicitly address it. All of these works
use a path set composed of constant-curvature arcs, either
in the continuum or discretely sampled. The intuition sup-
porting arc-based path sets appears to be that an arbitrary
path can be approximated to desired precision by a curve
of piecewise-constant curvature. While the basis of this
argument is correct, the planner is not made aware of all
these possibilities. Rather, the planner believes at each cycle
that it must commit to follow a circular arc out to the path set
horizon. Consequently, the robot saddled with an arc-based
planner cannot plan to follow an S-curve, a J-curve, or any
other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the
problem of path diversity to a greater degree by incorporating
a set of paths which is diverse in shape space for the purpose
of achieving arbitrary configurations. Although path diversity
is not of explicit concern in these two papers, it is an ancillary
benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban
Challenge utilized path set variants in planning. Several
competitors relied on constant-curvature arcs [2], [15], [18].
Team MIT generated non-fixed random path sets using
Rapidly-exploring Random Trees [13], while VictorTango
pre-computed a path set in the form of an ego-graph designed
for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-
lenge victory utilizing both the static and dynamic path set
approaches. For path following, they dynamically generated a
path set adapted for lane following by generating trajectories
constrained to end parallel to the direction of motion [7],
resembling the approach of 2005 DARPA Grand Challenge
winner, Stanley [17]. As in the dynamic path set paradigm,
Boss followed only the first part of each control before
planning a new trajectory. In unconstrained off-road areas,
Boss employed a lattice planner, in which a fixed path set is
tessellated through space. After planning a motion through
the lattice, Boss tried to follow the path without replanning,
as in the static path set paradigm.

⇠D = argmin
⇠2D

J(⇠)

⇠D



Lipschitz continuity: Smoothness assumption

19

The cost functions we consider are Lipschitz continuous 

|J(⇠1)� J(⇠2)|  Ld(⇠1, ⇠2)

(Close trajectories have the same cost value)

A Lipschitz continuous function satisfies the following inequality

|f(x)� f(y)|  L||x� y||

(Close points have the same function value)

s.t.∀x, y, ∃L ≥ 0
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Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space
cluttered with obstacles and test whether at least one of
the paths in the path set is collision-free. In this simple
paradigm, a single planning step precedes execution of the
full plan. This formulation of the static paradigm is designed
to obey the assumptions made by many other works on path
diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the
beginning of each path plan while computing the subsequent
replan step. In most implementations of this planning ap-
proach, new plans, which look ahead five seconds or more,
are generated at about 10 Hz. Consequently, only a small
fraction of each plan is ever executed on the robot. Although
the remainder of the path is never executed, it still serves
two important functions. First, the planner must look ahead
beyond its minimum stopping distance in order to guarantee
safety. Second, the remaining path segment approximates
what future invocations of the planner might choose to do,
although there is no guarantee that the next cycle’s path set
will contain the remaining path section. This property causes
complex emergent behavior to dominate performance and
confound simple theoretical analysis. Thus, we are led to
the simulation-based analysis which makes up the bulk of
this work.

We are not aware of any previous work in deterministically
generating dynamic path sets that optimize performance,
although our own earlier work [11] adopts a probabilistic
approach to this task. Our goal in this work is to discover the
fundamental principles governing the performance achiev-
able under the constraints imposed by the local planning
problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been
appreciated as an aspect of the path set planning problem
that can make or break the planner on challenging problems.
But what is path diversity?

Green and Kelly [9] define relative completeness, as “the
prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”
The authors go on to introduce an approximate-area metric
between paths, and they show that relative completeness is
related to the dispersion of paths. Additionally, they provide
a greedy algorithm for selecting a diverse path subset from
a large, densely-sampled path set. We will refer to these as
the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”
defining it as “the probability of the survival of paths, aver-
aged over all possible obstacle environments.” In this context,
a path set survives when at least one of its member paths
is free of collision. The essence of the algorithms presented
in that paper is to minimize mutual overlap between paths,
recognizing that points of overlap represent vulnerabilities
where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],
[10], [16]) face the path diversity problem in the dynamic
paradigm, but none explicitly address it. All of these works
use a path set composed of constant-curvature arcs, either
in the continuum or discretely sampled. The intuition sup-
porting arc-based path sets appears to be that an arbitrary
path can be approximated to desired precision by a curve
of piecewise-constant curvature. While the basis of this
argument is correct, the planner is not made aware of all
these possibilities. Rather, the planner believes at each cycle
that it must commit to follow a circular arc out to the path set
horizon. Consequently, the robot saddled with an arc-based
planner cannot plan to follow an S-curve, a J-curve, or any
other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the
problem of path diversity to a greater degree by incorporating
a set of paths which is diverse in shape space for the purpose
of achieving arbitrary configurations. Although path diversity
is not of explicit concern in these two papers, it is an ancillary
benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban
Challenge utilized path set variants in planning. Several
competitors relied on constant-curvature arcs [2], [15], [18].
Team MIT generated non-fixed random path sets using
Rapidly-exploring Random Trees [13], while VictorTango
pre-computed a path set in the form of an ego-graph designed
for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-
lenge victory utilizing both the static and dynamic path set
approaches. For path following, they dynamically generated a
path set adapted for lane following by generating trajectories
constrained to end parallel to the direction of motion [7],
resembling the approach of 2005 DARPA Grand Challenge
winner, Stanley [17]. As in the dynamic path set paradigm,
Boss followed only the first part of each control before
planning a new trajectory. In unconstrained off-road areas,
Boss employed a lattice planner, in which a fixed path set is
tessellated through space. After planning a motion through
the lattice, Boss tried to follow the path without replanning,
as in the static path set paradigm.

Project paths on to a metric space where each dot is a path

Defining a “closeness” between paths

d(⇠1, ⇠2)

A set with a metric.
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Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space
cluttered with obstacles and test whether at least one of
the paths in the path set is collision-free. In this simple
paradigm, a single planning step precedes execution of the
full plan. This formulation of the static paradigm is designed
to obey the assumptions made by many other works on path
diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the
beginning of each path plan while computing the subsequent
replan step. In most implementations of this planning ap-
proach, new plans, which look ahead five seconds or more,
are generated at about 10 Hz. Consequently, only a small
fraction of each plan is ever executed on the robot. Although
the remainder of the path is never executed, it still serves
two important functions. First, the planner must look ahead
beyond its minimum stopping distance in order to guarantee
safety. Second, the remaining path segment approximates
what future invocations of the planner might choose to do,
although there is no guarantee that the next cycle’s path set
will contain the remaining path section. This property causes
complex emergent behavior to dominate performance and
confound simple theoretical analysis. Thus, we are led to
the simulation-based analysis which makes up the bulk of
this work.

We are not aware of any previous work in deterministically
generating dynamic path sets that optimize performance,
although our own earlier work [11] adopts a probabilistic
approach to this task. Our goal in this work is to discover the
fundamental principles governing the performance achiev-
able under the constraints imposed by the local planning
problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been
appreciated as an aspect of the path set planning problem
that can make or break the planner on challenging problems.
But what is path diversity?

Green and Kelly [9] define relative completeness, as “the
prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”
The authors go on to introduce an approximate-area metric
between paths, and they show that relative completeness is
related to the dispersion of paths. Additionally, they provide
a greedy algorithm for selecting a diverse path subset from
a large, densely-sampled path set. We will refer to these as
the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”
defining it as “the probability of the survival of paths, aver-
aged over all possible obstacle environments.” In this context,
a path set survives when at least one of its member paths
is free of collision. The essence of the algorithms presented
in that paper is to minimize mutual overlap between paths,
recognizing that points of overlap represent vulnerabilities
where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],
[10], [16]) face the path diversity problem in the dynamic
paradigm, but none explicitly address it. All of these works
use a path set composed of constant-curvature arcs, either
in the continuum or discretely sampled. The intuition sup-
porting arc-based path sets appears to be that an arbitrary
path can be approximated to desired precision by a curve
of piecewise-constant curvature. While the basis of this
argument is correct, the planner is not made aware of all
these possibilities. Rather, the planner believes at each cycle
that it must commit to follow a circular arc out to the path set
horizon. Consequently, the robot saddled with an arc-based
planner cannot plan to follow an S-curve, a J-curve, or any
other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the
problem of path diversity to a greater degree by incorporating
a set of paths which is diverse in shape space for the purpose
of achieving arbitrary configurations. Although path diversity
is not of explicit concern in these two papers, it is an ancillary
benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban
Challenge utilized path set variants in planning. Several
competitors relied on constant-curvature arcs [2], [15], [18].
Team MIT generated non-fixed random path sets using
Rapidly-exploring Random Trees [13], while VictorTango
pre-computed a path set in the form of an ego-graph designed
for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-
lenge victory utilizing both the static and dynamic path set
approaches. For path following, they dynamically generated a
path set adapted for lane following by generating trajectories
constrained to end parallel to the direction of motion [7],
resembling the approach of 2005 DARPA Grand Challenge
winner, Stanley [17]. As in the dynamic path set paradigm,
Boss followed only the first part of each control before
planning a new trajectory. In unconstrained off-road areas,
Boss employed a lattice planner, in which a fixed path set is
tessellated through space. After planning a motion through
the lattice, Boss tried to follow the path without replanning,
as in the static path set paradigm.

Defining a “closeness” between paths

Every dot is a path - neighboring dots are close
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The larger this ball, 
the worse the 

coverage of the 
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minimize it! 

Dispersion is the radius of the largest ball  
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Given a dense path set D Find a sparse subset

(a) (b)

(c) (d)

Fig. 2. Path sets: (a) Full 2,401-path data set; (b) path set generated with
the Green-Kelly approximate-area metric; (c) path set generated with the
Hausdorff metric; (d) path set generated using a mutual-collision metric,
which estimates the probability of two paths colliding with the same
obstacle.

static case, we place a stationary robot arbitrarily in a space
cluttered with obstacles and test whether at least one of
the paths in the path set is collision-free. In this simple
paradigm, a single planning step precedes execution of the
full plan. This formulation of the static paradigm is designed
to obey the assumptions made by many other works on path
diversity [9], [3], [6].

In the dynamic case, the robot simultaneously drives the
beginning of each path plan while computing the subsequent
replan step. In most implementations of this planning ap-
proach, new plans, which look ahead five seconds or more,
are generated at about 10 Hz. Consequently, only a small
fraction of each plan is ever executed on the robot. Although
the remainder of the path is never executed, it still serves
two important functions. First, the planner must look ahead
beyond its minimum stopping distance in order to guarantee
safety. Second, the remaining path segment approximates
what future invocations of the planner might choose to do,
although there is no guarantee that the next cycle’s path set
will contain the remaining path section. This property causes
complex emergent behavior to dominate performance and
confound simple theoretical analysis. Thus, we are led to
the simulation-based analysis which makes up the bulk of
this work.

We are not aware of any previous work in deterministically
generating dynamic path sets that optimize performance,
although our own earlier work [11] adopts a probabilistic
approach to this task. Our goal in this work is to discover the
fundamental principles governing the performance achiev-
able under the constraints imposed by the local planning
problem.

C. Prior Work in Path Diversity

The concept of path diversity has only recently been
appreciated as an aspect of the path set planning problem
that can make or break the planner on challenging problems.
But what is path diversity?

Green and Kelly [9] define relative completeness, as “the
prior probability, before the environment is specified, of pro-

ducing a solution path in a bounded amount of computation.”
The authors go on to introduce an approximate-area metric
between paths, and they show that relative completeness is
related to the dispersion of paths. Additionally, they provide
a greedy algorithm for selecting a diverse path subset from
a large, densely-sampled path set. We will refer to these as
the Green-Kelly metric and Green-Kelly algorithm.

Branicky et al. [3] introduce the term “path diversity,”
defining it as “the probability of the survival of paths, aver-
aged over all possible obstacle environments.” In this context,
a path set survives when at least one of its member paths
is free of collision. The essence of the algorithms presented
in that paper is to minimize mutual overlap between paths,
recognizing that points of overlap represent vulnerabilities
where a single obstacle could block several paths.

A variety of applications from earlier works ([4], [5], [8],
[10], [16]) face the path diversity problem in the dynamic
paradigm, but none explicitly address it. All of these works
use a path set composed of constant-curvature arcs, either
in the continuum or discretely sampled. The intuition sup-
porting arc-based path sets appears to be that an arbitrary
path can be approximated to desired precision by a curve
of piecewise-constant curvature. While the basis of this
argument is correct, the planner is not made aware of all
these possibilities. Rather, the planner believes at each cycle
that it must commit to follow a circular arc out to the path set
horizon. Consequently, the robot saddled with an arc-based
planner cannot plan to follow an S-curve, a J-curve, or any
other non-arc trajectory.

The ego-graph [12] and lattice [14] planners take on the
problem of path diversity to a greater degree by incorporating
a set of paths which is diverse in shape space for the purpose
of achieving arbitrary configurations. Although path diversity
is not of explicit concern in these two papers, it is an ancillary
benefit in both approaches.

Finally, many of the finalists in the 2007 DARPA Urban
Challenge utilized path set variants in planning. Several
competitors relied on constant-curvature arcs [2], [15], [18].
Team MIT generated non-fixed random path sets using
Rapidly-exploring Random Trees [13], while VictorTango
pre-computed a path set in the form of an ego-graph designed
for on-road operations [1].

Tartan Racing team’s Boss delivered a clear Urban Chal-
lenge victory utilizing both the static and dynamic path set
approaches. For path following, they dynamically generated a
path set adapted for lane following by generating trajectories
constrained to end parallel to the direction of motion [7],
resembling the approach of 2005 DARPA Grand Challenge
winner, Stanley [17]. As in the dynamic path set paradigm,
Boss followed only the first part of each control before
planning a new trajectory. In unconstrained off-road areas,
Boss employed a lattice planner, in which a fixed path set is
tessellated through space. After planning a motion through
the lattice, Boss tried to follow the path without replanning,
as in the static path set paradigm.
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1. What distance metric should we use?

2. How do we solve the combinatorially hard problem  
of dispersion minimization?



Choosing a metric: Hausdorff distance
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Figure 1. Hierarchical motion planning. The planner uses a search space that accounts for vehicle mobility constraints in
the area close to the vehicle, and it uses a grid that ignores vehicle mobility constraints in the area far from the vehicle.

mobile robot navigation leads to a difficult trade-off
between the computational demands of perceptive
intelligence at the local level and deliberative intelli-
gence at the global level. It is difficult to be both smart
and fast when computation is limited.

A common approach to this problem is to em-
ploy a hierarchical motion planning architecture to
generate behaviors that are both intelligent and re-
sponsive. Figure 1 illustrates a case in which the en-
vironment is a continuous cost field. Cases based on
a more topological environment representation, such
as a road network, are shown in Figure 2.

The architecture is hierarchical in the sense that
two levels of detail are used for the modeling of
both the vehicle and the environment. The higher-
level motion planner (global planner) is responsible
for directing the vehicle to achieve mission goals. It
produces a large-scale, long-term motion plan based

Figure 2. Search spaces generated by sampling in control space vs. state space are shown in environments that are highly
constrained (e.g., road networks). The majority of the options generated by sampling in control space leave the lane or are
oriented to do so shortly, whereas those generated by sampling in state space remain within the lane.

on simplified vehicle models and coarse represen-
tations of the environment. Conversely, the lower-
level motion planner (local planner) is used to keep
the vehicle safe. It generates a finer-scale, short-
term motion plan based on higher-fidelity vehicle
models and finer-resolution representations of the
environment.

Whereas it is a common approach to use higher-
fidelity models to subsequently smooth the trajecto-
ries produced by lower-fidelity planners, the result-
ing smooth path may be reduced in optimality and
it may no longer avoid obstacles. For a continuously
moving vehicle, such a planner failure leads at best
to the inefficiencies associated with stopping and at
worst to a damaging collision. Such considerations
lead to a desire for the smoothing algorithm to in-
terpret the environmental model in its computations
and hence become a planner in its own right. Once

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. Irregular mapping from control space to state space. Accurate dynamic simulations of a set of uniformly sampled
constant curvature arcs (control space sampling) are shown for a variety of different initial vehicle states. Notice that the
responses are not uniformly separated despite the uniform separation of controls.

by sampling in the control space of curvature. Each
control is passed through a vehicle dynamics model
to estimate the response of the vehicle to the con-
trol. The shape of the response is highly dependent
on the vehicle model and the initial vehicle state
(curvatures and velocities). Similar approaches have
been adapted in a variety of other unmanned ground
vehicles (Kelly et al., 2006; Wettergreen, Tompkins,
Urmson, Wagner, & Whittaker, 2005). Egographs
(Lacze, Moscovitz, DeClaris, & Murphy, 1998) rep-
resent another method for generating local motion-
planning search spaces. This approach generates,
offline, a well-separated dynamically feasible search
space for a limited set of initial states. Online adap-
tation to changes in terrain or vehicle models are
not considered. Precomputed arcs and point turns
comprised the control primitive sets that were used
to autonomously drive Spirit and Opportunity dur-
ing the Mars Exploration Rover mission (Besiadecki,
Leger, & Maimone, 2007). Trajectory selection was
based on a convolution on a cost or “goodness”
map. This approach was an extension of Morphin, an
arc-planner variant in which terrain shape was con-
sidered in the trajectory selection process (Simmons
et al., 1995; Singh et al., 2000). Another closely related
algorithm is the one presented in Bonnafous, Lacroix,
and Siméon (2001), where an arc-based search space
is evaluated based on considering risk and interest.

Rapidly exploring random trees (RRTs) have
recently been applied to the problem of generating
dynamically feasible controls through complex en-
vironments. This method is well suited to the prob-
lem of navigating complex environments because of
its ability to search high-dimensional input spaces
and can consider vehicle dynamics and terrain shape

in its solution (Berg, Ferguson, & Kuffner, 2006;
Melchior, Kwak, & Simmons, 2007). Frazzoli, Dahleh,
and Feron (2001) use RRTs to navigate among static
and dynamic obstacles, where tree expansions are
done in state space rather than input space. A con-
troller is applied to determine the feasible action, if
one exists, that connects the current state to the new
branch state. Chen and Fraichard (2007) applied par-
tial motion planning, an iterative technique based on
RRT that considers vehicle model constraints such
as acceleration, steering velocity, and steering angle
bounds and the real-time operation constraint of the
system for navigation in urban environments.

Potential fields (Haddad, Khatib, Lacroix, &
Chatila, 1998; Koren & Borenstein, 1991) have reg-
ularly been applied to obstacle avoidance and nav-
igation, where attractive forces represent goals and
repulsive forces represent obstacles. In Shimoda,
Kuroda, and Iagnemma (2005), potential fields gener-
ate actions that considered dynamic hazards such as
rollover and terrain shape in their evaluation. Lacroix
et al. (2002) applied potential fields for navigation in
simple terrain. For more difficult environments, they
applied arcs and arc-trees that consider terrain shape
in their forward simulation to generate the naviga-
tion search space.

Another important group of work involves nav-
igators that solve for an optimal or near-optimal tra-
jectory in the continuum. These methods typically are
fast and solve for the local, but not global, optimal
solution. A navigator based on optimizing a utility
function in the continuum is described in Cremean
et al. (2006). Horizon-limited trajectories are gener-
ated by minimizing the steering and acceleration con-
trol effort subject to a vehicle dynamics model that

Journal of Field Robotics DOI 10.1002/rob

Uniform sampling in control space is non-uniform in state space.

T.Howard “State Space Sampling of Feasible Motions for High-Performance 
Mobile Robot Navigation in Complex Environments” JFR, 2008



Why should we care about state space?

31

u(t)
Z t

0
f(x(t), u(t))dt x(t)

Control 
trajectory

State 
trajectory

Dynamics

Space in which 
we sample

Space in which 
cost functions 

defined



State space sampling

32

334 • Journal of Field Robotics—2008

from global guidance is less likely to lead efficiently
to the goal, a local motion-planning search space will
improve if it biases its search to be most consistent
with global guidance. We typically use a global plan-
ner that continuously provides a navigation function
(consisting of (an infeasible) path cost from any point
to the goal) to the local planner. Given such informa-
tion, it is better on average to sample terminal states
at a higher density in lower-global-cost regions and
at a lower density in higher-cost regions, as shown in
Figure 7. Some samples are retained in higher-cost re-
gions because the low-cost regions produced by the
global planner may not reflect actual dynamic con-
straints of the vehicle, or an accurate map of the sur-
roundings, and the global planner may not be able to
react quickly enough to recently perceived obstacles.

The shape parameters for the navigation
function–influenced search space include all of the
parameters from the uniformly sampled search
space with the addition of the number of navigation
function samples ns :

pss =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ns

np

nh

d

αmin
αmax
ψmin
ψmax

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Algorithm 3 is applied to bias the search space
with respect to global guidance in the example shown

Figure 7. Focused terminal state sampling for adaptive search space generation. The ability to exploit global guidance via
state space sampling generates local motion-planning search spaces that are denser in the direction of minimum global cost
(and therefore more likely to reduce the cost to the goal). Examples (a) and (b) show the same setup as in Figure 6 but
focused in the direction of minimum global cost.

in Figure 7. It is similar to Algorithm 2 except that
the α parameter is not sampled uniformly; it is biased
to sample more densely in regions where the naviga-
tion function ϕ(x, y ) is near a minimum. This is ac-
complished by sampling the navigation function at a
fixed horizon uniformly and creating a distribution
by taking the difference between the maximum and
the sampled values and dividing by the sum. Then
the integral of this conditional distribution is sam-
pled uniformly, generating a nonuniform sampling
of the angular value of the terminal position α. This
generates denser sampling in the low-cost regions of
the navigation function, corresponding to a denser
search space in those regions. The number of samples
taken of the navigation function ns can be dynami-
cally modified based on the complexity of the envi-
ronment and how long each sample takes to compute.
We use linear interpolation to approximate the navi-
gation function values between sampled states. All of
the shared shape parameters used in Figure 7 were
the same as in Figure 6 with ns = 100.

4.3. Satisfaction of Environmental Constraints
It is valuable for mobile robots operating in struc-
tured environments such as road networks and for-
est trails to consider environmental constraints in
the design of their local motion-planning search
space. Figure 2 exhibited the effects of ignoring such
constraints, leading to utterly ineffective planning
because many actions lie outside of the accept-
able navigation region. In situations in which

Journal of Field Robotics DOI 10.1002/rob

Do optimization to different terminal points

Store these trajectories

Load path set dependent on the global cost

T.Howard “State Space Sampling of Feasible Motions for High-Performance 
Mobile Robot Navigation in Complex Environments” JFR, 2008
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Instead of selecting a static library, we can select a contextual one

D.Dey et al “Contextual Sequence Prediction with Application to 
Control Library Optimization”, 2013

therefore CHOMP has a difficult time finding a valid trajectory
using this initial seed.

(a) The default straight-line initialization of CHOMP is marked
in orange. Notice this initial seed goes straight through the
obstacle and causes CHOMP to fail to find a collision-free
trajectory.

(b) The initialization seed for CHOMP found using CONSE-
QOPT is marked in orange. Using this initial seed CHOMP is
able to find a collision free path that also has a relatively short
execution time.

Fig. 2: CHOMP initialization trajectories generated as control
actions for CONSEQOPT. Blue lines trace the end effector path
of each trajectory in the library. Orange lines in each image
trace the initialization seed generated by the default straight-
line approach and by CONSEQOPT, respectively.

In our results we use a small number (1�3) of slots in our
sequence to ensure the overhead of ordering and evaluating the
library is small. When CHOMP fails to find a collision-free
trajectory for multiple initializations seeds, one can always

fall back on slow but complete planners. Thus the contextual
control sequence’s role is to quickly evaluate a few good
options and choose the initialization trajectory that will result
in the minimum execution time. We note that in our experi-
ments, the overhead of ordering and evaluating the library is
negligible as we rely on a fast predictor and features computed
as part of the trajectory optimization, and by choosing a
small sequence length we can effectively compute a motion
plan with expected planning time under 0.5s. We can solve
most manipulation problems that arise in our manipulation
research very quickly, falling back to initializing the trajectory
optimization with a complete motion planner only in the most
difficult of circumstances.

For each initialization trajectory, we calculate 17 simple
feature values which populate a row of the feature matrix Xi.
7 During training time, we evaluate each initialization seed
in our library on all environments in the training set, and
use their performance and features to train each regressor ¬i
in CONSEQOPT. At test time, we simply run Algorithm 2
without the training step to produce Y¬1,...,¬N as the sequence
of initialization seeds to be evaluated. Note that while the
first regressor uses only the 17 basic features, the subsequent
regressors also include the difference in feature values between
the remaining actions and the actions chosen by the previous
regressors. These difference features improve the algorithm’s
ability to consider trajectory diversity in the chosen actions.

We compare CONSEQOPT with two methods of ranking the
initialization library: a random ordering of the actions, and an
ordering by sorting the output of the first regressor. Sorting by
the first regressor is functionally the same as maximizing the
absolute benefit rather than the marginal benefit at each slot.
We compare the number of CHOMP failures as well as the
average execution time of the final trajectory. For execution
time, we assume the robot can be actuated at 1 rad/second for
each joint and use the shortest trajectory generated using the
N seeds ranked by CONSEQOPT as the performance. If we
fail to find a collision free trajectory and need to fall back to
a complete planner (RRT [15] plus trajectory optimization),
we apply a maximum execution time penalty of 40 seconds
due to the longer computation time and resulting trajectory.

The results over 212 test environments are summarized
in Figure 3. With only simple straight line initialization,
CHOMP is unable to find a collision free trajectory in 162/212
environments, with a resulting average execution time of 33.4s.
While a single regressor (N = 1) can reduce the number of
CHOMP failures from 162 to 79 and the average execution
time from 33.4s to 18.2s, when we extend the sequence
length, CONSEQOPT is able to reduce both metrics faster
than a ranking by sorting the output of the first regressor.
This is because for N > 1, CONSEQOPT chooses a primitive

7Length of trajectory in joint space; length of trajectory in task space, the
xyz values of the end effector position at the exploration point (3 values), the
distance field values used by CHOMP at the quarter points of the trajectory
(3 values), joint values of the first 4 joints at both the exploration point (4
values) and the target pose (4 values), and whether the initialization seed is
in the same left/right kinematic arm configuration as the target pose.
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Fig. 3: Generation of emergency maneuver library for one state. From left to right the plots step through the generation
of emergency maneuver library for 6 iterations. The top row displays the search space from which the current trajectory
is picked, where each trajectory is colored according to the probability of not passing through an obstacle in the set. The
middle row shows the greedily selected maneuver in the current step in green and existing maneuvers in the set in black.
The bottom row shows the total probability of finding at least one maneuver in the set not passing through an obstacle.
The robot starts at 25m/s longitudinal velocity for all the maneuvers and for illustration purposes, is restricted to move in
the xy plane.The benefit of adding new maneuvers diminishes as more trajectories are added and almost levels out after 5
trajectories.

TABLE I: Constraints on trajectory

Constraint Velocity kv(t)k

� 20m/s < 20m/s

Roll [�] 25.00 28.50
Roll rate [�/s] 15.00 �
Heading rate [�/s] � 28.50
Longitudinal vel. [m/s] 60.00 20.00
Vertical vel. [m/s] 5.00 5.00
Longitudinal accel. [m/s2] 0.75 0.75
Vertical accel. [m/s2] 1.00 1.00

0m/s. We use a constant resolution three dimensional grid
as our representation and assume uniform probability of
occupation of each voxel. The probability of a trajectory set
containing at least one unoccupied trajectory is calculated
using inclusion-exclusion principle as suggested in [5]. Fig. 3
steps through the emergency maneuver library generation
process for the robot motion restricted to a plane starting
at 25m/s forward longitudinal velocity. The probability of
at least one maneuver in the set surviving reduces with
each trajectory being added and almost levels off at about 5
trajectories. Given a trajectory set we can calculate the sensor
range required for different velocities. Given an emergency
maneuver library, the minimum sensor range required for a
certain velocity is calculated as

range = min
�c

(max(⇠(�c))). (5)

The function ⇠ returns a vector of the euclidean distances
between starting state x and all the states in �c 2 �G(x).

The best case sensor range required while using the
emergency maneuver library is given by (5). The worst case
is the same as the stopping distance. Hence, the emergency
maneuver library is guaranteed to provide at least as much
performance as using only the stopping distance for the
safety evaluation. In Fig. 4 the different requirements on
the sensor range for stopping distance and the emergency
maneuver library are illustrated. We can quantify the perfor-
mance of an emergency maneuver trajectory by calculating
the maximum safe velocity it allows the helicopter during a
mission and the planning time it allows the planner before
it becomes imperative for the helicopter to execute the
emergency maneuver library. Fig. 5 shows the maximum
safe velocity and allowed planning times for a flight test
conducted in Quantico, Virginia. The red line shows the path
where the helicopter is turning towards the landing zone. The
orange part of the path corresponds to the part of the mission
for which the sensor on the helicopter focuses on the landing
zone for its evaluation. This implies, when the helicopter is
moving through the path in orange the sensor stops looking
for obstacles and the helicopter comes increasingly close to
the known/unknown volume boundary, leading to a drop in
maximum safe velocity and allowed planning time. The red
part of the path corresponds to turns, it should be noted
how the maximum safe velocity according to the stopping
distance decreases as the vehicle turns. This happens due to
a reduction in effective range of the sensor because of the
sparsity of observations in front of the vehicle while turning.
The maximum safe speed by the emergency maneuver library

S.Arora “Emergency Maneuver Library – Ensuring Safe Navigation in 
Partially Known Environments”, 2015


