Dealing with complex
cost functions: Trajectory library

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury



Evolution of controllers

PID No No o

Pure Pursuit No

Lyapunov Non-linear Yes No
LQR Yes

MPC Non-linear Yes Yes




Evolution of controllers

Increasing complexity of problem ....
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Recap: Model predictive control (MPC)

t+H—1
min E J(xp, Upi1)

Ut 41, -Ut+ H




How are the controls executed?

Lt+1

Step 1: Solve optimization problem to a horizon



How are the controls executed?

Step 1: Solve optimization problem to a horizon

Step 2: Execute the first control



How are the controls executed?
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Step 1: Solve optimization problem to a horizon

Step 2: Execute the first control

Step 3: Repeat!



What is the cost? What constraints?

t+H—1
min Clost
Ut4+1y..- Ut
(plan till horizon H) k:t

Tpt1 = f(F—



What is the cost? What constraints?

2560, 2.5 second trajectories sampled
with cost-weighted average @ 60 Hz




Examples of complex cost functions
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Curvature
obstacles

(Ratliff et al. 2009) (Kelly et al. 2003)
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Problem: Costs can be non-convex
(terrible local minima)
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ic library of paths
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How will we use it for MPC?

. Iterate (2-3) for every path in library.
. Compute constraint. If violated, chuck out path
. Compute cost.

. Pick path with least cost.

Execute first control action. Robot moves. Replan.
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Problem: Library too big!!

Solution: Subsample library

But what is the right sampling strategy?
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Uniformly subsample

Strategy 1
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Why is this not a good library?
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Proposed problem formulation

Given a dense path set D Find a sparse subset S C D

N

b U,
Wil =

arg max COVERAGE(S, D
SCD

What is coverage? Why do we want coverage?

You want to cover the space well so that you mazrimize
the likelithood of finding a collision-free path.
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Why do we want coverage?’

Let’s say the dense set has an optimal path ¢ e arg min J(&)
ccD

We want to make sure the sparse set has a path ¢ S “elose to” €D

such that J(fs) < J(§D) + €
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Lipschitz continuity: Smoothness assumption

A Lipschitz continuous function satisfies the following inequality

va,y, 3L >0 st. | f(x) — f(y)| < L||z — y||

(Close points have the same function value)

The cost functions we consider are Lipschitz continuous

J(&1) — J(§2)| < Ld(&1,62)

(Close trajectories have the same cost value)
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Defining a “closeness” between paths

A metric is a d(€17 €2>

generalization of

distance \Path 1 Path2

We will choose a metric in the space of paths

1. Non-negative
2. Triangle inequality
3. Identity

4. Symmetry

Conditions that a
metric satisfies

There are plenty of metrics to choose from!
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closeness’ between paths

Ining a

Det

A set with a metric.

1s a path

Project paths on to a metric space where each dot
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closeness’ between paths

Ining a

Det

dots are close

Lvery dot 1s a path - neighboring

F

-
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Objective: “Cover’ as many black dots

Which library does a better job:?
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Remember, this is a space of paths! ”



Formalizing through dispersion

Dispersion is the radius of the largest ball
around a point in ) that does not have a
point in S

Dispersion = max min d(&q,
p max min (€1, 82)

COVERAGE(S, D) =

— max min d(&q,
c1€D &S <€1 52)
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T'he larger this ball
?

the worse the
coverage of the
space,
SO we want to
minimize it!
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Problem: Minimize dispersion

Given a dense path set D Find a sparse subset S C D
il
° o ° e [ ® ° ®
° o ® ° ° P ® o
° ) ¢ ° ¢ o ° o ¢
o ° o ([ ¢ o
¢ ’ ‘ ® ° ° ) :
o . . . ) o .
° ° ® . o ° ® ® . 1 °
) [ ) ® @

arg min |max min d(&q, &
ScD _€1€D E2€S




Questions

1. What distance metric should we use?

2. How do we solve the combinatorially hard problem
of dispersion minimization?
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Choosing a metric: Hausdorff distance

d — max(max min —
(517 52) (PE& geEEo Hp C]H,
max min |[p — ¢q||)
Find the p from which the pESZ C]Ef1

minimum distance to all

g 1s maximal.

Find the ¢ from which the
minimum distance to all

p 1s maximal. -



Trajectory library in action
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Extra Credits
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What is wrong with control space?

sampling in control space

sampling in state space
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Uniform sampling in control space is non-uniform in state space.

most extreme
left turn
//
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C

urrent velocity vector
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T.Howard “State Space Sampling of Feasible Motions for High-Performance
Mobile Robot Navigation in Complex Environments” JFR, 2008 30



Why should we care about state space?’

/U,(t) S /Otf(:c(t),u(t))dt S aj(t)

Control , State
Dynamics

trajectory trajectory

Space in which Space in which

cost functions

defined

we sample
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State space sampling

Do optimization to different terminal points
Store these trajectories

Load path set dependent on the global cost

minimum sampled
global path cost

decreasing global
pat h cost

decreasing global
path cost

minimum sampled
=

global pat h cost

(a) Minimum global cost to the right of the vehicle (b) Minimum global cost in front of the vehicle

T.Howard “State Space Sampling of Feasible Motions for High-Performance
Mobile Robot Navigation in Complex Environments” JE'R, 2008
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Using learning to select libraries

Instead of selecting a static library, we can select a contextual one

D.Dey et al “Contextual Sequence Prediction with Application to
Control Library Optimization”, 2013 33



Guaranteeing safety with libraries
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fnsuring Safe Navigation in
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