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Iterative LQR & 
Model Predictive Control

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury, Drew Bagnell, Steven Boyd

Instructor: Chris Mavrogiannis



Table of Controllers
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Control Law Uses model
Stability 

Guarantee
Minimize 

Cost

PID No No No

Pure Pursuit Circular arcs 
Yes - with 

assumptions
No

Lyapunov Non-linear Yes No

LQR Linear Yes Quadratic



Can we use LQR to swing up a pendulum?
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✓ = ⇡

✓ = 0

No! 
(Large angles imply 

large linearization error)

But we can track 
a reference swing up trajectory  

(small linearization error) 



Today’s objectives
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1. Trajectory following with iLQR 

2. General nonlinear trajectory optimization with iLQR 

3. Model predictive control (MPC)



LQR for Time-Varying Dynamical Systems 
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xt+1 = Atxt +Btut

c(xt, ut) = xT
t Qtxt + uT

t Rtut

Straight forward to get LQR equations 

Kt = �(Rt +BT
t Vt+1Bt)

�1BT
t Vt+1At

Vt = Qt +KT
t RtKt + (At +BtKt)

TVt+1(At +BtKt)



Trajectory tracking for stationary rolls?
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How do we get such behaviors?
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Nose-in funnel Stationary rolls

Figure 1: (Best viewed in color.) (a) Series of snapshots throughout an autonomous flip. (b) Series of snapshots
throughout an autonomous roll. (c) Overlay of snapshots of the helicopter throughout a tail-in funnel. (d)
Overlay of snapshots of the helicopter throughout a nose-in funnel. (See text for details.)

Figure 1: (Best viewed in color.) (a) Series of snapshots throughout an autonomous flip. (b) Series of snapshots
throughout an autonomous roll. (c) Overlay of snapshots of the helicopter throughout a tail-in funnel. (d)
Overlay of snapshots of the helicopter throughout a nose-in funnel. (See text for details.)
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Iterative LQR (iLQR)

i=0 i=10 i=100

Start by guessing a control sequence, Forward simulate dynamics, 
Linearize about trajectory, Solve for new control sequence  

and repeat!



Step 1: Get a reference trajectory
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Note: Simply executing open loop trajectory won’t work!

xref
0 , uref

0 , xref
1 , uref

1 , . . . , xref
T�1, u

ref
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Step 2: Initialize your algorithm
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Choose initial trajectory at iteration 0 to linearize about

x0(t), u0(t) = {x0
0, u

0
0, x

0
1, u

0
1, . . . , x

0
T�1, u

0
T�1}

It’s a good idea to choose the reference trajectory

Initialization is very important! 
We will be perturbing this initial trajectory  

to account for system dynamics!



Step 3: Linearize your dynamics!
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At a given iteration i, we are going to linearize about 

xi
0, u

i
0, x

i
1, . . .

Change of variable - we will track the delta perturbations

�xt = xt � xi
t

�ut = ut � ui
t

Perturbations between current point and i-th trajectory



Step 3: Linearize your dynamics!

12

Reference 
Trajectory

Linearization 
Trajectory

xi
t
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Step 3: Linearize your dynamics!
�xt = xt � xi

t �ut = ut � ui
t

�xt+1 = At�xt +Bt�ut + (f(xi
t, u

i
t)� xi

t+1)

At =
@f

@x

�����
xi
t

Bt =
@f

@u

�����
ui
t

Offset

Next point (dynamics)
Next point (i-th trajectory)
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Step 3: Linearize your dynamics!

Homogeneous coordinate system


�xt

1

�


�xt+1

1

�
=


At+1 f(xi

t, u
i
t)� xi

t+1

0 1

� 
�xt

1

�
+


Bt+1

0

� 
�ut

0

�

Dynamics is now linear!

Ãt B̃t

�ut
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Step 4: Quadricize cost about trajectory
Our cost function is already quadratic

c(xt, ut) = (xt � xref
t )TQ(xt � xref

t ) + (ut � uref
t )TR(ut � uref

t )

=


�xt

1

�T 
Q Q(xi

t � xref
t )

(xi
t � xref

t )TQ (xi
t � xref

t )T (xi
t � xref

t )

� 
�xt

1

�

+


�ut

1

�T 
R R(ui

t � uref
t )

(ui
t � uref

t )TR (ui
t � uref

t )T (ui
t � uref

t )

� 
�ut

1

�

Q̃t

R̃t



We have all the ingredients to call LQR!
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K̃t = �(R̃t + B̃T
t Ṽt+1B̃t)

�1B̃T
t Ṽt+1Ãt

similarly calculate the value function …
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Step 5: Do a backward pass

K̃T�1, ṼT�1

K̃T�2, ṼT�2

K̃T�3, ṼT�3

K̃0, Ṽ0

Calculate controller gains for all time steps
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Step 6: Do a forward pass to get new trajectory

xi+1
t = f(xi+1

t , ui+1
t )

xi+1
0 = xi

0

ui+1
0 = ui

0 + K̃t


0
1

�

Compute  
control action 

ui+1
t = ui

t + K̃t


xi+1
t � xi

t

1

� Apply dynamics
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Step 6: Do a forward pass to get new trajectory

Compute  
control action 

xi+1
t = f(xi+1

t , ui+1
t )

Apply dynamics

ui+1
t = ui

t + K̃t


xi+1
t � xi

t

1

�

(xi+1
1 , ui+1

1 )

(xi
1, u

i
1)
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Step 6: Do a forward pass to get new trajectory

Compute  
control action 

xi+1
t = f(xi+1

t , ui+1
t )

Apply dynamics

ui+1
t = ui

t + K̃t


xi+1
t � xi

t

1

�

(xi
2, u

i
2)

(xi+1
2 , ui+1

2 )
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Step 6: Do a forward pass to get new trajectory

Compute  
control action 

xi+1
t = f(xi+1

t , ui+1
t )

Apply dynamics

ui+1
t = ui

t + K̃t


xi+1
t � xi

t

1

�
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Problem: Forward pass will go bonkers

Why? 

Linearization error gets bigger and bigger and bigger

Remedies: Change cost function to penalize deviation from linearization



Questions
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1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! Just quadricize the cost

3. What if I want to penalize control derivatives?

No problem! Add control as part of state space

4. Can we handle noisy dynamics?

Yes! Gaussian noise does not change the answer



Table of Controllers
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Uses model
Stability 

Guarantee
Minimize 

Cost

PID No No No

Pure Pursuit Circular arcs 
Yes - with 

assumptions
No

Lyapunov Non-linear Yes No

LQR Linear Yes Quadratic

iLQR Non-linear Yes Yes
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iLQR is just one technique

It’s far from perfect - can’t deal with  
model errors / constraints …

Model Predictive Control (MPC)

iLQR

DDP

Shooting

CMAES
TrajLib

MPPI



Recap: Feedback control framework
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Look at current state error and compute control actions

Goal: To drive error to 0 … to optimally drive it to 0

xt

xref
t

ut = ⇡(xt, x
ref
t )

ut+1 = ⇡(xt+1, x
ref
t+1)

xref
t+1

xt+1

Reference 



Limitations of this framework
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ut = ⇡(xt, x
ref
t )

A fixed control law that looks at instantaneous feedback 

Fixed Reference

Why is it so difficult to create a magic control law?



Problem 1: What if we have constraints?
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Simple scenario: Car tracking a straight line

Small error, 
control within 

steering constraints 

Large error, 
control violates 

steering constraints 

We could “clamp control command” …  
but what are the implications? 

Constraints come as a surprise… bad system response…



General problem: Complex models
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xt+1 = f(xt, ut)

g(xt, ut)  0

Dynamics

Constraints

Such complex models imply we need to: 

1. Predict the implications of control actions 

2. Do corrections NOW that would affect the future 

3. It may not be possible to find one law - might need to predict



Example: Rough terrain mobility
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Problem 2: What if some errors are worse than others?
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We need a cost function that penalizes states non-uniformly
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Key Idea: 

Frame control as an optimization problem



Model predictive control (MPC)

33

1. Plan a sequence of control actions

2. Predict the set of next states unto a horizon H

3. Evaluate the cost / constraint of the states and controls

4. Optimize the cost 



Model predictive control (MPC)
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xk+1 = f(xk, uk+1)

min
ut+1,...ut+H

t+H�1X

k=t

J(xk, uk+1)

g(xk, uk+1)  0

1. At each time t, solve the (finite horizon) (planning) problem 

s.t.

2. Execute ũt

3. Go to step 1

*Slide adapted from Stephen Boyd

(ũt, . . . , ũt+H−1) =
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ut

ut+1

ut+2

ut+3
ut+4

xt

xt+1

xt+2

xt+3

xt+4

Jt Jt+1

Jt+2
Jt+3

Jt+4

At each time step

Execute!
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xt

xt+1

xt+2

xt+3

xt+4

Step 1: Optimize to horizon



Step 2: Execute first control
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xt xt+1



Step 3: Repeat!
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xt xt+1

xt+2

xt+3

xt+4

xt+5



MPC is a framework
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1 1. Concepts 1.1 Main Idea

Model Predictive Control

P(s)%

Objectives
 Model
 Constraints


Plant

Optimizer







Measurements 

Output  Input  Reference  

Objectives
 Model
 Constraints


Plan
Do


Plan
Do


Plan
Do

Time


Receding horizon strategy introduces feedback.

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014) 1-4

1 1. Concepts 1.2 Classical Control vs MPC

Table of Contents
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1.3 Mathematical Formulation
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Step 3: Repeat!

Step 2: Execute the first control

Step 1: Solve optimization problem to horizon



Why do we need to replan?
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What happens if the controls are planned once and executed?



Why do we need to replan?
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What happens if the controls are planned once and executed?



Coming up next: Complex cost functions


