
1

Iterative LQR &
Model Predictive Control

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury, Drew Bagnell, Steven Boyd

Instructor: Chris Mavrogiannis

Table of Controllers

2

Control Law Uses model
Stability

Guarantee
Minimize

Cost

PID No No No

Pure Pursuit Circular arcs
Yes - with

assumptions
No

Lyapunov Non-linear Yes No

LQR Linear Yes Quadratic

Can we use LQR to swing up a pendulum?

3
✓ = ⇡

✓ = 0

No!
(Large angles imply

large linearization error)

But we can track
a reference swing up trajectory

(small linearization error)

Today’s objectives

4

1. Trajectory following with iLQR 

2. General nonlinear trajectory optimization with iLQR 

3. Model predictive control (MPC)

LQR for Time-Varying Dynamical Systems

5

xt+1 = Atxt +Btut

c(xt, ut) = xT
t Qtxt + uT

t Rtut

Straight forward to get LQR equations

Kt = �(Rt +BT
t Vt+1Bt)

�1BT
t Vt+1At

Vt = Qt +KT
t RtKt + (At +BtKt)

TVt+1(At +BtKt)

Trajectory tracking for stationary rolls?

6

−1
0

1 −2

0

2

−3

−2

−1

0

1

2

3

Easting (m)Northing (m)

D
o
w

n
 (

m
)

7

How do we get such behaviors?

−10

−5

0

5

−6
−4

−2
0

2
4

6

−2

−1

0

1

2

Easting (m)
Northing (m)

D
ow

n
(m

)

Nose-in funnel Stationary rolls

Figure 1: (Best viewed in color.) (a) Series of snapshots throughout an autonomous flip. (b) Series of snapshots
throughout an autonomous roll. (c) Overlay of snapshots of the helicopter throughout a tail-in funnel. (d)
Overlay of snapshots of the helicopter throughout a nose-in funnel. (See text for details.)

Figure 1: (Best viewed in color.) (a) Series of snapshots throughout an autonomous flip. (b) Series of snapshots
throughout an autonomous roll. (c) Overlay of snapshots of the helicopter throughout a tail-in funnel. (d)
Overlay of snapshots of the helicopter throughout a nose-in funnel. (See text for details.)

8

Iterative LQR (iLQR)

i=0 i=10 i=100

Start by guessing a control sequence, Forward simulate dynamics,
Linearize about trajectory, Solve for new control sequence

and repeat!

Step 1: Get a reference trajectory

9

6

4

22

1

5 0

0

-1

-2

-2

Down (m)

0 -4

-6
-5

Note: Simply executing open loop trajectory won’t work!

xref
0 , uref

0 , xref
1 , uref

1 , . . . , xref
T�1, u

ref
T�1

Step 2: Initialize your algorithm

10

Choose initial trajectory at iteration 0 to linearize about

x0(t), u0(t) = {x0
0, u

0
0, x

0
1, u

0
1, . . . , x

0
T�1, u

0
T�1}

It’s a good idea to choose the reference trajectory

Initialization is very important!
We will be perturbing this initial trajectory

to account for system dynamics!

Step 3: Linearize your dynamics!

11

At a given iteration i, we are going to linearize about

xi
0, u

i
0, x

i
1, . . .

Change of variable - we will track the delta perturbations

�xt = xt � xi
t

�ut = ut � ui
t

Perturbations between current point and i-th trajectory

Step 3: Linearize your dynamics!

12

Reference
Trajectory

Linearization
Trajectory

xi
t

13

Step 3: Linearize your dynamics!
�xt = xt � xi

t �ut = ut � ui
t

�xt+1 = At�xt +Bt�ut + (f(xi
t, u

i
t)� xi

t+1)

At =
@f

@x

�����
xi
t

Bt =
@f

@u

�����
ui
t

Offset

Next point (dynamics)
Next point (i-th trajectory)

14

Step 3: Linearize your dynamics!

Homogeneous coordinate system


�xt

1

�


�xt+1

1

�
=


At+1 f(xi

t, u
i
t)� xi

t+1

0 1

� 
�xt

1

�
+


Bt+1

0

� 
�ut

0

�

Dynamics is now linear!

Ãt B̃t

�ut

15

Step 4: Quadricize cost about trajectory
Our cost function is already quadratic

c(xt, ut) = (xt � xref
t)TQ(xt � xref

t) + (ut � uref
t)TR(ut � uref

t)

=


�xt

1

�T 
Q Q(xi

t � xref
t)

(xi
t � xref

t)TQ (xi
t � xref

t)T (xi
t � xref

t)

� 
�xt

1

�

+


�ut

1

�T 
R R(ui

t � uref
t)

(ui
t � uref

t)TR (ui
t � uref

t)T (ui
t � uref

t)

� 
�ut

1

�

Q̃t

R̃t

We have all the ingredients to call LQR!

16

K̃t = �(R̃t + B̃T
t Ṽt+1B̃t)

�1B̃T
t Ṽt+1Ãt

similarly calculate the value function …

17

Step 5: Do a backward pass

K̃T�1, ṼT�1

K̃T�2, ṼT�2

K̃T�3, ṼT�3

K̃0, Ṽ0

Calculate controller gains for all time steps

18

Step 6: Do a forward pass to get new trajectory

xi+1
t = f(xi+1

t , ui+1
t)

xi+1
0 = xi

0

ui+1
0 = ui

0 + K̃t


0
1

�

Compute
control action

ui+1
t = ui

t + K̃t


xi+1
t � xi

t

1

� Apply dynamics

19

Step 6: Do a forward pass to get new trajectory

Compute
control action

xi+1
t = f(xi+1

t , ui+1
t)

Apply dynamics

ui+1
t = ui

t + K̃t


xi+1
t � xi

t

1

�

(xi+1
1 , ui+1

1)

(xi
1, u

i
1)

20

Step 6: Do a forward pass to get new trajectory

Compute
control action

xi+1
t = f(xi+1

t , ui+1
t)

Apply dynamics

ui+1
t = ui

t + K̃t


xi+1
t � xi

t

1

�

(xi
2, u

i
2)

(xi+1
2 , ui+1

2)

21

Step 6: Do a forward pass to get new trajectory

Compute
control action

xi+1
t = f(xi+1

t , ui+1
t)

Apply dynamics

ui+1
t = ui

t + K̃t


xi+1
t � xi

t

1

�

22

Problem: Forward pass will go bonkers

Why?

Linearization error gets bigger and bigger and bigger

Remedies: Change cost function to penalize deviation from linearization

Questions

23

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! Just quadricize the cost

3. What if I want to penalize control derivatives?

No problem! Add control as part of state space

4. Can we handle noisy dynamics?

Yes! Gaussian noise does not change the answer

Table of Controllers

24

Uses model
Stability

Guarantee
Minimize

Cost

PID No No No

Pure Pursuit Circular arcs
Yes - with

assumptions
No

Lyapunov Non-linear Yes No

LQR Linear Yes Quadratic

iLQR Non-linear Yes Yes

25

iLQR is just one technique

It’s far from perfect - can’t deal with
model errors / constraints …

Model Predictive Control (MPC)

iLQR

DDP

Shooting

CMAES
TrajLib

MPPI

Recap: Feedback control framework

26

Look at current state error and compute control actions

Goal: To drive error to 0 … to optimally drive it to 0

xt

xref
t

ut = ⇡(xt, x
ref
t)

ut+1 = ⇡(xt+1, x
ref
t+1)

xref
t+1

xt+1

Reference

Limitations of this framework

27

ut = ⇡(xt, x
ref
t)

A fixed control law that looks at instantaneous feedback

Fixed Reference

Why is it so difficult to create a magic control law?

Problem 1: What if we have constraints?

28

Simple scenario: Car tracking a straight line

Small error,
control within

steering constraints

Large error,
control violates

steering constraints

We could “clamp control command” …  
but what are the implications?

Constraints come as a surprise… bad system response…

General problem: Complex models

29

xt+1 = f(xt, ut)

g(xt, ut)  0

Dynamics

Constraints

Such complex models imply we need to:

1. Predict the implications of control actions 

2. Do corrections NOW that would affect the future

3. It may not be possible to find one law - might need to predict

Example: Rough terrain mobility

30

Problem 2: What if some errors are worse than others?

31

We need a cost function that penalizes states non-uniformly

32

Key Idea:

Frame control as an optimization problem

Model predictive control (MPC)

33

1. Plan a sequence of control actions

2. Predict the set of next states unto a horizon H

3. Evaluate the cost / constraint of the states and controls

4. Optimize the cost

Model predictive control (MPC)

34

xk+1 = f(xk, uk+1)

min
ut+1,...ut+H

t+H�1X

k=t

J(xk, uk+1)

g(xk, uk+1)  0

1. At each time t, solve the (finite horizon) (planning) problem

s.t.

2. Execute ũt

3. Go to step 1

*Slide adapted from Stephen Boyd

(ũt, . . . , ũt+H−1) =

35

ut

ut+1

ut+2

ut+3
ut+4

xt

xt+1

xt+2

xt+3

xt+4

Jt Jt+1

Jt+2
Jt+3

Jt+4

At each time step

Execute!

36

xt

xt+1

xt+2

xt+3

xt+4

Step 1: Optimize to horizon

Step 2: Execute first control

37

xt xt+1

Step 3: Repeat!

38

xt xt+1

xt+2

xt+3

xt+4

xt+5

MPC is a framework

39

1 1. Concepts 1.1 Main Idea

Model Predictive Control

P(s)%

Objectives
 Model
 Constraints

Plant

Optimizer

Measurements

Output Input Reference

Objectives
 Model
 Constraints

Plan
Do

Plan
Do

Plan
Do

Time

Receding horizon strategy introduces feedback.

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014) 1-4

1 1. Concepts 1.2 Classical Control vs MPC

Table of Contents

1. Concepts
1.1 Main Idea
1.2 Classical Control vs MPC
1.3 Mathematical Formulation

MPC Part I – Introduction F. Borrelli, C. Jones, M. Morari - Fall Semester 2014 (revised August 2014)

Step 3: Repeat!

Step 2: Execute the first control

Step 1: Solve optimization problem to horizon

Why do we need to replan?

40

What happens if the controls are planned once and executed?

Why do we need to replan?

41

What happens if the controls are planned once and executed?

Coming up next: Complex cost functions

