Linear Quadratic Regulator

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury, Drew Bagnell 1



Logistics

New Ofhice Hours

Chris: Tuesdays at 1:00pm (CSE1 436)
Kay: Tuesdays at 4:00pm (CSE1 022)

Just for this week, Wednesday at 5:00pm
Gilwoo: Thursdays at 4:00pm (CSE1 022)
Schmittle: Fridays at 4:00pm (CSE1 022)




Different control laws

1. PID control

2. Pure-pursuit control
3. Lyapunov control
4. LQR

5. MPC



Recap of controllers

PID / Pure pursuit: Worked well, no provable guarantees

Lyapunov: Provable stability, convergence rate depends on gains



Table of controllers

Control Law Uses model GSEZE;EE; Miél:;ize
PID W= K+t .. No No No
Pure Pursuit w=tan™ (QBSLM) No
Lyapunov u-uwn (-2 - i) Non-linear Yes No




s stability enough?

lim e(t) =0

— OO



s stability enough of a guarantee?

e
-

Control action changes abruptly - why is this bad?

Steering angle

<



s stability enough of a guarantee?

What if we just choose really small gains?

Stability guarantees that the error will go to zero ...
but can take arbitrary long time



(Question:
How do we trade-off both
driving error to zero
AND

keeping control action small?



Key ldea:
Turn the problem into an
optimization

min / (wre(t)? + wault)*dt)
u(t 0



Optimal Control

Given:

Lo

For t=0,1,2,...,71
T

Solve min E Ck(xk,uk)
T, U
k=0

S.t. Lk4+1 — f(:vk,uk),Vk < {t7t+ 17"‘7T_ ]‘}

Lt — Tt

*Slide adapted from Ruslan Salakhutdinov ..



Special Case: Linear Quadratic Regulator (LQR)

Linear dynamics

f(z,u) = Ax + Bu

(Quadratic cost
c(z,u) = z* Qx + u' Ru

Trivia! :) (from http://www.uta.edu/utari/acs/history.htm)

In 1960 three major papers were published by R. Kalman and coworkers...

1. One of these |[Kalman and Bertram 1960|, presented the vital work

of Lyapunov in the time-domain control of nonlinear systems.

2. The next [Kalman 1960a| discussed the optimal control of systems, providing
the design equations for the linear quadratic regulator (LQR).

3. The third paper |[Kalman 1960b| discussed optimal filtering and estimation
theory, providing the design equations for the discrete Kalman filter.
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http://www.uta.edu/utari/acs/history.htm

LQR flying RC helicopters

(Excellent work by Pieter Abeel et al. https://people.eecs.berkeley.edu/ " pabbeel/

autonomous__helicopter.html)



https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html
https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html
https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html

The Linear Quadratic Regulator (LQR)

Given:

1. Linear dynamical system

Tii1 — Amt -+ But (assume controllable)

2. A reference state which we are regulating around
Lref — 0

3. A quadratic cost function to minimize
T T
c(Te,ur) = (T4 — Tpeg)” Q(Tr — Trep) + uy Ruy

T T
:ait Qa:t—l—ut Rut QR}O*

(Goal: Compute control actions to minimize cumulative cost

T—1
J = Z C(Zl?t, ut)
t=0

"X =00 2'X2>0, V240 o,



Example: Inverted Pendulum

mgl sin 0
Equations of motion
& N S
g X0 mglsin9+7:ml2é
v "

'+ mg Q

T (Continuous time)

T
(\V)
|
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Example: Inverted Pendulum

mgl sin 0
Equations of motion
& N S
X0 mglsin9+7:ml2é
g v [\~

_ 9

[

Linearization @%
01 B 1 At| [0; n 0 _ (discrete time
_et——l_ B _%At 1 ) _Ht_ _ ﬂ%lg_ Euler approx)

State deriv A State B
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Get to (0,0) while minimizing cost

o =
/_\[

f?AT

|

N
[ J = Z ri Qry + u; Ruy

t=0

+ 0



Observation: Cost-to-go is not uniform

Easier to be
« on this axis

/
,  Harder

“to be on this axis
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How do we solve for controls?

Dynamic programming to the rescue!

e efficient, recursive method to solve LQR least-squares problem
e cost is O(Nn3)

Bellman (Value) function (minimum cost to go starting from ;)

J* () = ngbin c(xe,ue) + J (xpa1)

t

where

T—1
J = Z C($t, ut)
t=0

c(ze,ur) = ' Qr + u' Ru
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Solve backwards from final state

T-1

T-2
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Last time step T-1

We have only 1 term in the cost function

J* (QL‘T_l) — Izlin x%_1Q$T_1 + u;_lRuT_l

T

To minimize cost, set control to 0
ur—1 — 0
The cost function is a quadratic

J* (‘/ET—l) — m%_1Q$T—1

(Value matrix)

Lref
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Previous time step T-2

J*(xp_2) = min c(zr_o,ur_2) + J (T7_1)

urtr—2

. T T T
— 1ILnlIl ZET_QQZL’T_Q —+ UT_ZRuT_Q -+ CET_1VT—137T—1
T —2
Solve for control at timestep T-2 TT_9 TT_1

(set derivative wrt U —2to 0) |
UT_9 = —(R -+ BTVT_lB)_lBTVT_lACET_Q I
|

' |

I
I
I
I
] |\
K1-2 Kalman Gain ) ® Lref

| |
| |
Observation: Control law is linear! : uT—2 :
| |
| |

T-1
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Plug control into Value Function

J (xp_9)=27_5(Q+ K] _yRKr_5+ (A+ BKr_2)"Vy_1(A+ BKr_3))zr_2

Value function is quadratic Lref
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We can derive this relation at ALL time steps

Ki=—(R+B'"V,..B) 'B'V, A

V,=Q+ K/ RK; + (A+ BK;)'V;11(A + BK})

Current Action Closed Future Closed
cost cost loop value matrix  loop

dynamics dynamics
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The LQR algorithm

Algorithm OptimalValue(A, B, Q,R,t, T)
ift =T —1 then

return QO
end

else
Viiq1 = OptimalValue(A,B,Q,R,t+1,T)

Ki = —(B'V;41B+R)'B'V, 1 A
return V; = Q + K/ RK; + (A + BK;)'V,11(A + BK;)
end

(Courtesy Drew Bagnell)
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Contours of value function (T-1)
0
.
Vo1 =Q



Contours of value function (T-2)

0

_|_

(&

Vi_o =Q+ K'RK
+(A+ BK)"Vr_1(A+ BK)




Contours of value function (many steps)
0

_|_



How does the value function evolve?

Easier to be

1S_axI1s

/
,  Harder

“to0 be on this axis
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What if my time horizon is very very
very large?
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Convergence of value iteration

Theorem: If the system is stabilizable, then the value V will converge

V=Q+K RK+(A+BK)' V(A + BK)

K=—-(R+B'VB)"'B'VA

Discrete Algebraic Ricatti .

Kquation (DARI

}
D)

How do I solve? Can iterate over V / use eigen value decomposition [1]

Type into MATLAB: dare(A,B,Q,R)

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proc.

[EEE®), 72 (1984), pp. 1746-1754.
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So, can this controller
stabilize inverted pendulum for all
angles?

No!

Linearization error is too large when angle is large
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Instead, can we use LQR to track reference trajectory?

O
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Yes

But but we need to linearize about
nominal trajectory

Lref () “ref(t)/
o
£z

(t)
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LQR for Time-Varying Dynamical Systems

ri11 = Arxy + Brug

T T
c(xy,ur) = x5 Qs + u; Ryuy

Straight forward to get LQR equations
Ki=—(R;+ B/ Vi 1By) "B/ Vi1 1 A
t = — (R + B; Viy1DBy) ¢ Vi+1Ag

Vi=Q+ KérRth + (A + Bth)T‘/t—i—l(At + B K4)
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. ry
ecto
about tra|
| rize
Linea

u)
0 = f(z,
€T —
0f
inal trajectory N y x:
Nomin
- Bt = ou Uy

Lt ..

o’

Lt

Ut
+ By
— Atl‘t

Lt41
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Trick to write in Linear System Form

Litt1 — At.ft -+ Btut -+ :C?ff

H dinat T = (aj>
omogeneous coorainates J—
1
N Ay 20l By
— +
L1 (O | )xt (O U

Similarly you can transform cost function

- ~T A ~ T
(T, ur) = Ty QieTe + u; Ryuy
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Shape of the value function changes along trajectory

Tref(t) Uref(t)

Lt Ti41
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Questions

1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti ]

Kquations (CAR.

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! We will talk about iterative LQR next class

3. What if I want to penalize control derivatives?

No problem! Add control as part of state space

4. Can we handle noisy dynamics?

Yes! Gaussian noise does not change the answer

)



Trivia: Duality between control and estimation

R. Kalman “A new approach to linear filtering and prediction
problems.” (1960)

linear-quadratic Kalman-Bucy

regulator filter
V 3 (state variance)
A AT (dynamics)
B HT (measurement)
R DD'"  (dynamics noise)
Q cc'! (motion noise)
t tr—1t1

(Table from E.Todorov “General duality between optimal control and estimation”, CDC, 2008)
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