
1

PID and Pure Pursuit
Control

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury

Logistics

1. Office hours poll

2. Mid-quarter course evaluation

3. Apologies for errors/typos in assignments

4. Crucial that you attend office hours

5. Simulation vs Real World

The Control API

3

Input Output

x(⌧), y(⌧), ✓(⌧), v(⌧)

1. Reference path
2. Current state

2

4
x
y
✓

3

5

Control action

�

Control
Law

Steps to designing a controller

4

1. Get a reference path / trajectory to track

2. Pick a point on the reference

3. Compute error to reference point

4. Compute control law to minimize error

Rough idea of what happens across timesteps

5

Robot is trying to track a desired state on the reference path

(Take an action to drive down error between desired and current state)

Steps to designing a controller

6

1. Get a reference path / trajectory to track

2. Pick a point on the reference

3. Compute error to reference point

4. Compute control law to minimize error

Step 1: Get a reference path

7

2

4
x
y
✓

3

5

x(t), y(t), ✓(t)

How do we define a reference?

8

Option 1: Time-parameterized trajectory

Pro: Useful if we want the robot to respect time constraints
Con: Sometimes we care only about deviation from reference

2

4
x
y
✓

3

5

t1

t2

2

4
x
y
✓

3

5

How do we define a reference?

x(⌧), y(⌧), ✓(⌧), v(⌧)

Pro: Useful for conveying the shape you want the robot to follow
Con: Can’t control when robot will reach a point

⌧ = 0

⌧ = 1

Option 2: Index-parametrized path

Step 2: Pick a reference (desired) state

10

2

4
xref

yref
✓ref

3

5
2

4
x
y
✓

3

5

⎡

⎣
xref (t)
yref (t)
θref (t)

⎤

⎦

How do we pick a reference?

2

4
x
y
✓

3

5

Option 1: Time-parameterized trajectory

Any problems with that?

⎡

⎢⎢⎣

x(τref)
y(τref)
θ(τref)
v(τref)

⎤

⎥⎥⎦

How do we pick a reference?

2

4
x
y
✓

3

5

Option 2: Index-parameterized path
⌧ref = argmin

⌧
||
⇥
x y

⇤T �
⇥
x(⌧) y(⌧)

⇤T ||
τref = argmin

τ

(
||
[
x y

]T −
[
x(τ) y(τ)

]T ||− L
)2

Lookahead

Closest point

What happens if L is too small/large?

Issues with Closest point?

Step 3: Compute error to this state

13

{ eat {
ect

✓e

(Along-track)

(Cross-track)

(Heading)

Step 3: Compute error to this state

14

Error is simply the state of the car expressed in
the frame of the reference (desired) state

2

4
x
y
✓

3

5

2

4
eat
ect
✓e

3

5

{B} θ

R

Aside: Rotation Matrices (Plane)

{A}
x

y

z

R = Rz(θ) =

[
cos θ − sin θ
sin θ cos θ

]

Express Position to desired Frame

{A}{B} θ

R

{A}

AddB

{B}
θ

R = Rz(θ) =

[
cos θ − sin θ
sin θ cos θ

]
Ad = RBd

?

θ{B}

Inverse Transformation

{A}

{A}

Ad?

R(−θ) = RT

RT =

[
cos θ sin θ
− sin θ cos θ

]
Bd = RTAd

{B}
θ

Bd

Step 3: Compute error to this state

18

2

4
xref

yref
✓ref

3

5
2

4
x
y
✓

3

5

Step 3: Compute error to this state

19

Step 3: Compute error to this state

20

A

Ae =


x
y

�
�


xref

yref

�
Position in frame A

Ae

Step 3: Compute error to this state

21

A
B

We want position in frame B

Be =B
A R Ae

(rotation of
A w.r.t B)

= R(�✓ref)

✓
x
y

�
�

xref

yref

�◆

(rotation of
A w.r.t B)

Ae

Step 3: Compute error to this state

22

A
B

We want position in frame B

Be =B
A R Aee =


cos(✓ref) sin(✓ref)
� sin(✓ref) cos(✓ref)

�✓
x
y

�
�


xref

yref

�◆
eat
ect

�
=

Step 3: Compute error to this state

23

A
B

Heading error

✓e = ✓ � ✓ref

Step 3: Compute error to this state

24

ect = � sin(✓ref)(x� xref) + cos(✓ref)(y � yref)

eat = cos(✓ref)(x� xref) + sin(✓ref)(y � yref)

{ eat {

ect

✓e = ✓ � ✓ref

✓e

(Along-track)

(Cross-track)

(Heading)

Some things to note

25

{ eat {

ect

✓e

1. We will only control steering angle; speed set to reference speed

2. Hence, no real control on along-track error. Ignore for now.

3. Some control laws will only minimize cross-track error,
others both heading and cross-track error.

Step 4: Compute control law

26

errorcontrol

Compute control action based on instantaneous error

Different laws have different trade-offs,
make different assumptions,

look at different errors

u = K(e)

Different control laws

27

1. PID control

2. Pure-pursuit control

3. Lyapunov control

4. LQR

5. MPC

28

Proportional–integral–derivative
(PID) controller

Used widely in industrial
control from 1900s Do not try this

with PID!!!
Regulate temp, press, speed etc

PID control overview

29

ect
u

Select a control law that tries to drive error to zero (and keep it there)

Proportional Integral Derivative

u = �
✓
Kpect +Ki

Z
ect(t)dt+Kdėct

◆

(current) (past) (future)

Some intuition …

30

Proportional Integral Derivative

u = �
✓
Kpect +Ki

Z
ect(t)dt+Kdėct

◆

(current) (past) (future)

Proportional - get rid of the current error!

Integral - if I am accumulating error, try harder!

Derivative - if I am going to overshoot, slow down!

Proportional control

31

ect

u = �Kpect

ect < 0, u > 0

ect > 0, u < 0

(Gain)

The proportional gain matters!

32

ect

What happens when gain is low?

What happens when gain is high?

Proportional term

33

What happens when gain is too high?

ect �
umax

Kp

Proportional derivative control

34

ect

u = � (Kpect +Kd ˙ect)

ect << 0, ėct ⇡ 0, u >> 0

ect < 0, ėct > 0, u ⇡ 0

ect ⇡ 0, ėct > 0, u < 0

How do you evaluate the derivative term?

35

Terrible way: Numerically differentiate error. Why is this a bad idea?

Smart way: Analytically compute the derivative of the cross track error

ėct = � sin(✓ref)ẋ+ cos(✓ref)ẏ

= � sin(✓ref)V cos(✓) + cos(✓ref)V sin(✓)

= V sin(✓ � ✓ref) = V sin(✓e)

ect = � sin(✓ref)(x� xref) + cos(✓ref)(y � yref)

u = � (Kpect +KdV sin ✓e)

New control law! Penalize error in cross track and in heading

Proportional integral control

36

ect

u = �
✓
Kpect +Ki

Z
ect(t)dt

◆

Only Proportional
cannot overcome wind!

Z
ect(t)dt � 0, u � 0

Different control laws

37

1. PID control

2. Pure-pursuit control

3. Lyapunov control

4. LQR

5. MPC

38

Pure Pursuit Control

 Aerial combat in which aircraft pursues
another aircraft by pointing
its nose directly towards it

Similar to
carrot on a stick!

39

Key Idea:

The car is always moving
in a circular arc

40

L

Consider a reference at a lookahead distance

Problem: Can we solve for a steering angle that guarantees
that the car will pass through the reference?

����


x
y

�
�

xref

yref

����� = L

Solution: Compute a circular arc

41

We can always solve for an arc that
passes through a lookahead point

Note: As the car moves forward, the point keeps moving

Pure pursuit: Keep chasing looakahead

42

1. Find a lookahead and compute arc

2. Move along the arc

3. Go to step 1

Remember Simple Car Kinematics

{G}

Chapter 13. Wheeled Mobile Robots
525

CoR

(x, y)

rmin

�

ŷ

x̂{s}

Figure 13.10: The two front wheels of a car are steered at di↵erent angles using

Ackermann steering such that all wheels roll without slipping (i.e., the wheel heading

direction is perpendicular to the line connecting the wheel to the CoR). The car is

shown executing a turn at its minimum turning radius rmin.

and the angular speed w of the steering angle. The car’s kinematics are

q̇ =

2

664

�̇
ẋ
ẏ
 ̇

3

775 =

2

664

(tan)/` 0

cos� 0
sin� 0

0 1

3

775


v
w

�
, (13.16)

where ` is the wheelbase between the front and rear wheels. The control v is

limited to a closed interval [vmin, vmax] where vmin < 0 < vmax, the steering rate

is limited to [�wmax, wmax] with wmax > 0, and the steering angle is limited

to [� max, max] with max > 0.

The kinematics (13.16) can be simplified if the steering control is actually

just the steering angle and not its rate w. This assumption is justified if the

steering rate limit wmax is high enough that the steering angle can be changed

nearly instantaneously by a lower-level controller. In this case, is eliminated

as a state variable, and the car’s configuration is simply q = (�, x, y). We use

the control inputs (v,!), where v is still the car’s forward speed and ! is now its

rate of rotation. These can be converted to the controls (v,) by the relations

v = v, = tan�1

✓
`!

v

◆
. (13.17)

The constraints on the controls (v,!) due to the constraints on (v,) take a

somewhat complicated form, as we will see shortly.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

✓R

V

B

θ̇ = ω =
V tanu

B

u

tanu =
B

R

R =
B

tanu

ω =
V

R
=

V tanu

B

(x, y)

θ

Chasing the Lookahead

a

a

Path

L/2

R

CoR

φ

(xref , yref)

LLookahead

θ = a+ φ

φ = tan−1

(
yref − y

xref − x

)

sin a =
L/2

R

Rigid Body Rotation

sin a =
L/2

R

θ̇ = ω =
V

R
V

ω

} θ̇ = ω =
2V sin a

L

R

CoR

Rear-Axle Car Kinematics

V u

B

R

CoR

u

tanu =
B

R

sin a =
L

2R

}tanu =
2B sin a

L

u = tan−1

(
2B sin a

L

)

Question: How do I choose L?

47

