
1

Feedback Control

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury, Russ Tedrake



2

Estimate 
state

Control 
robot to 

follow path

Plan a 
sequence of 

motions

• Robot pose known 
• Path is given

A

B



From perception to control …

3



When I think about control …

4
https://www.youtube.com/watch?v=WNR4MqG45pk



Today’s objective

5

1. Introduce terms and definitions in feedback control

2. Go through challenges in current control research



The control framework

6

Say we want to get the car to hit a sequence of poses 

t1, x1, y1, ✓1
t2, x2, y2, ✓2

t3, x3, y3, ✓3

t0, x0, y0, ✓0

x(t), y(t), ✓(t)
Can express this as wanting to track a reference trajectory



7

x(t), y(t), ✓(t)

Objective: Figure out a control trajectory         to achieve this

The control framework

u(t)

In our case, we will focus on steering angle        as control input�(t)

Let’s say we want to track a reference trajectory



8

Why do we need feedback?



Why do we need feedback?

9

Let’s say we want to track a reference trajectory

What if we send out steering angles      obtained from kinematic 
car model? 

�(t)

x(t), y(t), ✓(t)

Open loop control leads to accumulating errors!



10

Overarching principle of  
feedback control: 

Measure error between 
reference and state. 
Minimize this error.



Measure error and minimize it

11

x(t), y(t), ✓(t)

e(t)

Error  
between 
state and 
reference

|e(t)|

t

Drive error to 0!



Useful to think of control laws as vector fields

12

x(t), y(t), ✓(t)



13

Is this still a research problem?



Industrial robots hard at work

14

 

https://www.youtube.com/watch?v=J_8OnDsQVZE&t=315s

https://www.youtube.com/watch?v=J_8OnDsQVZE&t=315s


Assumptions made by such controllers

15

1. Fully actuated: There exists an inverse mapping from reference to 
control actions

�(t) ! u(t)

2. Almost no execution error or state estimation error

3. Enough control authority to clamp down errors / overcome 
disturbances



16

Instead, what are harder 
problems we want to think about?



The Atlas robot hard at … play?

17
https://www.youtube.com/watch?v=fRj34o4hN4I



18

Why is this a hard problem?



Challenge 1: Underactuated systems

19

Fully actuated: There exists an inverse mapping from reference to 
control actions

�(t) ! u(t)

We don’t have full authority to move the system along 
arbitrary trajectories 



20

What affects the error between robot state and reference?

Whole lot of gravity!

Whole lot of momentum!

Some  
initial 
motor  

thrust …

… some precise  
control adjustments

Challenge 1: Underactuated systems



Myth: Control is a battle with nature!

21
Is control like playing whack-a-mole with error terms??



Embrace dynamics instead of fighting it

22

Passive walker  
(no motors, powered by gravity!)

Steven H. Collins, Martijn Wisse, and Andy 
Ruina, 2001

State-of-the-art humanoid  
(at the time) 

Honda, 1996

Which one looks more natural? Which one consumes less energy?



23

Question:  
If we know the model of our robot, 

can’t we solve a ginormous 
optimization to figure out control …?



Doing backflips with a helicopter

24
https://www.youtube.com/watch?v=RGu45s1_QPURedbull Eurocopter BO-105



And just what is this model ?!?

25

Chaotic vortex around blades!

Unpredictable drag forces!
Nothing 

countering  
gravity!

Hopeless to assume we know exactly how the helicopter 
will behave upside down…



Challenge 2: Choose good closed-loop models

26

Closed-loop system = 
Point mass 

with a planar 
thrust vector

Complex 
dynamics

Well-behaved  
system

Feedback 
control law

+ =



Trotting quadruped = biped = one-leg

27

One-leg

Quadruped

Biped

Marc Raibert showed how these closed loop systems are equivalent 



28

Question:  
Is this all offline? Can I pre-compute 

a bunch of controllers once and  
call it a day?



Figure 8s while drifting

29
https://www.youtube.com/watch?v=nTK56vPb8ZoStanford’s MARTY



Challenge 3: Model changing on the fly!

30

Run real-time estimators for wheel characteristics

Need control laws for all possible model parameters



Other challenges for mobile robot control

31

1. Unexpected obstacle avoidance

3. Controllers that guarantee safety

2. Noisy state estimation



32

Enough with the motivation … 
  

Let’s start writing some controllers



A generic template for a controller

33

1. Get a reference path / trajectory to track

2. Pick a point on the reference

3. Compute error to reference point 

4. Compute control law to minimize error



Step 1: Get a reference

34

Reference can be a time-parameterized trajectory

x(t), y(t), ✓(t)

The time index refers to a desired pose we want the  
system to achieve at a given time

Pro: Useful if we want the robot to respect time constraints 
Con: Sometimes we care only about deviation from reference

t1

t2



35

Reference can be a index-parameterized path

The index is simply a way to access the path; there is 
no notion of time

Pro: Useful for conveying the shape you want the robot to follow

x(⌧), y(⌧), ✓(⌧), v(⌧)

⌧ = 0

⌧ = 1

Step 1: Get a reference

Con: Can’t control when robot will reach a point



Step 2: Pick a point on the reference

36

Pick a reference point on the trajectory / path

If we are using a time-parameterized trajectory, 
the current time is the natural reference

x(t), y(t), ✓(t)



37

Pick a reference point on the trajectory / path

If we are using a index-parameterized trajectory, 
there are multiple options

x(⌧), y(⌧), ✓(⌧), v(⌧)

Step 2: Pick a point on the reference



38

Option 1: Pick the closest point on the path

⌧ref = argmin
⌧

||
⇥
x y

⇤T �
⇥
x(⌧) y(⌧)

⇤T ||

x(⌧ref ), y(⌧ref ), ✓(⌧ref ), v(⌧ref )

Step 2: Pick a point on the reference



39

Option 2: Pick a lookahead point on the path

L

||
⇥
x y

⇤T �
⇥
x(⌧ref ) y(⌧ref )

⇤T || = L

x(⌧ref ), y(⌧ref ), ✓(⌧ref ), v(⌧ref )

Step 2: Pick a point on the reference



Step 3: Compute error to reference point

40

1. Define error vector

d =


x
y

�
�

xref

yref

�

2. Rotate error vector to be in the reference frame

e = RT (✓ref )

✓
x
y

�
�

xref

yref

�◆

e =


cos(✓ref ) sin(✓ref )
� sin(✓ref ) cos(✓ref )

�✓
x
y

�
�


xref

yref

�◆

xref , yref , ✓ref
d

Rotation 
Matrix

{G}

{ref}R



41

xref , yref , ✓ref

Error has two components: along-track and cross-track 

e =


eat
ect

�
(along track)
(cross track)

✓e = ✓ � ✓ref (heading error)

Let’s consider only the cross track error for now

eatect

✓e

Step 3: Compute error to reference point



42

xref , yref , ✓ref
eatect

✓e

ect = � sin(✓ref )(x� xref ) + cos(✓ref )(y � yref )

Cross-track error

Derivative of cross-track error

ėct = � sin(✓ref )ẋ+ cos(✓ref )ẏ

= � sin(✓ref )V cos(✓) + cos(✓ref )V sin(✓)

= V sin(✓ � ✓ref ) = V sin(✓e)

Step 3: Compute error to reference point



Step 4: Compute control law

43

u = K(x, e)
state errorcontrol

Compute control action based on instantaneous error

Different laws have different trade-offs

Apply control action, robot moves a bit, compute new error, repeat

(steering angle, speed)



44

We assume that control speed is 
set to be equal to reference speed

Hence control = steering angle



Different control laws

45

1. Bang-bang control

2. PID control

3. Pure-pursuit control

4. Lyapunov control

5. Linear Quadratic Regulator (LQR)

6. Model Predictive Control (MPC)


