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Feedback Control

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury, Russ Tedrake
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From perception to control …
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When I think about control …
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https://www.youtube.com/watch?v=WNR4MqG45pk



Today’s objective
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1. Introduce terms and definitions in feedback control

2. Go through challenges in current control research



The control framework
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Say we want to get the car to hit a sequence of poses 

t1, x1, y1, ✓1
t2, x2, y2, ✓2

t3, x3, y3, ✓3

t0, x0, y0, ✓0

x(t), y(t), ✓(t)
Can express this as wanting to track a reference trajectory
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x(t), y(t), ✓(t)

Objective: Figure out a control trajectory         to achieve this

The control framework

u(t)

In our case, we will focus on steering angle        as control input�(t)

Let’s say we want to track a reference trajectory
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Why do we need feedback?



Why do we need feedback?
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Let’s say we want to track a reference trajectory

What if we send out steering angles      obtained from kinematic 
car model? 

�(t)

x(t), y(t), ✓(t)

Open loop control leads to accumulating errors!
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Overarching principle of  
feedback control: 

Measure error between 
reference and state. 
Minimize this error.



Measure error and minimize it
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x(t), y(t), ✓(t)

e(t)

Error  
between 
state and 
reference

|e(t)|

t

Drive error to 0!



Useful to think of control laws as vector fields
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x(t), y(t), ✓(t)
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Is this still a research problem?



Industrial robots hard at work
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https://www.youtube.com/watch?v=J_8OnDsQVZE&t=315s

https://www.youtube.com/watch?v=J_8OnDsQVZE&t=315s


Assumptions made by such controllers
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1. Fully actuated: There exists an inverse mapping from reference to 
control actions

�(t) ! u(t)

2. Almost no execution error or state estimation error

3. Enough control authority to clamp down errors / overcome 
disturbances
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Instead, what are harder 
problems we want to think about?



The Atlas robot hard at … play?
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https://www.youtube.com/watch?v=fRj34o4hN4I
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Why is this a hard problem?



Challenge 1: Underactuated systems
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Fully actuated: There exists an inverse mapping from reference to 
control actions

�(t) ! u(t)

We don’t have full authority to move the system along 
arbitrary trajectories 
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What affects the error between robot state and reference?

Whole lot of gravity!

Whole lot of momentum!

Some  
initial 
motor  

thrust …

… some precise  
control adjustments

Challenge 1: Underactuated systems



Myth: Control is a battle with nature!
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Is control like playing whack-a-mole with error terms??



Embrace dynamics instead of fighting it
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Passive walker  
(no motors, powered by gravity!)

Steven H. Collins, Martijn Wisse, and Andy 
Ruina, 2001

State-of-the-art humanoid  
(at the time) 

Honda, 1996

Which one looks more natural? Which one consumes less energy?
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Question:  
If we know the model of our robot, 

can’t we solve a ginormous 
optimization to figure out control …?



Doing backflips with a helicopter
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https://www.youtube.com/watch?v=RGu45s1_QPURedbull Eurocopter BO-105



And just what is this model ?!?
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Chaotic vortex around blades!

Unpredictable drag forces!
Nothing 

countering  
gravity!

Hopeless to assume we know exactly how the helicopter 
will behave upside down…



Challenge 2: Choose good closed-loop models
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Closed-loop system = 
Point mass 

with a planar 
thrust vector

Complex 
dynamics

Well-behaved  
system

Feedback 
control law

+ =



Trotting quadruped = biped = one-leg
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One-leg

Quadruped

Biped

Marc Raibert showed how these closed loop systems are equivalent 



28

Question:  
Is this all offline? Can I pre-compute 

a bunch of controllers once and  
call it a day?



Figure 8s while drifting
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https://www.youtube.com/watch?v=nTK56vPb8ZoStanford’s MARTY



Challenge 3: Model changing on the fly!
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Run real-time estimators for wheel characteristics

Need control laws for all possible model parameters



Other challenges for mobile robot control
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1. Unexpected obstacle avoidance

3. Controllers that guarantee safety

2. Noisy state estimation
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Enough with the motivation … 
  

Let’s start writing some controllers



A generic template for a controller
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1. Get a reference path / trajectory to track

2. Pick a point on the reference

3. Compute error to reference point 

4. Compute control law to minimize error



Step 1: Get a reference

34

Reference can be a time-parameterized trajectory

x(t), y(t), ✓(t)

The time index refers to a desired pose we want the  
system to achieve at a given time

Pro: Useful if we want the robot to respect time constraints 
Con: Sometimes we care only about deviation from reference

t1

t2
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Reference can be a index-parameterized path

The index is simply a way to access the path; there is 
no notion of time

Pro: Useful for conveying the shape you want the robot to follow

x(⌧), y(⌧), ✓(⌧), v(⌧)

⌧ = 0

⌧ = 1

Step 1: Get a reference

Con: Can’t control when robot will reach a point



Step 2: Pick a point on the reference
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Pick a reference point on the trajectory / path

If we are using a time-parameterized trajectory, 
the current time is the natural reference

x(t), y(t), ✓(t)
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Pick a reference point on the trajectory / path

If we are using a index-parameterized trajectory, 
there are multiple options

x(⌧), y(⌧), ✓(⌧), v(⌧)

Step 2: Pick a point on the reference
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Option 1: Pick the closest point on the path

⌧ref = argmin
⌧

||
⇥
x y

⇤T �
⇥
x(⌧) y(⌧)

⇤T ||

x(⌧ref ), y(⌧ref ), ✓(⌧ref ), v(⌧ref )

Step 2: Pick a point on the reference



39

Option 2: Pick a lookahead point on the path

L

||
⇥
x y

⇤T �
⇥
x(⌧ref ) y(⌧ref )

⇤T || = L

x(⌧ref ), y(⌧ref ), ✓(⌧ref ), v(⌧ref )

Step 2: Pick a point on the reference



Step 3: Compute error to reference point
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1. Define error vector

d =


x
y

�
�

xref

yref

�

2. Rotate error vector to be in the reference frame

e = RT (✓ref )

✓
x
y

�
�

xref

yref

�◆

e =


cos(✓ref ) sin(✓ref )
� sin(✓ref ) cos(✓ref )

�✓
x
y

�
�


xref

yref

�◆

xref , yref , ✓ref
d

Rotation 
Matrix

{G}

{ref}R
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xref , yref , ✓ref

Error has two components: along-track and cross-track 

e =


eat
ect

�
(along track)
(cross track)

✓e = ✓ � ✓ref (heading error)

Let’s consider only the cross track error for now

eatect

✓e

Step 3: Compute error to reference point
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xref , yref , ✓ref
eatect

✓e

ect = � sin(✓ref )(x� xref ) + cos(✓ref )(y � yref )

Cross-track error

Derivative of cross-track error

ėct = � sin(✓ref )ẋ+ cos(✓ref )ẏ

= � sin(✓ref )V cos(✓) + cos(✓ref )V sin(✓)

= V sin(✓ � ✓ref ) = V sin(✓e)

Step 3: Compute error to reference point



Step 4: Compute control law
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u = K(x, e)
state errorcontrol

Compute control action based on instantaneous error

Different laws have different trade-offs

Apply control action, robot moves a bit, compute new error, repeat

(steering angle, speed)
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We assume that control speed is 
set to be equal to reference speed

Hence control = steering angle



Different control laws
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1. Bang-bang control

2. PID control

3. Pure-pursuit control

4. Lyapunov control

5. Linear Quadratic Regulator (LQR)

6. Model Predictive Control (MPC)


