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SLAM:  
Simultaneous  
Localization and Mapping

Instructor: Chris Mavrogiannis

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle

*Slides based on or adapted from Sanjiban Choudhury, Dieter Fox, Michael Kaess



The SLAM problem

2

Robot is moving through a static unknown environment

u1 u2

z1

z2

z0

Given a series of controls and measurements,  
estimate state and map

Origin



What if I just integrate controls?
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What we want …
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FastSLAM–Best particle
13.10Grid-basedFastSLAM477

Figure13.19Occupancygridmapcorrespondingtotheparticlewiththehighest
accumulatedimportanceweightobtainedbythealgorithmlistedinTable13.4from
thedatadepictedinFigure13.18.Thenumberofparticlestocreatethisexperiment
was500.Alsodepictedinthisimageisthepathrepresentedbytheparticlewiththe
maximumaccumulatedimportanceweight.

(a)(b)

Figure13.20Trajectoriesofallsamplesshortlybefore(left)andafter(right)closing
theouterloopoftheenvironmentdepictedinFigure13.19.ImagescourtesyofDirk
Hähnel,UniversityofFreiburg.

Need to figure out two things:

Correct relative movements  
between successive measurements

Closing the loop 
globally



Spilling the beans on SLAM
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Ground truth

Let’s assume this was the ground truth….



Spilling the beans on SLAM
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Ground truth Odometry

Odometry is really really noisy!



Spilling the beans on SLAM
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Ground truth Odometry

Measurements can help correct this somewhat

Measurement 
correction



Spilling the beans on SLAM
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Ground truth Odometry

Relative error accumulates …

Measurement 
correction



Spilling the beans on SLAM
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Ground truth Odometry

Eventually robot comes back to a familiar place …. loop closure!

Measurement 
correction



Spilling the beans on SLAM

10
Ground truth Odometry

If we are filtering, we can only fix the last pose estimate

Measurement 
correction



Spilling the beans on SLAM
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Ground truth Odometry

If we are optimizing, we can backprop errors in time!

Measurement 
correction



Today’s objective
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1. How do we solve the chicken-or-egg problem in SLAM?

2. SLAM as an optimization instead of filtering 



Bayes filter is a powerful tool
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Localization Mapping SLAM POMDP



Assembling Bayes filter
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Tasks
Localization 

P(pose | data)

Mapping 
P(map | data)

SLAM 
P(pose, map | data)

Belief Representations

Probabilistic Models

Bayes 
Filter



Tasks that we will cover 
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Tasks Belief Representation Probabilistic Models

Localization 
P(pose | data)

Gaussian / Particles
Motion model 

Measurement model

Mapping 
P(map | data)

Discrete (binary) Inverse measurement model

SLAM 
P(pose, map | 

data)

Particles+GridMap 
 (pose, map) 

Motion model, 
measurement model, 

correspondence model

(Week 3)

(Week 4)

(Week 4)
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SLAM as just another Bayes filtering problem

Task:
SLAM 

P(map, pose | data)

zt�1

What is the data?

Stream of controls  
and measurements 

zt

ut

u1:t, z1:t

What is the belief representation?

16-833, Spring 20189

Occupancy Grids: From scans to maps

False “hits” from 
people in the 
environment

16-833, Spring 20189

Occupancy Grids: From scans to maps

False “hits” from 
people in the 
environment

P (xt,m|u1:t, z1:t)



Different map representations
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We are free to use any of the map representations we discussed

Map representations

¨ Typical representations are:
¤ Feature-based
¤ Grid maps (occupancy maps)
¤ 3D representations (voxels, surfels, octrees etc)
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 Typical models are: 
!  Feature maps 
!  Grid maps (occupancy or reflection probability 

maps) 

  

Map Representations 

today 
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 Typical models are: 
!  Feature maps 
!  Grid maps (occupancy or reflection probability 

maps) 

  

Map Representations 

today 

Feature maps Grid maps Surface maps
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Why is SLAM hard?

Chicken-or-egg problem:

Given a map, we can localize
Given the pose, we can build map



Graphical model of SLAM
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xt�1 xt xt+1

zt�1 zt zt+1

m

ut�1 ut ut+1



20

If SLAM can be expressed as a  
Bayes filtering problem, 

let’s use our favorite Bayes filter…

Particle Filter!



Generalized particle filters
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Step 0: Start with a set of particles

Step 1: Sample particles from proposal distribution

Step 2: Compute importance weights

Step 3: Resampling

bel(xt�1) = {x1
t�1, x

2
t�1, . . . , x

M
t�1}

bel(xt) = {x̄1
t , . . . , x̄

M
t }

wk
t =

bel(xt)

bel(xt)

Draw M samples from weighted distribution 

r =
bel(xt)

bel(xt)
= ⌘P (zt|xt)( )



Problem: Space of maps too large!!
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How big is this 
space? 

P (xt,m|u1:t, z1:t)

If we were to sample particles, what is the likelihood that they would 
explain the measurements??

( )2M

P (zt|m,xt) → 0



Key idea: Exploit dependencies
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Even if a space is absurdly large, dependencies within the space  
can significantly shrink the space of possibilities we should consider.

A B

(need to store  
5x12 = 60 numbers)

r.v.
A B

(need to store  
5 + 9 = 14 numbers)



Key idea: Exploit dependencies
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Is there a dependency in this gigantic combined state space?

Yes!

The map depends on the history of poses of the robot



Rao-Blackwellization
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Factorization to exploit dependencies between variables

P (a, b) = P (b|a)P (a)

If P(b|a) can be computed efficiently

P (a) P (b|a)
Represent

with samples

Compute

for every sample



Applying the factorization trick
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state 
history

map data

P (x1:t,m|z1:t, u1:t)

P (x1:t|z1:t, u1:t)
state 

history
data datamap

P (m|x1:t, z1:t, u1:t)
state 

history

=

= P (x1:t|z1:t, u1:t)
state 

history
data

NY

i=1

P (mi|x1:t, z1:t)

(Particle filter to estimate this) (Occupancy map)



How do we compute a PF over state history?
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For simplicity, each particle only stores the current state at timestep t 

However the weights of the particle are computed based on 
it’s path through time.

(just like you did in you assignment)



How do we compute a PF over state history?

28

Let’s jump straight to the importance sampling step

wt =
bel(x1:t)

bel(x1:t)
=

P (x1:t|zt, z1:t�1, u1:t)

P (x1:t|z1:t�1, u1:t)

/ P (zt|x1:t, z1:t�1, u1:t)P (x1:t|z1:t�1, u1:t)

P (x1:t|z1:t�1, u1:t)

/ P (zt|xt, x1:t�1, z1:t�1, u1:t)

/
X

m

P (zt|xt,m)P (m|x1:t�1, z1:t�1, u1:t)

(most likely map from prev timestep)(meas)

⇡ P (zt|xt, m̂)

where m̂ = argmax
m

P (m|x1:t�1, z1:t�1, u1:t�1)



FastSLAM
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Proposed by Montemerlo 2002

FastSLAM
¨ Proposed by Montemerlo et al. in 2002 (for 

landmark based SLAM)
¨ Each particle has a pose and a map

Occupancy grid map
Particle
1

Particle
2

Particle
N

…

Occupancy grid map

Occupancy grid map



FastSLAM Algorithm
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FastSLAM Algorithm478 13 The FastSLAM Algorithm

1: Algorithm FastSLAM_occupancy_grids(Xt−1, ut, zt):

2: X̄t = Xt = ∅
3: for k = 1 to M do

4: x[k]
t = sample_motion_model(ut, x

[k]
t−1)

5: w[k]
t = measurement_model_map(zt, x

[k]
t ,m[k]

t−1)

5: m[k]
t = updated_occupancy_grid(zt, x

[k]
t ,m[k]

t−1)

6: X̄t = X̄t + ⟨x[k]
t ,m[k]

t , w[k]
t ⟩

7: endfor

8: for k = 1 to M do

9: draw i with probability ∝ w[i]
t

10: add ⟨x[i]
t ,m[i]

t ⟩ to Xt

11: endfor

12: return Xt

Table 13.4 The FastSLAM algorithm for learning occupancy grid maps.

lution of the map is 10cm. To learn this map, as few as 500 particles were
used. During the overall process the robot encountered two loops. A map
calculated from pure odometry data is shown in Figure 13.18, illustrating the
amount of error in the robot’s odometry.

The importance of using multiple particles becomes evident in Fig-
ure 13.20, which visualizes the trajectories of the samples shortly before and
after closing a loop. As the left image illustrates, the robot is quite uncertain
about its position relative to the starting position, hence the wide spread of
particles at the time of loop closure. However, a few resampling steps after
the robot re-enters known terrain suffice to reduce the uncertainty drastically
(right image).



FastSLAM in action!

31Haehenl et al.



SLAM resources
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https://openslam-org.github.io/

https://openslam-org.github.io/
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Do we really need a probability  
distribution?

P (x1:t,m)

Or are does a maximum a posteriori  
estimate suffice?

x̂1:t, m̂ = arg max
x1:t,m

P (x1:t,m)
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SLAM as a pure optimization problem

u1:t, z1:t

Data x̂1:t, m̂ = arg max
x1:t,m

P (x1:t,m)
optimize



SLAM as a set of relationships
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16-833, Spring 20182

The SLAM Problem (t=0)

Robot

Landmark

Landmark
measurement

Onboard sensors:
– Wheel odometry
– Inertial measurement unit 

(gyro, accelerometer)
– Sonar
– Laser range finder
– Camera
– RGB-D sensors

Courtesy M.Kaess



16-833, Spring 20183

The SLAM Problem (t=1)

Robot

Landmark 1 Landmark 2

Odometry measurement

Landmark
measurement

36

SLAM as a set of relationships

Courtesy M.Kaess
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The SLAM Problem (t=n-1)

Robot

Landmark 1 Landmark 2

Odometry measurement

Landmark
measurement

SLAM as a set of relationships

Courtesy M.Kaess
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The SLAM Problem (t=n)

Odometry measurement

Landmark
measurement

SLAM as a set of relationships

Courtesy M.Kaess



Factor Graph representation of SLAM
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Factor Graph Representation of SLAM

Bipartite graph with variable nodes and factor nodes

Robot pose

Landmark position
Landmark
measurement

Odometry measurement

Courtesy M.Kaess



Factor Graph representation of SLAM

40

The variables in the optimization are poses of robot at all 
time steps and all landmarks

✓ = [x1, x2, . . . , xn, l1, . . . , lm]



Factorization of probability density

4116-833, Spring 201817

Factorization of Probability Density

•Conditional independence:

argmaxΘෑ
𝑧∈𝑍

𝑝 (𝑧|Θ)

argmaxΘ 𝑝 𝑝|Θ 𝑝 (𝑢1|Θ)⋯𝑝(𝑢𝑛|Θ) 𝑝 (𝑚1|Θ) ⋯𝑝(𝑚4|Θ)

𝑝 𝑧1𝑧2|Θ = 𝑝 𝑧1 Θ 𝑝 (𝑧2|Θ)

Courtesy M.Kaess



How do we solve such optimization?
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Large scale  
sparse 

non-linear  
least squares 
 optimization

+
incrementally  

growing 
factors

Option 1: Using sparse matrix algebra
(Kaess et al. 2008)

Option 2: Using probabilistic graphical models
(Kaess et al. 2011)



43iSAM2, Kaess et al. 2012



Application: Kintinuous 2.0 (Whelan et al.)
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