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The SLAM problem

Robot is moving through a static unknown environment
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Origin

Given a series of controls and measurements,
estimate state and map



What if | just integrate controls?




What we want ...

Need to figure out two things:

Correct relative movements Closing the loop
between successive measurements globally



Spilling the beans on SLAM

Let’s assume this was the ground truth....

» Ground truth



Spilling the beans on SLAM

Odometry is really really noisy!
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» Ground truth » Odometry



Spilling the beans on SLAM

Measurements can help correct this somewhat

Measurement

» Ground truth » Odometry ,
correction .



Spilling the beans on SLAM

Relative error accumulates ...

Measurement

» Ground truth » Odometry ,
correction g4



Spilling the beans on SLAM

Eventually robot comes back to a familiar place .... loop closure!
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Measurement

» Ground truth » Odometry >

correction



Spilling the beans on SLAM

If we are filtering, we can only fix the last pose estimate
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» Ground truth » Odometry > .
correction



Spilling the beans on SLAM

If we are optimizing, we can backprop errors in time!
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Today's objective

1. How do we solve the chicken-or-egg problem in SLAM?

2. SLAM as an optimization instead of filtering
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Bayes ftilter is a powerful tool

Localization Mapping SLAM POMDP
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Assembling Bayes filter

Tasks

Localization
P(pose | data)

Mapping
P(map | data)

SLAM
P(pose, map | data)

Belief Representations

A |

Bayes
Filter

Probabilistic Models
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Tasks that we will cover

Tasks Belief Representation Probabilistic Models

Localization , , Motion model
Gaussian / Particles
P(pose | data)

(Week 3)

Measurement model

Mapping
P(map | data)

(Week 4)

Discrete (binary) Inverse measurement model

SLAM Particles+GridMap Motion model,
P(pose, map | (pose, map) measurement model,

data) correspondence model
(Week 4)




SLAM as just another Bayes filtering problem

SLAM
Task:
P(map, pose | data)
What is the data? What is the belief representation’?
<t
P(xtv miuy.¢, Zl:t)

L Zt—1

Stream of controls

and measurements

ULty 21:t
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Ditferent map representations

We are free to use any of the map representations we discussed

Feature maps Grid maps Surtface maps
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Why is SLAM hard?

Chicken-or-egg problem:

Given a map, we can localize

Given the pose, we can build map



Graphical model of SLAM
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If SLAM can be expressed as a
Bayes filtering problem,
let's use our favorite Bayes filter...

Particle Filter!



Generalized particle filters

Step 0: Start with a set of particles

1 2 M
bel(xt—l) — {ajt—l? L1y - 73775—1}
Step 1: Sample particles from proposal distribution
1 71 ~1 M
bel(xy) ={Z;,...,2; }

Step 2: Compute importance weights

k — g(%ﬁ)
" bel(my)

= NP (z¢|7¢)

Step 3: Resampling

Draw M samples from weighted distribution
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Problem: Space of maps too large!!

P(xta iy ¢, Zl:t)

/

How big is this ( 2 )
space”’

If we were to sample particles, what is the likelihood that they would
explain the measurements??

P(zm, x;)
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Key idea: Exploit dependencies

Even if a space is absurdly large, dependencies within the space
can significantly shrink the space ot possibilities we should consider.

\

>

r.v. A B A B

(need to store (need to store
5x12 = 60 numbers) 5 + 9 = 14 numbers)



Key idea: Exploit dependencies

Is there a dependency in this gigantic combined state space?

Yes!

The map depends on the history of poses ot the robot
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Rao-Blackwellization

Factorization to exploit dependencies between variables
P(a,b) = P(bla)P(a)

If P(bla) can be computed efficiently

Represent Compute
P(a) P(bla)

with samples for every sample
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Applying the factorization trick

P(Qfl;t,m|21:tau1:t)

state
, map data
history

P(xlzt‘zlztaulzt) P(mlmlzhzlzt?ul:t)

state state

history data Hap history data
N
— P(mlzt‘zlztaulzt) Hp(m’i|x11t7 Zlit)
h?:,?ct)fy data =1

(Particle filter to estimate this) (Occupancy map)
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How do we compute a PF over state history?

For simplicity, each particle only stores the current state at timestep t

(just like you did in you assignment)

However the weights of the particle are computed based on
it’s path through time.
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How do we compute a PF over state history?

Let’s jump straight to the importance sampling step

Wy, = bel(xlzt) _ P(xlzt‘ztazlzt—laulzt)
b@l(fl;t) P($1:t|21:t—17u1:t)
~ P(Zt‘xlztaZl:t—laul:t)P(xlzt‘let—laulzt)

P(xlzt‘zlzt—ly ul:t)

X P(Zt|ajtax1:t—17Zl:t—laulzt)
X ZP(Zt‘ajt,m)P(ml-CCl;t_l,Zl;t_l,ul;t)
m

~ P(zt\xt, m)

(meas)  (most likely map from prev timestep)

where m = arg 1max P(m|$1;t_1, Z1:t—15 ul:t—l)

m
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Particle
1

Particle
2

Particle
N

FastSLAM

Proposed by Montemerlo 2002

x,y,0

Occupancy grid map
Occupancy grid map

Occupancy grid map
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FastSLAM Algorithm

— R
A

Algorithm FastSLAM_occupancy_grids(X;_1, uy, 24):

X=X, =

fork =1to M do
x,[fk] = sample_motion_model(u;, x,[fk_]l)
wyf] = measurement_model_map(z;, x,[fk] , mgk_]l)
ml[gk] = updated_occupancy_grid(z, :1:7[5]{] : m,[ﬁk_]l)

‘)Et — A?t + <x£k]7m7[tk] ) wt[k]>

endfor

fork =1to M do
draw i with probability o wf]
add <3:,[f],m£i]> to Ay

endfor

return X;
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FastSLAM in action]

Hachenl et al.



SLAM resources

OpenSLAM

https://openslam-org.github.io/
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https://openslam-org.github.io/

Do we really need a probability
distribution?

P(Ilzta m)

Or are does a maximum a posteriori
estimate suffice?

T1.4,m = arg max P(xq1.4, m)
L1:¢,11
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SLAM as a pure optimization problem

optimize

# T1:4, M
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SLAM as a set of relationships

measurement

Landmark

Courtesy M.Kaess
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SLAM as a set of relationships

Odometry measurement

measurement

Landmark 1 Landmark 2

Courtesy M.Kaess
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SLAM as a set of relationships

Odometry measurement

Landmark/?\\ /‘m2 \% /m‘l

measurement

Landmark 1 Landmark 2

Courtesy M.Kaess
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SLAM as a set of relationships

Odometry measurement

\

ul - Un

Courtesy M.Kaess

38



Factor Graph representation of SLAM

Odometry measurement
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Landmark _—7

measurement Landmark position

Courtesy M.Kaess
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Factor Graph representation of SLAM

The variables in the optimization are poses of robot at all
time steps and all landmarks

0 = [$1,$2,...,$n,l1,...,lm]
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Factorization of probability density

e Conditional independence:

p(2122|0) = p (2110) p (22]0)

' i
n n
Un
O——=0

mq mo ms My

€& argmaxg 1_[ p (z|0)

ZE/Z
[ I

argmaxe p(p|0) p (u1|0) -+ p(us|0) p (M4]0) -+~ p(M4|6)

Courtesy M.Kaess
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How do we solve such optimization?

Large scale |
sparse mcreme.ntally
non-linear T growing
factors

least squares
optimization

Option 1: Using sparse matrix algebra
(Kaess et al. 2008)

Option 2: Using probabilistic graphical models
(Kaess et al. 2011)
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To: The Bayes tree.
The parts affected by the new
vanables are colored in red.

Gt
©
o

O
O
@
O

Bottom: Color coded trajectory.
Green corresponds to 3 low number
of vanables, red to a high number.

iISAM2, Kaess et al. 2012
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Application: Kintinuous 2.0 (Whelan et al.)
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