Palm Pilot Serial Communication Tutorial

Palm Pilot Serial Communication Tutorial

Introduction:

This document is designed to get you started using serial communication on the 3Com Palm Pilot, or IBM WorkPad (Palm herein). The sections of this tutorial build upon each other until you have acquired all the concepts to start using serial communication with your Palm. Each section adds more complexity and functionality to the Palm application. You may quit this tutorial once you feel you have learned enough.

Prepared by Lon Tierney
Under advisement of Gaetano Boriello

Department of Computer Science and Engineering

University of Washington, Seattle, Washington

Table of Contents

1-1Section 1: Overview

What this tutorial will do:
1-1
What is required to complete this tutorial:
1-1
What you should have completed before attempting this tutorial:
1-1
Section 2: Getting Started
2-2
Code Walkthrough:
2-2
StarterPilotMain():
2-2
RomVersionCompatible():
2-3
AppStart(), InitSettings():
2-3
FrmGotoForm():
2-3
AppEventLoop():
2-3
AppHandleEvent():
2-3
MainFormHandleEvent():
2-4
Resource (.rsc) Walkthrough:
2-4
Buttons:
2-4
Text Fields:
2-5
Menus:
2-5
Section 3: Adding Button, Menu and Text Box Functionality
3-6
Adding Button Functionality:
3-6
Adding Menu Functionality:
3-6
Adding Text Box Functionality:
3-7
InitTextBoxes():
3-7
AllocateTextBoxes():
3-7
Section 4: PalmOS Serial Library
4-9
Serial Library Data Types:
4-9
SerSettingsType:
4-9
Serial Library Functions:
4-9
SysLibFind():
4-9
SerOpen():
4-9
SerClose():
4-10
SerSetSettings():
4-10
SerReceive():
4-10
SerSend():
4-10
SerReceiveFlush():
4-11
Section 5: Adding Serial Connectivity
5-12
Adding Connection Internal Constants:
5-12
BaudRate
5-12
Timeout
5-12
Adding Connection Global Variables:
5-12
serRefNum
5-12
Adding Connection Functions:
5-12
Opening a Connection:
5-12
ConnectSerial():
5-13
Closing a Connection:
5-14
DisconnectSerial():
5-14
Section 6: Modifying Our Serial Connection
6-16
Using the SerSettingsType:
6-16
Section 7: Receiving Serial Data
7-17
Adding Receiving Global Constants:
7-17
SerRcvQueueSize
7-17
Adding Receiving Global Variables:
7-17
numBytesRcvd
7-17
serRcvQueue
7-17
Adding a Serial Receiving Function:
7-18
CheckSerial():
7-18
Adding Our Receive Function to Our Application:
7-19
Section 8: Testing the Serial Connection
8-20
Where You Should Be at this Point:
8-20
Setting up HyperTerminal:
8-20
Testing the Connection:
8-20
Hints for Using HyperTerm:
8-20
Section 9: Sending Serial Data
9-21
Adding Sending Global Constants:
9-21
SerRcvQueueSize
9-21
Adding Sending Global Variables:
9-21
serSendQueue
9-21
InitSettings():
9-21
Adding a Serial Sending Function:
9-22
SendSerial():
9-22
Using Our Serial Sending Function:
9-22
TestSend():
9-22
Adding Our Sending Function to Our Application:
9-23
Section 10: Hooking Up Our Utility Buttons
10-24
Adding Functionality to the Clear Buffer Button:
10-24
ClearSerialBuffer()
10-24
Adding Functionality to the Clear Scrn Button:
10-24
ClearScreen():
10-24
Adding Functionality to the Redraw Scrn Button:
10-24
RedrawScreen():
10-24
Connecting Our Utility Functions to Our Buttons:
10-24
Section 11: Utilizing the Text Fields for Debugging
11-26
Adding Text Field Utility Functions
11-26
WriteDataTextField():
11-26
WriteToRawData():
11-26
Making Our Text Field Utility Functions Work:
11-27

Section 1: Overview

What this tutorial will do:

This tutorial builds a software “test harness” for the Palm. A test harness is a way of providing stimulus to a system and seeing immediately what the response is. A test harness allows precise debugging of complex systems. Because the debugging options for a Palm are limited, a test harness for a Palm is an essential addition. The test harness built through this tutorial will allow you to monitor the serial communication between your Palm and another computing device.

What is required to complete this tutorial:

This tutorial was designed to be performed with a PC having the following software components installed:

· HotSync Manager for PalmOS

· Metroworks Code Warrior with PalmOS development environment

· HyperTerminal

· Adobe Acrobat Reader 3.0 (or greater)

Your PC will also require at least one serial port (COM Port).

You will also need:

· 3Com Palm Pilot or IBM Workpad, version 3 (or greater)

· Palm “Cradle”

For the Infrared (IR) portion of this tutorial:

· 2 IR Dongles

· 1 Null Modem Cable

· 1 Cable “Gender Changer”

What you should have completed before attempting this tutorial:

This tutorial is designed for someone who has completed the following:

· PalmOS Tutorial – This tutorial assumes that the user has had a significant amount of experience programming for the Palm. Every effort will be made to make this tutorial as simple and straightforward as possible, but it will rely on basic knowledge of programming for the PalmOS.

· Communication Protocol Lectures – This tutorial is designed to accompany a series of lectures on communication protocols. A basic understanding of serial communication and higher communication protocols will be helpful to the user.

For the IR portion of this tutorial:

· IR communication Lectures – The IR section of the tutorial will be simpler if the user has a basic understanding of how IR communication works, and what principles are involved.

Section 2: Getting Started

This section provides an overview of the starter Palm application that will be the building block of our tutorial.

Code Walkthrough:

1. Open the Code Warrior project (.mcp) in the Section2 folder that came with this tutorial.

2. In the Code Warrior project browser, double click on serialcomm.c.

At this point, you should see something like Figure 1:

[image: image1.jpg]Metrowerks CodeWarior

Fle Edt_Sear

ch Project Debug Window Paim0S _Hel

[=[ofx]

OEE

<

| %% @ =

© d BEEERE]

(o]

2.5 ran

FAd9B\seralutariahserialcomm.c

<

[Zrr—
BROJECT
FILE
AUTHOR

DECLARE!

DESCRIF'
Commus

KRR KRR AR RR

#include
#include
#include
#include

R

et el

ASTSSSSFSSHSSSISISISSSSSSSS————— E

Serial Communication Tutorial
SerialComn.o =
Ton Tierney, 5/20/99

Adapted fron code by Mike Esler. 171939
R: Phase X
TION: This is the final phase in the developnent of the Serial

nication Tutorial

R .l
Pilat.h>

<SysEvtlgr.h>

<Serialligr h>

"SerialCamn_res.h"

5

stutorial. mcp _[ofx]

D r—

[seiaComm B EEES
EL_Fe T Code| Datal® |
E1E3AppSource K 212+ B
M serislcomm.c 3[12 22 - @
=& ppResauces 0 0@
TR sersconm s wa s &
=E3Pan0S 0 =
T8 StanupCode b 0 @
-
3 files 3 212)

Figure 1. Screen shot of the Serial Communication Tutorial Code Warrior project.

3. Find the following functions in the code to learn how the starter program operates.

StarterPilotMain():

static DWord StarterPilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)
This function is the start of our Palm application. When the application is selected, the PilotMain() will launch this function. Here you will see that it does the following:

1. Check to ensure that the ROM version is compatible

error = RomVersionCompatible(ourMinVersion, launchFlags);

if (error)

return error;

2. If we have a normal launch we:

· Call AppStart() to get us going

· InitSettings() to prepare for execution

· Load the first Form, TestHarness
· Start the main event loop, AppEventLoop()

· Once the program terminates, we will call AppStop() and exit

RomVersionCompatible():

static Err RomVersionCompatible(DWord requiredVersion, Word launchFlags)

This function checks to see if the version of the ROM on the Palm that we are running is current enough. If it is not, it exits. For ROM versions less that 2.0.0, we need to launch another safe application to prevent it from continuously re-launching this application. So, we include the following:

if (romVersion < sysMakeROMVersion(2,0,0,sysROMStageRelease,0))

 AppLaunchWithCommand(sysFileCDefaultApp,

 sysAppLaunchCmdNormalLaunch,

 NULL);
AppStart(), InitSettings():

static Err AppStart(void)

void InitSettings()

These functions are called to get the application up and running. You will see how they are used as we go through this tutorial.

FrmGotoForm():

FrmGotoForm(TestHarnessForm)

This is a Palm routine that loads the first (and only) form for our simple application. For more on this function, see the PalmOS reference manual. For more on the “TestHarnessForm,” see later in this section.

AppEventLoop():

static void AppEventLoop(void)

This function is the main control for our application. It cycles through the events that happen and sends them to handlers until one of them responds that it has handled the event. Our application is event driven, so this is a key element of our application. This function handles the events with the following structure:

if (! SysHandleEvent(&event))

if (! MenuHandleEvent(0, &event, &error))

if (! AppHandleEvent(&event))

FrmDispatchEvent(&event);

Of these handler functions, AppHandleEvent() is our function; the rest are PalmOS event handlers. Because we are the active application, we are the one who pulls events off the event queue. We can choose to handle all events ourselves, or as we have done here, let the OS try to handle as many events for us as possible. Events that are not handled at the end will be ones we try to handle.

AppHandleEvent():

static Boolean AppHandleEvent(EventPtr eventP)

This function serves to load our form to the screen and set the form handler. This puts our form in the foreground so that we can use it. It also ensures that when we make a call to FrmDispatchEvent() we call the handler for our form. There can be many forms in an application, and many handlers. Each time a form load event is generated, this function will handle getting the form loaded (if it knows about the form) and setting the handler.

MainFormHandleEvent():

static Boolean MainFormHandleEvent(EventPtr eventP)

This function handles all form events that occur on our TeshHarness form. It handles button presses (ctlSelectEvent), menu selection (menuEvent) and form load events (frmOpenEvent). We will fill this in later to gain the functionality of the buttons and menus in our form.

Resource (.rsc) Walkthrough:

1. Double click on the serialcomm.rsc file in the Serial Communication Tutorial Code Warrior project.

The Code Warrior resource Constructor will open.

2. Double click on the TestHarness Form.

At this point you should see something similar to Figure 2:

[image: image2.jpg]: Constructor for Palm 05 1.1.2

Fle Edt Anange Layout

Window_Help

[_[5]x]

LP etz

Resmres Type e o
Ten -
wo L]
v B e Lem
| et 1000
v By e Lhem
Bl comeet 1000
£ sing st Siems
&) svings Siems
1) o o sing Liss Qems

L

Proet setngs

Geneate i Rasoures

Soplioaton lon

Hesder i name
Inchuda Detas i header
Kesp 105 n sy

O3 enerate #pp Resources

I ex

Ao Ganerste Headar Fls [Ao Ganeras Headar il

SeraComm_rezh
[inciude Detait in header
[Kesp 10z in sync

-

" Form 1000, “TestHamess"

Toyou Fropartes

Loyou Fppearance

> Fug
Object gertiter
Fid 10
Let o
Top O
wian
Height
Usale
Eitatle
Undeine
Singl Lne
Dynamic ske
Let sttt
W Charastes
Fore
st i
Has ool ar
Numerc

Rau0ata
03

[

o

0

)
[satle

O estatle

[Underine

O single Line
O oynamic Size
[Lete usifed
1000

Standard

I Ao shit

[Has sorol Bar
O Mumerc

Figure 2. Screen shot of the Serial Communication Tutorial Resource in the Code Warrior Constructor.

3. Find the following elements of the TestHarness form for future reference.

Buttons:

Start – This button will be used to start serial communication on the Palm.

Stop – This button will be used to stop serial communication on the Palm.

Send Serial – We will use this to send a test character across the serial lines.

Clear Buffer – This button will be used to clear the serial “receive buffer.”

Clear Scrn – We will use this to remove all old debug information from the screen.

Redraw Scrn – This button will redraw all of the elements on the screen.

Text Fields:

These fields are the lined boxes that surround the buttons. We will use these to display debug information.

Menus:

Double clicking on the Menu Bars or Menus items in the “serialcomm.rsc” window will bring up the menus we will use for this tutorial. Their function will be the same as the buttons. You should see something like Figure 3:

[image: image3.jpg]

Figure 3. Screen shot of the Connect menu for the Serial Communication Tutorial.

Section 3: Adding Button, Menu and Text Box Functionality

This section adds functionality for the menu and buttons we have put in the TestHarness Form.

Adding Button Functionality:

As you may recall, to add functionality to the buttons we have placed on our form, we need to modify the MainFormHandleEvent() function. This is the function we set as the handler for form events.

You can see from the code below that we have filled out the switch statement to handle all of the buttons on our form. Note that the naming of each button is the same as the name we gave it in the Constructor (not necessarily the same as the text inside the button) but with the name of our form, “TestHarness,” and “Button” appended.

static Boolean MainFormHandleEvent(EventPtr eventP)

{

 ...

switch (eventP->eType) {

case ctlSelectEvent:

switch(eventP->data.ctlEnter.controlID) {

case TestHarnessStartButton:

handled = true;

break;

case TestHarnessStopButton:

handled = true;

break;

case TestHarnessClearBufferButton:

handled = true;

break;

case TestHarnessSendSerialButton:

handled = true;

break;

case TestHarnessClearScrnButton:

handled = true;

break;

case TestHarnessRedrawScrnButton:

handled = true;

break;

default:

break;

}

break;

 ...

}
In the sections to come we will put functions in each case to do more interesting stuff.

Adding Menu Functionality:

Since menus are a property of the current form, menu events are handled like the button events, in the MainFormHandleEvent() function. Remember that this is the function we set as the handler for events that occur on this form. We could have set any function to handle form events, and other forms would need other event handlers.

The difference from buttons is that we have chosen to call a handler function for menu events. Menu events are handled by the MainFormDoComand() function. This demonstrates that the declared handler does not have to handle events itself.

You can see from the code below that we have filled out the switch statement to handle all of the menus of our form. Note that the naming of each menu option is the same as the name we gave it in the Constructor (not necessarily the same as the text for the menu option) but with “Connect,” the name of our menu appended.

static Boolean MainFormDoCommand(Word command)

{

Boolean handled = false;

switch (command) {

case ConnectStart:

MenuEraseStatus(0);

handled = true;

break;

case ConnectStop:

MenuEraseStatus(0);

handled = true;

break;

default:

break;

}

return handled;

}
Adding Text Box Functionality:

The text boxes we put on the form are going to be used to display some of our debug information. To do this we need to allocate some memory for them to retain our information. The two functions that will do this for us are:

InitTextBoxes():

void InitTextBoxes()

{

FieldPtr Data;

FieldPtr RawData;

RawData = GetObjectPtr(TestHarnessRawDataField);

Data = GetObjectPtr(TestHarnessDataField);

AllocateTextBoxes("RawData: ", RawData, 1000);

AllocateTextBoxes("Data", Data, 1000);

}

InitTextBoxes() makes allocation calls for each text box to give us memory.

AllocateTextBoxes():

void AllocateTextBoxes(char * buffer, FieldPtr fld, int size)

{

char * newText;

Handle handle;

handle = MemHandleNew(size);

// Lock down the handle and get a pointer to the memory chunk.

newText = MemHandleLock(handle);

// Copy the data from the record to the new memory chunk.

StrCopy(newText, buffer);

// Unlock the new memory chunk.

MemHandleUnlock(handle);

// Set the field's text to the data in the new memory chunk.

FldSetTextHandle(fld, handle);

}
AllocateTextBoxes() actually reserves the memory for the text boxes. For more information on the functions called in these routines, see the PalmOS Reference Guide.

Section 4: PalmOS Serial Library

The PalmOS provides a library of serial functions for us to use. This tutorial will utilize many of the functions in the Serial Library, but by no means all of the functionality. For more information on PalmOS and serial communication functions, please see the PalmOS Reference Guide.

This section will cover some of the data types and functions that will be most useful to us for setting up our serial communication test harness. For more information on these items, and for informaiton on other functions available to you, please see the PalmOS document Developing PalOS 2.0 Applications, Part III.

Serial Library Data Types:

SerSettingsType:

This is the key data structure for serial communication. It allows us to conveniently set the parameters of the serial connection. The fields we will use are:

baudRate – This sets the rate at which we will communicate over the serial lines.

ctsTimeout – The number of processor ticks the Palm will wait with no action before returning a timeout error when a serial request is made

flags – The line settings, including stop bits, bits per character, and flow control.

Serial Library Functions:

SysLibFind():

Err SysLibFind(Char* lib, Uint* refNum)

This function locates the system libraries and returns a reference number for the serial connection as an unsigned integer through the output parameter. In the example code for this tutorial, we named our variable serRefNum. The holder for the serial reference number is generally a global variable within the application. It is necessary to close every opened serial connection before you exit your program.

Parameters:
(
lib
String name of library to get reference number for

(
refNum
Output parameter for serial reference number

An example call of this function to find the serial library would be:

SysLibFind(“Serial Library”, &serRefNum)
SerOpen():

Err SerOpen(UInt refNum, UInt port, ULong baud)

This function opens a serial connection. It takes our reference number and turns it into a real connection. If another application on the Palm has an open serial connection we will not be able to open a connection.

Parameters:
(
refNum
Serial library reference number

(
port
Port number (zero, 0, for Palms)

(
baud
Baud rate

We can reset the baud rate and other connection settings with SerSetSettings(), see below.

SerClose():

Err SerClose(UInt refNum)

This function closes the serial connection and releases the serial port on the Palm. If we ever get an error in establishing a serial connection it is essential to close the partial (or full) connection before we exit or attempt to create another connection.

Parameters:
(
refNum
Serial library reference number.

SerSetSettings():

Err SerSetSettings(UInt refNum, SerSettingsPtr settingsp)

This function can be used to change the settings for serial communication based upon the values stored in settingsp, where settingsp is a pointer to a filled element of type SerSettingsType.

Parameters:
(
refNum
Serial library reference number.

((
settingsp
Pointer to the filled in SerSettingsType structure.

SerReceive():

ULong SerReceive(UInt refNum,

VoidPtr rcvBufP,

ULong count,

Long timeout,

Err* errp)

This function pulls bytes off the serial line through our opened serial connection. Returns the number of bytes that were received off the line, and an error if a timeout or line error occurred.

Parameters:
(
refNum
Serial library reference number.

((
rcvBufP
Buffer for receiving data.

(
count
Number of bytes to receive.

(
timeout
Interbyte timeout in ticks, 0 for none, -1 for forever.

((
errP
Pointer to error holder.

SerSend():

ULong SerSend(UInt refNum,

 VoidPtr bufP,

 ULong count,

 Err* errP)

This function allows us to send information over the serial port. Returns the number of bytes that were successfully sent.

Parameters:
(
refNum
Serial library reference number.

(
bufP
Pointer to data to send.

(
count
Number of bytes to send.

((
errP
Pointer to error holder.

SerReceiveFlush():

void SerReceiveFlush(UInt refNum, Long timeout)

We use this function to flush the contents of the serial receive buffer. This comes in handy when we get a line error or start getting nonsense data over the line.

Parameters:
(
refNum
Serial library reference number.

(
timeout
Timeout to block for while waiting for the next byte to arrive.

Section 5: Adding Serial Connectivity

This section will set up the basics needed to get serial communication going on our Palm. It will discuss the global variables we will need, as well as some preliminary functions.

Adding Connection Internal Constants:

To make easy changes to our connection settings, we will want to make them constants. In the Section5 folder you will notice the following additional constants needed for out serial connection:

BaudRate

#define BaudRate 19200

This will define the speed at which we make serial connections. We might need to change this if the hardware we are talking to (or with) does not support a particular rate.

Timeout

#define Timeout 0

The timeout is the number of processor ticks the Palm will wait when a serial request is made before returning with a timeout error. Timeout errors are not always bad, and are sometimes expected, depending on the application.

Adding Connection Global Variables:

To keep track of our serial connections, we will need to add one global variable to our Palm application. In the Section5 folder you will notice the following addition:

serRefNum

static UInt serRefNum;

This global variable will hold the reference number to the serial library for our serial connection. We must make certain that it is always a valid number, and if it is not we must reset it to zero.

Adding Connection Functions:

This section will discuss the functions that will be added to allow serial connections. It will also show where they are added. For a complete version of the code, please see the Section5 folder of this tutorial.

Opening a Connection:

First, we need to be able to open a serial connection. To know that we have a serial connection open however, we use the serial reference number variable, serRefNum. When our application starts we have no idea what will be in that memory location, so we will add a line to the AppStart() function:

static Err AppStart(void)

{

serRefNum = 0;

return 0;

}

Our next step is to write the function that will start our connection, ConnectSerial(). This function will be connected to the Start button we put on our TestHarness form.

For our function we need to declare an error handler to see if anything goes wrong.

Err
err = 0;

Next, we will check to see if we already have a reference to the serial library. If we do, we do not want to open another connection, or loose our current reference. Remember that we set SerRefNum = 0 in AppStart().

if (serRefNum != 0)

{

return;

}
Now we will get a connection to the serial library. If we get an error we will close out what we have done so far and return after displaying the error.

err = SysLibFind("Serial Library", &serRefNum);

ErrFatalDisplayIf(err, "Can't find Serial Library!");

if (err)

{

SerClose(serRefNum);

serRefNum = 0;

return;

}

Once we have made it this far, the last task is to open a connection with our new reference number. Of course, if we get an error, we close out and return after displaying the error.

err = SerOpen(serRefNum, 0, BaudRate);

ErrFatalDisplayIf(err, "Problem opening the serial port!");

if (err)

{

SerClose(serRefNum);

serRefNum = 0;

return;

}

Here is what we have done so far:

ConnectSerial():

static void ConnectSerial()

{

Err

err = 0;

/*

** Are we already connected? If so, we don't want to establish

** a new connection

*/

if (serRefNum != 0)

{

return;

}

/*

** Get a reference to the serial library for our serial connection.

*/

err = SysLibFind("Serial Library", &serRefNum);

ErrFatalDisplayIf(err, "Can't find Serial Library!");

if (err)

{

SerClose(serRefNum);

serRefNum = 0;

return;

}

/*

** Open the serial connection at the specified baud rate.

** The '0' is the port number. We only have one serial port on a Palm.

*/

err = SerOpen(serRefNum, 0, BaudRate);

ErrFatalDisplayIf(err, "Problem opening the serial port!");

if (err)

{

SerClose(serRefNum);

serRefNum = 0;

return;

}

}
To let us make a connection we will modify MainFormHandleEvent() to add functionality to the Start button.

static Boolean MainFormHandleEvent(EventPtr eventP)

{

 ...

switch (eventP->eType) {

case ctlSelectEvent:

switch(eventP->data.ctlEnter.controlID) {

case TestHarnessStartButton:

ConnectSerial();

handled = true;

break;

 ...

}
Closing a Connection:

Being able to open a connection is half the battle. Once we have a connection open we must be able to close it, especially if we exit the application. We must close all open serial connections before we exit our application. To close connections, we will write a function, DisconnectSerial(). This function is much simpler than the ConnectSerial() function.

DisconnectSerial():

static void DisconnectSerial()

{

if (serRefNum != 0) {

SerClose(serRefNum);

serRefNum = 0;

} else

{

}

}

If there is a serial connection open, or if we have received a reference to the serial library, we close the connection.

The interesting part is where we put this function. There are two cases we have to check for: the Stop button, and when our application exits.

Getting the Stop button to work is just the same as getting the Start button to work. We place the DisconnectSerial() function inside the corresponding case of the MainFormHandleEvent() function:

static Boolean MainFormHandleEvent(EventPtr eventP)

{

 ...

switch (eventP->eType) {

case ctlSelectEvent:

switch(eventP->data.ctlEnter.controlID) {

case TestHarnessStartButton:

ConnectSerial();

handled = true;

break;

case TestHarnessStopButton:

DisconnectSerial();

handled = true;

break;

 ...

}

For the second requirement, we need to add DisconnectSerial() to the AppStop() function. Recall that AppStop() gets called just before the application exits, inside the StarterPilotMain(). To ensure that we close all serial connections, we modify AppStop() to look like the following:

static void AppStop(void)

{

DisconnectSerial();

}

Now we can safely open and close connections on the Palm, and we have tied these actions to our Start and Stop buttons.

Section 6: Modifying Our Serial Connection

Now that we can establish serial connections, let’s be certain that our connection is exactly what we think it is. This section will modify our ConnectSerial() function to take advantage of the SerSettingsType that comes with PalmOS.

Using the SerSettingsType:

As you may recall, the SerSettingsType contains all the attributes of a serial connection. We are going to create a variable of this type and use it to modify our already opened serial connection. To do so, we will create the following variable in ConnectSerial():

SerSettingsType
settings;

We will then modify settings to take on the attributes we want in our serial connection:

settings.baudRate = BaudRate;

settings.ctsTimeout = Timeout;

settings.flags = serSettingsFlagStopBits1 |

 serSettingsFlagBitsPerChar8 |

 serSettingsFlagRTSAutoM;

Once we have this done we can make the following call to SerSetSettings():

SerSetSettings(serRefNum, &settings);

This may seem like a strange thing to do, but in your serial applications you may find the need to modify a serial connection from time to time. This is an excellent way to do so, and keep track of what your serial connection looks like.

Section 7: Receiving Serial Data

In this section, we will set up our Palm application to receive data over a serial connection. To do this we will need to do two things: write a function to receive data off the serial line and display it to the screen, and modify the flow of our Palm application to use this function to check periodically for data on the serial lines.

Adding Receiving Global Constants:

This section requires the addition of only one global variable.

SerRcvQueueSize

#define SerRcvQueueSize 100

When receiving information off the serial lines we need a place to put the data. We will declare a global constant for the size of our receive queue. In the next part, Adding Receiving Global Variables, we will put this constant to use.

Adding Receiving Global Variables:

As we receive bytes off the serial lines, we may not want to do anything with them in the function that pulls them off. We will add these new global variable to take what we pull off the serial lines:

numBytesRcvd

static Long numBytesRcvd;

This variable will tell us how many bytes we have pulled off the serial lines.

serRcvQueue

static Char serRcvQueue[SerRcvQueueSize];

This global variable will hold the data we pull off the serial lines. Its size is controlled by the global constant SerRcvQueueSize. Changing this global constant will change the size of our receive queue.

To use these new variables we need to know what state they are in when we start to use them. To ensure this, we initialize them every time we open a new serial connection. We will put the code to do this inside the ConnectSerial() function. However, we only want to initialize them if we do not already have an open connection (in the case that we accidentally hit the Start button on the screen). Therefore, we must put the code after the check for an open serial connection.

static void ConnectSerial()

{

Err err = 0;

SerSettingsType settings;

int i;

if (serRefNum != 0)

{

return;

}

numBytesRcvd = 0;

for (i=0; i < SerRcvQueueSize; i++)

{

serRcvQueue[i] = '\0';

}

 ...

}

Adding a Serial Receiving Function:

To receive data off the serial lines we need to open a connection, then check the serial lines. Here we will write a function to pull data off the serial lines and display it to the screen of our Palm.

First, we need to ensure that we are connected before attempting to pull something off the serial lines:

if (serRefNum == 0)

return;

Now we are ready to use those global variables we declared in a call to SerReceive().

numBytesRcvd = SerReceive(serRefNum, serRcvQueue, 1, 1, &err);

Notice that we included an error variable, err. This variable will tell us if an error occurred on the line that we care about. Also, numBytesRcvd, will tell us if we actually received any data. To check that everything is alright and we actually did something, we include the following line:

if (0 == numBytesRcvd || err == serErrTimeOut || err == serErrLineErr)

return;

If everything is good so far, we will print out our characters to the screen.

WinDrawInvertedChars(serRcvQueue, 1, 60, 40);

Now our function is written. It looks like this:

CheckSerial():

static void CheckSerial()

{

Err err = 0;

/*

** If connected, receive any data alrady on the line

*/

if (serRefNum == 0)

return;

numBytesRcvd = SerReceive(serRefNum, serRcvQueue, 1, 1, &err);

if (0 == numBytesRcvd || err == serErrTimeOut || err == serErrLineErr)

return;

WinDrawInvertedChars(serRcvQueue, 1, 60, 40);

return;

}

Adding Our Receive Function to Our Application:

To make our function work we need to add it to our code in a strategic place. Initially, we will want it to continuously check the serial lines for data. This is the simplest way to debug a serial connection. To do so, we will place a call to CheckSerial() inside the AppEventLoop().

The new AppEventLoop() will look like this:

static void AppEventLoop(void)

{

Word error;

EventType event;

do {

EvtGetEvent(&event, 50);

if (! SysHandleEvent(&event))

if (! MenuHandleEvent(0, &event, &error))

if (! AppHandleEvent(&event))

FrmDispatchEvent(&event);

CheckSerial();

} while (event.eType != appStopEvent);

}

Section 8: Testing the Serial Connection

At this point we have got our Palm application to the point where it can receive serial data. Now we are ready to see if our code works. To test it out we will use HyperTerminal on the PC.

Where You Should Be at this Point:

To test your serial connection, you should have at least done the following:

1. Compiled and made the code in the Section7 folder that came with this tutorial.

2. Added the serialtutorial.prc to your HotSync profile (the ‘.prc’ file is generated when you make the project).

3. HotSynced your Palm to get the new application uploaded.

4. Have your Palm sitting in its cradle, with the cradle’s serial cable attached to your computer’s serial port.

5. Closed all programs that use the serial port you have your Palm attached to (this includes the HotSync Manager).

Setting up HyperTerminal:

With your Palm ready to go, all we have to do is set up HyperTerminal and begin sending data. Here are the steps you need to take:

1. Start HyperTerminal by double clicking on its icon or selecting it from your start menu

2. In the Connection Description:New Connection dialogue type in a name for your connection (this will create a file to save your connection settings in).

3. In the Connect To:Connection_Name dialogue select the COM port that your Palm and cradle are attached to.

4. In the COM X Settings:Port Settings dialogue set the values to match those in Section 6, specifically:

Bits per second = 19200

Data bits = 8

Parity = None

Stop bits = 1

Flow control = Hardware

5. Press “OK” and you will be connected.

Testing the Connection:

Now that we are connected, we can see if our application works. To do so, press any key on the keyboard. You should see the character appear on your Palm’s screen (function keys and other windows specific keys aside).

Hints for Using HyperTerm:

1. HyperTerm sends over the ASCII value of the key you press. If you press a number, it sends the ASCII value of the number you pressed, not the numerical value.

2. You can send numerical values from HyperTerm. To do so, depress and hold the Alt key and press numbers on the numerical keypad. Letting go of the Alt key will send the number. The ASCII value that number represents will be displayed on the screen (e.g.: Alt+1+0+2 will send 102, which is ASCII for “f”).

3. If you start seeing garbled or nonsense characters on your Palm screen, check to see that your connection settings are the same on both PC and Palm (even if you set the PC different, you will still get some characters through just fine). If this is not the case, close and re-open the connection on either the Palm or PC, or both.

Section 9: Sending Serial Data

Now that we have information going over our serial lines in to the Palm, let’s get to sending some data back to the PC. This section will enable us to send data over the serial lines. Since we do not have anything really useful to send, we will just send nonsense data. However, we will design the sending functions to be as useful as possible in your future Palm applications.

Adding Sending Global Constants:

This section requires the addition of only one global variable.

SerRcvQueueSize

#define SerSendQueueSize 100

When sending information over the serial lines we need a place to put the data. We want to be able to send large amounts of data in short bursts to maximize utilization of our serial connection, and to prevent the other machine from timing out while we are sending a stream of data. We will declare a global constant for the size of our send queue. In the next part, Adding Sending Global Variables, we will put this constant to use.

Adding Sending Global Variables:

When sending information over a serial (or any) connection, we want a place to assemble our information before we send it. This is especially important if we are sending a formatted packet of information. We wouldn’t want the receiver to time out waiting for us to send data when it is in the middle of a packet. To facilitate this, we will create a send queue:

serSendQueue

static Char serSendQueue[SerSendQueueSize];

This global variable will hold data for assembly before we send over the serial lines. Its size is controlled by the global constant SerSendQueueSize. Changing this global constant will change the size of our send queue.

To use this new variable we need to know what state it is in when we start to use it. To ensure this, we initialize it at the beginning of our application. Since this is not application related, we will put this initialization inside the InitSettings() function. Note that we do not need to re-initialize this queue every time we create a new connection. The data inside our send buffer might be valid even though we do not currently have a connection open.

We will modify InitSettings() to look like the following:

InitSettings():

static void InitSettings()

{

int i;

for (i=0; i < SerSendQueueSize; i++)

{

serSendQueue[i] = '\0';

}

}

Adding a Serial Sending Function:

To send data over the serial lines we need to open a connection, then send information out. Here we will write a function to send data over the serial lines.

We would like a function that we could easily use to send useful information. One that would be as non-restrictive as possible. With that in mind, we will make our new function, SendSerial(), a utility function. That way we can prepare the data anywhere and just use our function to send the data.

As a utility function, it will take in the number of characters we want to send, and it will return to us the number of characters it successfully sent, along with an error if any. The function will look like this:

SendSerial():

static Err SendSerial(int numChars, Long* numSent)

{

Err err = 0;

/*

** If connected, send data.

*/

if (serRefNum == 0)

return(-1);

*numSent = SerSend(serRefNum, serSendQueue, numChars, &err);

return(err);

}

Using Our Serial Sending Function:

To make use of our function we will hook up a simple function to our Send button. Since our application does not do anything immediately useful, this function will simply demonstrate serial sending. You can replace this function with something more intelligent in your applications (when you are sending real information).

Our function, TestSend(), will put characters in the serSendQueue for SerSend() to use.

TestSend():

static void TestSend()

{

Err error = 0;

Long numSent;

StrCopy(serSendQueue, "Testing \n\0");

error = SendSerial(StrLen(serSendQueue), &numSent);

ErrFatalDisplayIf(error, "Can't send data!");

}

Adding Our Sending Function to Our Application:

To get our TestSend(), and corresponding SendSerial(), functions to work, we will attach TestSend() to the Send button in the MainFormHandleEvent() function.

static Boolean MainFormHandleEvent(EventPtr eventP)

{

 ...

switch (eventP->eType) {

case ctlSelectEvent:

switch(eventP->data.ctlEnter.controlID) {

...

case TestHarnessSendSerialButton:

TestSend();

handled = true;

break;

 ...

}

Now our application is ready to send messages back to our PC.

Section 10: Hooking Up Our Utility Buttons

The final step to providing complete functionality to our test harness will be to make our utility buttons functional. These buttons are Clear Buffer, Clear Scrn, and Redraw Scrn.

Adding Functionality to the Clear Buffer Button:

The Clear Buffer button is intended to be used to clear the contents of the serial receive buffer. This is the buffer that the Palm uses to store data when it comes in over the serial lines. This is not our serRcvQueue. This button will be useful if you get bad information over your serial line. It will empty the contents of the serial receive buffer and keep it clear for a specified timeout. The function to do this is:

ClearSerialBuffer()

static void ClearSerialBuffer()

{

if(serRefNum != 0)

SerReceiveFlush(serRefNum, 100);

}

Adding Functionality to the Clear Scrn Button:

The Clear Scrn button simply removes all data from the text boxes, and sets them back to their original state. Therefore it simply call the initializer for the text boxes.

ClearScreen():

void ClearScreen()

{

InitTextBoxes();

}

Adding Functionality to the Redraw Scrn Button:

The Redraw Scrn button will redraw the form elements on the screen. This should erase any items or debugging information that is covering them up.

RedrawScreen():

static void RedrawScreen()

{

FrmDrawForm(FrmGetActiveForm());

}

Connecting Our Utility Functions to Our Buttons:

To make our utility functions work, we put them in the MainFormHandleEvent() function like we have done for all our other buttons. Here is the final MainFormHandleEvent() function.

static Boolean MainFormHandleEvent(EventPtr eventP)

{

 Boolean handled = false;

 FormPtr frmP;

switch (eventP->eType) {

case ctlSelectEvent:

switch(eventP->data.ctlEnter.controlID) {

case TestHarnessStartButton:

ConnectSerial();

handled = true;

break;

case TestHarnessStopButton:

DisconnectSerial();

handled = true;

break;

case TestHarnessClearBufferButton:

ClearSerialBuffer();

handled = true;

break;

case TestHarnessSendSerialButton:

TestSend();

handled = true;

break;

case TestHarnessClearScrnButton:

ClearScreen();

handled = true;

break;

case TestHarnessRedrawScrnButton:

RedrawScreen();

handled = true;

break;

default:

break;

}

break;

case menuEvent:

return MainFormDoCommand(eventP->data.menu.itemID);

break;

case frmOpenEvent:

frmP = FrmGetActiveForm();

MainFormInit(frmP);

FrmDrawForm(frmP);

handled = true;

break;

default:

break;

}

return handled;

}

Section 11: Utilizing the Text Fields for Debugging

This section will discuss how to use the text fields on our TestHarness form for displaying the incoming information on the serial line.

Adding Text Field Utility Functions

To use our text fields we need to write data to them. Remember that we allocated memory for each text field so that it could hold data.

Our first function will handle writing a null terminated string to a form field. The function takes the string that is passed to it and copies the data using a pointer to the field’s text. The function looks like:

WriteDataTextField():

static void WriteDataToTextField(FieldPtr fld , char *buffer)

{

CharPtr
newText;

Handle
newHandle;

newHandle = FldGetTextHandle(fld);

// Lock down the handle and get a pointer to the memory chunk.

newText = MemHandleLock(newHandle);

// Copy the data from the record to the new memory chunk.

StrCopy(newText, buffer);

if(newText)

{

StrCat(newText, buffer);

} else Error("Unitialized Text Box");

// Unlock our handle so the Palm can manage it better

MemHandleUnlock(newHandle);

// Set the field's text to the data in the new memory chunk.

FldSetTextHandle(fld, newHandle);

}

This function uses many PalmOS functions. For more information on these functions, please refer to the PalmOS Reference Guide.

The next function we will write is more specific. This function will write to the RawData field.

WriteToRawData():

static void WriteToRawData()

{

FieldPtr RawData = GetObjectPtr(TestHarnessRawDataField);

WriteDataToTextField(RawData, serRcvQueue);

RedrawScreen();

}

The call to RedrawScreen() forces the palm to display the new information in the text field.

Making Our Text Field Utility Functions Work:

Now that we have functions to write to the text field, we need to replace the WinDrawInvertedCharacters() call in the CheckSerial() function. The new CheckSerial() function looks like this:

static void CheckSerial() {

Err err = 0;

/*

** If connected, receive any data alrady on the line

*/

if (serRefNum == 0)

return;

numBytesRcvd = SerReceive(serRefNum, serRcvQueue, 1, 1, &err);

if (0 == numBytesRcvd || err == serErrTimeOut || err == serErrLineErr)

return;

WriteToRawData();

return;

}
You will find these changes in the Section11 folder that came with this tutorial.

