Welcome to CSE 477

Instructor: Gaetano Borriello
TAs: Mike Esler, Jeff Nichols
Industry Consultant: John Wedgwood

Some basics
- what is a system?
- what is digital system design?

Objectives of this class
- embedded systems: hardware and software
- interfacing and communication
- projects: product concept to prototype, focus on invisible computing

Class administration and logistics

What is a system (in our case, mostly digital)?

A collection of components
- that perform a specific function
- judiciously chosen to meet some constraints
 - cost, size, power consumption, safety
- communicates with its environment
 - human interaction
 - communication with other systems over wired/wireless networks

One person’s system is another’s component
- no universal categories of scope/size
- subsystems need to be encapsulated

How is it documented?
- how much does one have to know about the internals to use it?
- how easily can it be altered/re-configured? along what dimensions?
What is digital system design?

- Encompasses all computing systems
 - general-purpose
 - embedded or task-specific
- Involves many digital (and mixed digital/analog) technologies
 - programmable components (e.g., PLDs and FPGAs)
 - processors
 - interfaces to analog world (e.g., A/D, D/A, special transducers)
 - input/output devices (e.g., buttons, pressure sensors, etc.)
 - communication links to environment (wired and wireless)
- To create a device capable of solving a problem or performing a task that is useful to someone

Trends in digital system design

- Forces
 - cost (cheaper), size (smaller), weight (lighter), power (lower)
 - time-to-market (shorter)
 - upgradeability (in-the-field)
 - recyclability (reusable parts)
 - ubiquity (anywhere, everywhere, and highly task-specific)
 - standardization of interfaces (leverage)
- Effects
 - increased use of high-level languages
 - high-level specifications
 - automatic synthesis tools (hardware and software compilers)
 - programmable hardware (quick to prototype, reconfigurable)
Examples of embedded systems

Programmable hardware

- Programmable logic devices (e.g., PLDs, FPGAs)
- Microprocessors and microcontrollers
 - integration of surrounding logic onto processor chip
 - interrupt subsystem (priorities and vectoring)
 - timer co-processor (measures real-time in parallel w/ processor)
 - faster instruction cycle time
 - replace custom hardware that was previously required
 - parallelism in software
 - integrated memory (RAM, ROM, EPROM, cache, flash)
 - less parts but sensitivity to program/data size
 - processor cores with on-chip supporting logic/circuits
 - custom logic optimized to specific application
 - task-specific sensors and actuators (e.g., MEMS)
 - even application specific instruction sets (e.g., DSP processors)
CSE 477

- Capstone design course
 - serves to tie together the curriculum with an intensive design experience

- For computer engineering
 - programming, data structures, operating systems
 - electronics, logic design, computer design
 - communication skills (oral and written), documentation of designs
 - group effort (2 persons /group, 2-3 groups/theme) and interaction with users (customers)

- Project experience
 - connecting thread through the discipline
 - invaluable opportunity to add to student portfolio
 - just what employers/graduate schools want to hear about

Course rationale

- Assignments and exams
 - reinforce concepts presented in lecture
 - serve to create infrastructure for possible use in projects
 - opportunity to evaluate individual creativity and understanding
 - gain familiarity with laboratory equipment and software

- Embedded system design project
 - wide variety of possibilities in a chosen domain
 - design reviews of all projects (learn from others' experience)
 - must be possible to complete in 10 short weeks
 - presentation/documentation (this qtr coordinated with ENGR333D)
 - in-class presentations
 - web-based documentation
ENGR333D

- Special section of ENGR333
- Combining the subject matter of ENGR333 and CSE477 leads to efficiencies for students and instructors
- Expect it to be a more rewarding experience and lead to better on-line documentation
- Basic model:
 - work individually for ENGR333
 - combine work of group members for CSE477
 - permits revision and iteration

Project scope

- Groups of two or three students will construct a self-contained mostly-digital subsystem (i.e., a small embedded system)
- Projects within a set of themes
 - investigate cross-project communication issues
 - tie projects together into a story (for video later in the year)
- Characteristics
 - interfacing multiple components, based around a PC or PDA
 - analog/digital interfacing
 - reactive, real-time interactions
 - wired or wireless communication between components/other systems
 - exploit high-degree of integration
 - effective use of microcontrollers and SDKs
Project organization

- Hierarchical organization
 - 10 groups of 2 students
 - 2-3 groups within one theme

- Overall project domain
 - task-specific devices connected to web services
 - low-overhead (if not invisible) user interfaces

- Themes for this quarter
 - home automation
 - body networks
 - location-aware systems
 - advanced user interfaces

Course outline

- Introduction
- Microprocessors and microcontrollers
- Interfacing techniques
- Communication methods
- Software issues in embedded systems
- Case studies from industry guest lecturers
- Project design reviews and presentations
- Project demonstrations on 10 December
Course schedule

- First half
 - lectures
 - laboratory assignments
 - midterm exam
 - definition and initial design of project

- Second half
 - construction and debugging of project
 - design reviews and in-class presentations
 - project documentation on web

- Group meetings
 - 2nd week: project selection
 - 4th week: project planning
 - every week thereafter: theme meetings

Background (prerequisite) material

- Logic design (de-emphasized this quarter, more on this next qtr)
 - combinational logic
 - sequential logic
 - control/data-path

- Computer architecture
 - assembly language programming
 - computer organization
 - memory hierarchy
 - interrupt mechanisms

- Programming skills (strongly emphasized this quarter)
 - basic programming
 - data structures
 - facility with programming (C, Java)
Refreshers

Courses
- CSE341 - Programming Languages
- CSE370 - Introduction to Logic Design
- CSE378 - Machine Organization / Assembly Language Programming
- CSE451 - Introduction to Operating Systems
- CSE461 - Networks

Find your textbooks and notes from these courses
- review chapters and lecture notes as topics come up
- review written assignments and any projects

Project ideas
- 3-D ultrasonic mouse
- MIDI flute synthesizer
- CCD camera
- Hand-held logic analyzer
- Mobile robots
- Talking toaster
- Some examples from the past two years . . .
- Some ideas for this quarter . . .
 - meet Thursday 4:30-6:30 to review a video and discuss
 - pizza/drinks will be provided
Goals for CSE477

- Lots of fun getting projects done
 - cool devices
 - amaze friends, family, and Ed Lazowska

- Lots of learning in the process
 - great way to complete your undergraduate career
 - killer interview material

- Produce a great new video
 - highlight the program and department
 - demonstrate that education can be at the leading edge
 - demonstrate the immediate relevance of our educational programs
 - help us draw more industrial support
 - win another video award (two previous videos have)