The Freshman’s Friend

Preliminary Design Report

Brian Lenz

Mark Christiansen

Adam Prewett

CSE 477

April 18, 2001

Table of Contents

iiiList of Figures

1Introduction

2Requirements

2Overview

2Digital Compass

4Microcontroller

6Design

6Overview

6GPS Unit

9Digital Compass Unit

11Windows CE Application Design

11Visual Basic vs. C++

12The User Interface

13Route Mapping

14Maps

15Parts

15Hardware

15Development Tools

15Problematic Parts

17Analysis

17Overview

17GPS Unit

17Digital Compass Unit

17Software

19Test

19Overview

19GPS Unit

19Digital Compass Unit

20Software Application

21Design Issues

21Overview

21GPS Unit

21Digital Compass Unit

21Digital compass

21Microcontroller

22Infrared communications

22Windows CE Application

24References

List of Figures
2Figure 1: Digital Compass Pin Diagram

3Figure 2: GPS Pin Diagram

4Figure 3: Microcontroller Pin Diagram

6Figure 4. High-Level Block Diagram for the Freshman's Friend

7Figure 5. Block Diagram for the GPS Interface to the Freshman's Friend

10Figure 6. Block Diagram for the Digital Compass Interface to the Freshman's Friend

12Figure 7. Diagram if the Freshman’s Friend Graphical User Interface

13Figure 8. Size of a map zone in Windows CE application

 TOC \h \z \c "Table"

2Table 1. Voltage Requirements for the Digital Compass

2Table 2. Power Consumption for the Digital Compass

3Table 3. Voltage Requirements for the GPS receiver

3Table 4. Power Consumption for the GPS receiver

4Table 5. Voltage requirements for the microcontroller

4Table 6. Pin voltage requirements for the microcontroller

10Table 7. One-Hot Encoding for the Current User Direction

11Table 8. Properties of C++ and Visual Basic in Windows CE

Introduction

The Freshman’s Friend will help students find their way around an unfamiliar campus. It will do so by giving the students their current location relative to the rest of the campus. It will also let the students know which direction they are facing and which direction they need to go in order to get to their destination. Additionally, the Freshman’s Friend will automatically update the students’ locations and keep them informed of the best way to get to their destination, even if they go off the original course.

In order for the iPaq to display the student’s direction, we will be using a digital compass sensor. The digital compass sensor has 4 outputs for north, east, south and west. Two of these outputs can be on at once to represent a combination of directions. An example would be where the north and west signals are on to represent northwest.

We will then be using a microcontroller to poll the output pins of the digital compass sensor. The microcontroller will process the values it receives and send a byte to an RS-232 level converter. This level converter will then send the increased signal to an infrared transmitter via the RS-232 protocol. The iPaq will receive this byte with its infrared receiver. Once the infrared receiver obtains the byte, the operating system will create and a pass a message to our program. Our program will then handle this message and update the student’s direction.

The iPaq will be communicating with the GPS receiver using its serial port. They will be hooked up directly and will communicate with RS-232 communications. Every second, the GPS receiver will send a sentence to the iPaq. This sentence will be sent one character at a time. Every time a character is received by the iPaq, the operating system passes a message to our program. Our program will have state so that it can process the sentence correctly. In addition to keeping track of which part of the sentence it is at, our program will parse the sentence, retrieving the information necessary to represent a student’s location. This value is used to update the user’s position.

In addition to processing the GPS receiver’s and digital compass’ messages, the software will present the information so it is visually helpful. Our program will superimpose a person’s location and direction on the top of a selection of maps. As the student’s location and direction change, the maps will update accordingly.

Finally, the software will help the student find a way to a destination on campus. The student will select from a list of landmarks, and using the location they are currently at, the software will dynamically point them in that direction. As the student continues walking, our program will update the direction they need to take in order to reach their destination.

Requirements

Overview

The requirements of the Freshman’s Friend is divided into four main parts. This section summarizes the constraints of the components of the system. Firstly, the digital compass is analyzed. Secondly, the requirements of the GPS receiver are described. Then the microcontroller limitations and specifications are discussed. Lastly, the software application is explored. These requirements will be taken into close consideration during the development of the product.

Digital Compass

Table 1. Voltage Requirements for the Digital Compass

	Min
	Max

	5 V
	20 V

Table 2. Power Consumption for the Digital Compass

	Min
	Max

	0.15W
	0.6 W

Shown above are the maximum and minimum voltage levels of VCC as well as the maximum and minimum power consumption levels. Below is the pin diagram for the digital compass. The individual VCC and Ground signals can be connected together without any changes in electrical requirements. If the compass has 90 degrees of displacement, the digital compass can take up to 3 seconds to update accordingly.

[image: image1.jpg]12 Ve

2 = Ground

S & O 3 = Signal
1 2 3

D3 -

View from .
& 2 10p. Pins 2®
underside.

D B}
3 2
o @& o

Ve = 5 to 20 Volts;
8 to 13 recommended.

Figure 1: Digital Compass Pin Diagram

GPS Receiver
Table 3. Voltage Requirements for the GPS receiver

	Min
	Max

	3.6 V
	6 V

Table 4. Power Consumption for the GPS receiver

	Typical
	Max

	0.87W
	1.0 W

As shown above, VCC cannot go below 3.6 V or above 6 V. Typical power consumption of the GPS Receiver will be 0.87W and at most 1.0W. The GPS Receiver updates every second. It will be communicating with the iPaq using the RS-232 protocol at 4800 baud.

[image: image2.jpg]TXDZ +—
RXD2e—]
PPS e—
TXD1+—
RXD1e—]

PWR_Dhe—]
VALY o—
CND +—]
VIN
VIN
NC]
NMEAs—]

Seriol Dota Qutput 2

Seriol Data Input 2

Fulse—per—second Qutput

Seriol Dota Qutput 1

Serial Data Input 1

Power Down Control

Auxiliary Backup Bottery Rechaorge Input
Ground

Connected to Pin 10

Input 3.6Vde to B.OVde (—LV) or BVdc to 40Vde (—HY)
Reserved

NMEA Output

Figure 2: GPS Pin Diagram

Microcontroller

Table 5. Voltage requirements for the microcontroller

	Min
	Max

	4.0 V
	6.6 V

Table 6. Pin voltage requirements for the microcontroller

	Min
	Max

	-1.0 V
	7.0 V

Above are the limits of the voltage allowed on any pin, and the voltage limits of the chip. Below is the pin diagram of the microcontroller. The microcontroller will have a one-hot encoded scheme when it is connected to the digital compass. We will use the RS-232 protocol to communicate to the IR transmitter. Since the voltage output levels of RS-232 communications will be at 5 volts, we will be using an RS-232 level converter. This will boost the voltage up to 15 volts and down to –15 volts. Using the standard RS-232 voltage, we will control the infrared transmitter.

[image: image3.jpg](T2)P1.01
(T2EX) P1.102
P12[]3
P1.30{4
P14C{5
P1.506
P16C]7
P1.708
RST 9
(RXD) P3.0] 10
(TXD) P3.10 11
(INTO) P3.2 [12
UNT!) P330{13
T0) P3.4] 14
(T1)P3.5T]15
(WR) P3.6 16
(RD) P3.7] 17
XTAL2] 18
XTAL1 [19
GND] 20

pvee
7 P0.0 (ADD)
[0 Po.1 (AD1)
[0 P02 (AD2)
[0 P03 (AD3)
[0 P0.4 (AD4)
[0 Po.5 (ADS)
[0 P0.6 (ADE)
[0 P07 (AD?7)
[EAVPP

[0 ALE/PROG
[1 PSEN
[1P2.7 (A15)
[1P2.6 (A14)
[1P2.5 (A13)
[P2.4 (A12)
[0 P2.3 (A1)
P22 (A10)
[1P2.1 (A9)
[0 P2.0 (A8)

Figure 3: Microcontroller Pin Diagram

Software

The Compaq iPaq only has 16 MB of Flash ROM. We want to keep our program size at less than 20 percent of that, in order to have plenty of memory to spare. It is our goal to keep our program code and our map files under 3 MB.

We expect to have each map file roughly 40KB in size. Since we plan to have anywhere from 20 to 30 maps, we would like be able to have all of our maps take up less than 1.5 MB.

Since our GPS receiver transmits its position every second, the software must be able to update the position, the current path, the map displayed, and a progress checking algorithm in under a second. This includes handling the messages it receives from the infrared receiver as well as the messages from the GPS receiver.

It is not critical that we update the direction between every GPS receiver transmission. It is however critical that we can process the GPS information by the time of the next GPS transmission.

Design

Overview

The design of the Freshman’s Friend is comprised of three main parts. The central unit of the design is the user interface and software application. The Compaq iPaq 3650 is the complete user interface to the application. The remaining two parts of the application are the Global Positioning System (GPS) unit and the digital compass unit. The GPS unit is composed primarily of the Garmin GPS25-LVS receiver. The software application configures the GPS receiver to generate the necessary continuous. The GPS25-LVS receiver provides a continuous signal to the iPaq in the form of world coordinates. The software application then translates the coordinates into our mapping system, which supplies a graphical reference of the user’s location. The digital compass unit provides the direction the user is currently heading. The digital compass outputs a continuous digital signal, which is translated by a microcontroller. The microcontroller then communicates over an infrared interface with the iPaq. The iPaq translates the heading and provides a graphical reference to the user’s heading through the user interface. The complete high-level block diagram for our design can be found in Figure 4.

[image: image4.wmf]Software Application

GPS Unit

Digital Compass Unit

Figure 4. High-Level Block Diagram for the Freshman's Friend
GPS Unit

For our GPS receiver, we were initially going to use the ScoutMaster GPS receiver from the hardware lab. However, after looking into the manual for the ScoutMaster, we decided that it would not sufficiently provide GPS positioning information. The only GPS positioning output from the ScoutMaster was on the LCD screen. Since we need some interface from our GPS receiver to our software, this was an insufficient solution. As a result, we searched the World Wide Web for GPS receivers with serial outputs. We quickly found the Garmin GPS25-LVS receiver. This receiver provided all of the necessary functionality that our application requires. It provides positioning updates via a serial port at one-second intervals. After researching to ensure that this receiver would be a viable solution, we decided to use it in our application.

The GPS unit is composed primarily of the Garmin GPS25-LVS receiver. The GPS25-LVS has an RS-232 serial interface that allows two-way communication between the receiver and the host. RS-232 is the standard communications protocol for transmitting data over serial connections. In this case, the host unit is the software application on the Compaq iPaq 3650. The software application is able to directly communicate with the GPS receiver through serial port device drivers provided in the Windows CE operating system that runs on the iPaq. The complete block diagram for the GPS unit interface with the iPaq is shown in Figure 5.

[image: image5.wmf]Garmin GPS25-LVS

RS-232

Interface

Compaq iPaq 3650

Figure 5. Block Diagram for the GPS Interface to the Freshman's Friend

The GPS25-LVS receiver communicates with the iPaq over the RS-232 connection. The RS-232 protocol provides simple transmission of bytes of data. The GPS25-LVS actually communicates via a higher-level protocol over the RS-232 connection. The higher-level protocol is based on the National Marine Electronics Association’s NMEA 0183 ASCII interface specification. This interface specifies various sentences of data that are sent to and from the GPS receiver. The software application running on the iPaq will have to communicate primarily with the GPS receiver for configuration of the device. The GPS receiver will be configured to send out information at a frequency of 1 Hz. Additionally, we will set the serial port to transmit data at a 4800-baud rate. At a bit rate of 4800 bits per second (bps), the GPS receiver will be able to send 480 characters per second. By doing so, our system will have a sufficient amount of time to transmit one sentence containing the current positioning, considering the fact that the maximum sentence length is 80 bytes.

The only data that our application needs from the GPS receiver is the positioning information. Thus, whenever the application starts up, the software will have to manually disable all sentences to be transmitted from the GPS receiver. After disabling each of these sentences, the software will have to enable the positioning sentence. By doing so, the only data transmitted from the GPS receiver to the iPaq will be the positioning information. This information will be transmitted to the iPaq at a specified frequency. The frequency at which the GPS receiver transmits the sentences over the serial connection is predetermined through configuration software provided for a PC. Once these settings are configured, they are stored in non-volatile memory in the GPS receiver so that they are retained after power cycling the receiver.

We will configure the GPS25-LVS by sending configuration sentences over the serial connection to the receiver. These sentences will be transmitted to the GPS receiver when the software starts up. The following sentence will disable all outgoing sentences on the GPS receiver:

$PGRMO,,3<CR><LF>

The ‘$’ character is the first character transmitted in all NMEA 0183 sentences. The PGRMO command tells the GPS receiver that we are enabling or disabling output sentences. Each comma in the statement separates different parameters. The first parameter is empty when disabling all signals. The ‘3’ tells the GPS receiver that we are disabling all outgoing sentences. The <CR> and <LF> represent standard ASCII carriage return and line feed characters. These are the standard characters used to terminate all NMEA 0183 sentences. After disabling all of the outgoing sentences, we simply need to enable the positioning sentence. The following sentence will enable the positioning sentence:

$PGRMO,GPGGA,1<CR><LF>
The GPGGA parameter signifies the fact that we would like to change the transmission settings for this sentence. The GPGGA sentence transmits all necessary positioning information that our application needs to process. The ‘1’ parameter tells the receiver to enable this sentence. At this point in our application, the GPS receiver will continuously transmit positioning sentences until it is shutdown. When our application shuts down, we simply need to send a binary 1 on the Power Ground Control signal, pin 6, on the GPS receiver. The pin diagram for the GPS25-LVS can be found in Figure 2
.

Once the GPS receiver has been configured, the software application no longer communicates with the GPS receiver. Instead, the software simply has to sample the incoming positioning sentences to extract the current position. The following is the format for a standard positioning sentence in NMEA 0183:

$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12><CR><LF>

The only parameters of the sentence that our application will be concerned with are parameters 2-5. Parameter 2 holds the latitude and parameter 4 holds the longitude. Parameters 2 and 5 hold the hemisphere values. In this case, parameter 2, the latitude hemisphere, should always be ‘N’ for the northern hemisphere, and parameter 4 should always be ‘W’ for the western hemisphere. We will ignore all of the other parameters in the positioning sentence.

The GPS unit needs to be physically connected to the iPaq because of the serial port connection. As a result, we will need to somehow mount the GPS receiver and antenna to the iPaq. The serial cable for the iPaq is approximately 4 feet in length, so we will have to place this cable in the GPS mounting unit as well. Additionally, the GPS antenna is approximately 3 feet in length, so we need to store this extra cable in the mounting unit as well. Aside from these cables, only the GPS receiver and a battery to provide power to the receiver are needed to be stored in the mounting unit. We will mount the GPS receiver in a plastic case where we will also store the battery, antenna, and cables.

At this point, the GPS unit design is completed. All configuration parameters have been set and all positioning information is ready to be received by the software. At this point, we simply have to get the software to properly recognize the incoming sentences and process them accordingly. We will describe the software design later in this document.

Digital Compass Unit

In designing the compass module for the Freshman’s Friend, we quickly determined that we would need to use the infrared port on the iPaq for communication with the digital compass module. The iPaq has two primary ports for communication: the serial port and the infrared port. We are already using the serial port for the GPS unit, so we will use the infrared port for the transmission of the output of the digital compass.

The digital compass has four digital outputs that combine to make eight possible digital combinations. The digital compass has one output pin for each of the north, south, east, and west directions. The direction can be N, S, E, W, NE, NW, SE, or SW. If the current heading is north, then the north output pin on the compass will be high and all other outputs will be low. If the current heading is northeast, then both the north and the east output pins will be high while the south and west output pins will be low.

With the specification for the digital compass determined, we need to find an interface from the digital compass to the iPaq. In order to do so, we chose to read in the digital compass output with an Atmel 8051 89C55 microcontroller. The microcontroller needs an interface to the infrared port on the iPaq. We found the Actisys ACT-IR220L+ infrared transmitter in the hardware lab and chose to use it in the design of the Freshman’s Friend. The ACT-IR220L+ infrared transmitter provides a serial interface to the transmitter. Thus, we can transmit the current heading from the microcontroller via a serial port output on the microcontroller. The serial output is then connected to the ACT-IR220L+, which will use infrared transmission to transmit data to the iPaq. The block diagram for the digital compass unit can be seen in Figure 6.

[image: image6.wmf]Atmel 8051 89C55

Microcontroller

Compaq iPaq 3650

Dinsmore 1490 Digital

Compass

Actisys ACT-IR 220L+

Digital Interface

RS-232

Interface

Infrared

Interface

Figure 6. Block Diagram for the Digital Compass Interface to the Freshman's Friend

The data transmission from the microcontroller to the iPaq is strictly one-way communication. The iPaq does not need to transmit information to the microcontroller. As a result, we have a simplified system. The microcontroller constantly transmits the heading over the infrared port, and the iPaq continuously samples this input and updates the user interface accordingly.

On the microcontroller, the application will continuously sample the four input signals from the digital compass. The microcontroller can then continuously send bytes to the iPaq application to notify it of the current direction. Only one byte needs to be sent by the microcontroller to notify the iPaq of a change of heading. Each time a byte is received over the infrared port, the iPaq will decode the byte according to the one-hot encoding shown in Table 7.

Table 7. One-Hot Encoding for the Current User Direction

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Heading
	SW
	SE
	NW
	NE
	W
	E
	S
	N

The infrared interface to the microcontroller is an RS-232 serial interface. We can set the baud rate of the infrared transmitter by toggling the DTR and RTS bits of the serial interface. We will make these configurations based on confidential information received from Actisys. Please contact Actisys for further information regarding the baud rate specifications. We will set the baud rate of the infrared transmitter to 9600. Since the digital compass outputs update continuously, 9600 baud will be sufficiently fast to continuously update the software application with the new data. A transfer of one byte at 9600 baud will take approximately 0.001 seconds. At this fast rate, the software will definitely be the limiting factor in updating the direction on the user interface.

As for the physical connection of these parts, we will connect all of the parts electronically via a standard breadboard. We will provide the breadboard with power via a battery. The breadboard will hold the digital compass, the microcontroller, and the oscillator for the microcontroller. We will connect the microcontroller to the infrared transmitter via a level converter and a null modem adapter. From there, we can directly connect the null modem adapter to the infrared transmitter. We will need another plastic case to combine these parts into one unit. Since the infrared connection is wireless, we will affix this part to a baseball cap and transmit the data from the hat to the handheld. Each time the heading needs to be updated, the user can simply point the infrared sensor of the iPaq at the infrared transmitter on the user’s hat. This will update the direction on the user interface of the iPaq.

Once the digital compass unit has been electronically assembled and the software has been downloaded to the microcontroller, the iPaq simply has to sample the incoming data bytes and update the heading accordingly. Using this heading, the user will be able to determine the correct direction to his destination. The compass on the user interface should update what appears to be instantaneously to the user as long as the user has the iPaq aimed at the infrared transmitter.

Windows CE Application Design

Visual Basic vs. C++

The first decision in the software design process was which programming language to use. The two most prevalent and supported languages are Visual Basic and C++. Both are included in Microsoft’s free distribution of Embedded Visual Tools. The following table highlights the strength of both languages with our project in mind.

Table 8. Properties of C++ and Visual Basic in Windows CE

	Visual Basic
	C++

	Simple to design UI using Embedded Visual Tools
	Straightforward, well-documented, UI development using MFC classes

	Built –in controls for communicating with serial and infrared ports
	Familiar language and development environment

	Extensive online development community
	More flexibility for defining data structures and route mapping

After reviewing each language we decided to develop using C++. Visual Basic initially seemed like the easiest choice, however, it lacked the necessary power to implement the route-mapping portion of the application. Another benefit of using C++ is our prior development experience with it.

The User Interface

The aim of the user interface is to be as simple as possible without leaving the user feeling limited. When looking at the screen the user should easily see what is going on and not be confused by what is shown on the screen. As shown in figure 1, the map dominates the screen of the application. It is shown so large since the primary objective of Freshman’s Friend is to show the user where they are on campus.

[image: image7.png]Latitude: 124.56483 N

Longitude: 39.56483 W

Destination: | SWN
Submit

Help

Figure 7. Diagram if the Freshman’s Friend Graphical User Interface

The only input in the application is the user’s destination. Once entered in a text box at the bottom of the screen, the user will click on the submit button to get directions to their destination. Also accompanying the destination field at the bottom of the screen is the user’s current position in latitude and longitude and their current heading.

Route Mapping

Route Mapping is the component of the application that tells the user where to go based upon their current location and destination. Due to complexity in design and implementation we tagged this as the most difficult part of the application. The program needs to determine which path the user needs to take in order to get to their destination. After thinking of numerous approaches we came up with a zone-based design that will direct the student to correct path out of the current zone based upon their destination. The next paragraph describes this feature in more detail.

The two main issues with a zone-based design are the size of a zone and how direct between zones. The size of a zone is approximated to be the amount of time it takes to walk about five minutes. Since a zone is also the amount of area shown on the screen at any one time we didn’t want to make it so large that detail was lost. The map, however, needs to be big enough so the user can get a feeling for their general surroundings. Figure 2 shows the size of a zone just south of Meany Hall.

[image: image8.png]s
e

i

5

- Bl

oo,
e
P

ot

s
a1

aare
5

Meany.

s

ivie Gt
ST

G
¥4

Gumria
o

rohiz

Gt

s

Gers

Figure 8. Size of a map zone in Windows CE application

The modularity of the zones was exploited in order to implement the route-mapping system. If a user is in the above zone and wants to go to Kane hall the only information they currently need is how to exit the current map. To implement this each map has several predefined exit points. Each exit point has a list of which buildings it leads to. So after the software determines which zone a user is in, all it needs to do is look up the building in a table and determine which exit point to direct the user to. Once a user continues on to the next map the process is repeated until their destination is met. The final destination will be marked on the screen with a dot once the student arrives in the final zone.

Maps

The maps present the most amount of work in this project. The basis for our map of campus is the one provided on the University of Washington website. Currently, the website offers one large map of campus along with several area maps of campus. Roughly six of our zones fits on one of the area maps displayed on the website. Once each zone area is specified we need to grid it with coordinates, draw walking paths, define exit points, and enter destination information. To conserve disk space (which is limited on the iPaq) each map will be save in gif format. To display the maps the application will use the IMGDECMP.DLL, the same library used by Internet Explorer for Pocket PC’s. A few of the reasons we decided to use this library are:

· By using a common component such as the IMGDECMP DLL, we reduce the memory footprint of the application.

· Since it is already included in the Windows distribution we don’t need to worry about licensing agreements and implementation details.

· Performance is very good.

· Tested, bug-free code.

To indicate the students position on the map the application will take advantage of the drawing capabilities of the MFC. The program will simply draw a small circle on the map indicating the student’s current position. The only consideration here will be to make sure the circle doesn’t run outside of the image area in the application.

Parts

Hardware

Actisys IR220L+

$59.00

Atmel 8051 Microprocessor
#AT89C55

$12.20

Battery

$5.00

Compaq iPaq H3635 Pocket PC

$599.00

Dinsmore 1490 Digital Compass Sensor

$14.00

Garmin GPS25-LVS

#010-00124-02

$129.95

Garmin Evaluation Kit
#010-10197-00

$109.95

Fox 32MHz Oscillator F1100E 9517

$4.00

Radio Shack Gender Changer

$1.00

Radio Shack Null Modem

$1.00

RS-232 Level Converter

$4.00

Total Cost Per Unit

$939.10

Development Tools

Keil DK51 Developer's Kit

$0.00

Microsoft Embedded Visual Tools

$0.00

Problematic Parts

The GPS is a critical component of our project. If the GPS fails on us for some unknown reason, then our application will be unable to continue running. It will not be able to update the user’s position, which is the main functionality of the Freshman’s Friend.

If the digital compass sensor fails, then our program would still work. However, it could do something worse. It may give out a bad signal, which would mislead the user and make them more lost than if they were not using the Freshman’s Friend. This is due to the fact that the digital compass has unpredictable behavior if it is not kept level.

The microcontroller and the IR transmitter are not problematic parts. If either of these parts fails to work properly, it would not prevent the user from using the Freshman’s Friend. The user would just not have the feature of knowing which direction they are facing. They would still be able to know their location and they could still track their movement to figure out how to get to their destination.

Analysis

Overview

The functionality of our design is based upon its modularity. By separating the Compass, GPS and software components of our design it allows us to design and test each independently. All the technology involved in the project is widely used and industry standard creating ample support online. The following three sections outline the specific reasons why each module in the Freshman’s Friend will work correctly.

GPS Unit

The GPS unit is a relatively simple design. We must make essentially two electrical connections. We must connect the GPS receiver to a battery to provide power, and we must connect the RS-232 serial output of the GPS receiver to the iPaq serial input. Aside from these simple hardware connections, only the software application remains to be analyzed. The software interface to the serial port is very straightforward, given the software drivers provided by Windows CE. As a result of this, the GPS positioning portion of the Freshman’s Friend should work successfully.

Digital Compass Unit

The digital compass unit is a more complicated design than the GPS unit, but it should work successfully. The digital compass part is a standalone part that functions without interaction with our application. The Freshman’s Friend simply samples the output of the digital compass. The microcontroller will be running at 32 MHz, as designed by our oscillator. This is a sufficiently fast speed to be running at since the infrared transmitter will only be running at a 9600-baud rate. Thus, the microcontroller will provide no slowdown in the operation of the digital compass unit. Since the microcontroller is running at a sufficiently fast speed to provide consecutive bytes of data to the infrared transmitter, the only part that remains to be analyzed is the infrared interface to the software application. As long as the software interface to the infrared port is able to receive bytes of data, our design will work correctly. Once the software has received the data bytes off the infrared stream, it will be able to successfully update the user interface. Thus, the digital compass unit should operate just as we have designed.

Software

The software side of our project is based upon the Microsoft Foundation Classes for C++. The communication model in MFC is event based. Basically that means the application won’t do anything unless something tells it to. Relying on this fact our application should work as long as our hardware works correctly. If the iPaq loses its connection with one of the attached devices no events should be sent to the software so state won’t change. We will meet the size requirement by using compressed image files to display on the application. Besides the files themselves our application shouldn’t be more than 20-50k.

Test

Overview

When testing the Freshman’s Friend, the different components can be tested separately. This is because the GPS unit and the digital compass unit are independent of each other. If each standalone module works correctly, then the Freshman’s Friend should work successfully when all modules are connected together.

GPS Unit
In order to test the GPS Unit, we will have to test both the hardware and software. We will test the hardware by hooking up the GPS receiver directly to a serial port on a PC. We will then connect to the GPS receiver through a terminal application. From there, we can send the corresponding sentences to configure the device. After configuration, we should see bytes being sent to the terminal application from the GPS receiver at a rate of 1 sentence transmitted per second. If this result is achieved, the GPS receiver is successfully configured from the hardware perspective.

From the software perspective, we will have to test to make sure that the incoming sentences are processed correctly. We can only test the software aspect of the GPS unit once the hardware aspect has been validated. To do so, we will have a debugging box on the user interface to print out the current coordinates being output by the GPS. Once these coordinates update correctly, we know that the software interface to the GPS unit is working successfully.

Lastly, we will have to test that the GPS unit is successfully powered down when the software application terminates. In order to test this, we will have to quit the application and then check the output of the GPS receiver. If the GPS receiver is no longer transmitting data, then it has successfully been shut down and testing is complete. There are no further tests to run because the only point of failure could be from the GPS receiver hardware perspective, which is out of our application’s control.

Digital Compass Unit

The testing of the digital compass unit will be fairly complex. Initially, we will have to test the digital compass itself to ensure that it is giving correct output. This can be done easily by probing each of the four output pins with a voltage probe. After validating the operation of the digital compass, we will have to write and test the software application to be run on the microcontroller. This application should simply monitor the output of the digital compass and send out data on the serial port signifying the current heading. To verify this aspect of the application, we will hook up the RS-232 output of the microcontroller to a PC. The PC can monitor the output of the microcontroller through a terminal application. We will then verify the output of the microcontroller by checking each byte that is being sent from the microcontroller to the PC. Lastly, we will have to verify the operation of the infrared transmitter.

In order to test this aspect of the Freshman’s Friend, we will have to have the infrared transmission successfully working on the iPaq. To verify the infrared performance in the software application on the iPaq, we will test the application with the infrared transmitter connected to a PC. With the infrared transmitter connected to a PC, we can send data to the iPaq over the infrared line from a terminal application on the PC. We can verify that each byte is successfully transmitted by outputting the value received in a debug box in the application window on the iPaq. Once infrared transmission has successfully been implemented in the software application, we will have to test the entire digital compass unit with the software application on the iPaq. If the heading successfully updates on the user interface, then the functionality testing for the digital compass unit has been completed.

In addition to functionality testing, we will have to test the infrared communication after it has been disconnected. Since the user must manually request a heading update by pointing the iPaq towards the infrared transmitter, the iPaq and infrared transmitter will not always maintain a connection. We need to verify that once communication has been lost it can be restored simply by connecting the iPaq and infrared transmitter by line-of-sight. If this works successfully, then testing for the digital compass unit is complete.

Software Application

In addition to testing the purely hardware aspects of the Freshman’s Friend, we will need to test the strictly software aspects as well. Namely, we must verify that the location algorithm works correctly. Given a destination and the current location, we must verify that the algorithm successfully directs the user to his destination. This testing will have to be fairly thorough. We will have to verify that the direction to the destination updates correctly as the user moves. We must also verify that the map correctly directs the user to the destination when the user goes the wrong way. We will have to verify that iPaq beeps at the user when the user proceeds in a direction more than 90 degrees away from the directed path. In order to test all of these features, we are going to have to have first tested all of the hardware aspects of the design. Once we have validated the hardware specification, then we can take the Freshman’s Friend outside and verify that it operates properly under these various conditions.

Design Issues

Overview

The issues we face in designing the Freshman’s Friend can be divided into software and hardware issues. The hardware issues are independent of each other. Thus, we can approach the design issues for the different hardware modules separately. However, the design issues for software relate to the hardware as well. As a result, we will have to consider each of the hardware modules when designing the software application.

GPS Unit

There are not very many design issues related to the GPS unit. We do not have any control over the GPS unit from the hardware perspective. We only have control over how it is electrically hooked up to a power source and to the serial port. We will provide power to the GPS receiver via a battery and connect the receiver to the serial port via standard 9-pin jacks. The primary design issue with respect to the GPS unit will be with our software interface. The likely problem here would be with our software interface to the serial port. If the serial port is not configured properly from the software side, all of the GPS communication will fail. However, we are confident that this will not be a problem.

Digital Compass Unit

The most likely problems in our design will occur in the digital compass unit. This is because the digital compass unit has the greatest number of points for failure. Any of the following pieces of hardware can cause the digital compass unit to fail:

· Digital compass

· Microcontroller

· Infrared communications

Digital compass

We probably will not have a problem with the digital compass since it is a standalone unit. The output is purely digital and continuous. This type of output can easily be sampled by the microcontroller.

Microcontroller

We will likely have problems with the microcontroller due to its electrical connectivity. We will have to be very precise in our electrical connections to the level converter and null modem adapter in order to ensure proper operation. Additionally, we will have to be attentive to detail in writing the software for the microcontroller so as to properly sample the digital compass inputs and to properly send out the direction data over the serial port.

Infrared communications

The most likely point of failure in our application is with the infrared transmission of data. First of all, the software interface to the infrared port on the iPaq may present some development problems. Developing software on the iPaq to communicate over the infrared port is much more complex than developing software to communicate over the serial port. Additionally, we have to ensure that the infrared transmitter is able to transmit successfully over distances up to three feet. This is because different users are of different sizes and the distance from the user’s head to the iPaq may vary. This may end up being a limitation of the system in that the user has to bring the iPaq closer to the infrared transmitter in order to successfully synchronize the user’s current heading.

Ultimately, the digital compass unit will likely present us with the most design problems, but from the research we have done, we feel that we should be able to overcome them all successfully.

Windows CE Application

Two main design issues remain in the design detailed in Section III. Both are due to the unknowns and complexities involved with developing in Windows CE. Since none of our group members have ever used the Embedded Visual Tools environment it is hard to say concretely whether or not our design will work exactly as intended. We, however, ready to adapt our design as more challenges present themselves. The first design issue involved in our design has to do with the graphics capabilities of Windows CE.

One of the difficult problems with developing in Windows CE is the limits involved with displaying graphics. Using the IMGDECMP.dll it should be easy to display a normal Gif on the screen. The hard part is drawing the user’s position and indicating what direction they should travel in. The specifications for MFC include methods that should be able to implement the drawing, however, it is hard to say until we actually try to code it. As a back up we should be able to implement the same functionality using transparent Gifs. We might use them regardless of the capabilities of MFC if it turns out that it is easier and more efficient.

Another design issue specifically regarding the iPaq is the lack of system resources. Everything on the iPaq needs to fit in 16 megabytes of Flash ROM. Since our application uses a large amount of Gifs we need to make sure that we don’t use up too much memory. It wouldn’t be very practical to use 50% of the iPaq’s memory on one application. If this became a major issue one way to get around it would be to use the web to display our current location. This would let us put all of the images on a different computer reducing the size of the application considerably. The downfall of this would be that the user would need a wireless Internet connection.

References

Actisys Corporation

IR 220L/220L+: IrDA Com-Port Serial Adapter. 2000

April 19, 2001. http://www.actisys.com/ac200-220.html.

Atmel Corporation

8-bit Microcontroller with 20K Bytes Flash. 2000

April 19, 2001. http://64.71.159.17/atmel/acrobat/doc1921.pdf.

Compaq Computer Corporation.

iPaq H3000 Pocket PC. 2000

April 19, 2001. ftp://ftp.compaq.com/pub/supportinformation/techpubs/user_reference_guides/177711-003.pdf.

Dinsmore Instrument Company.

No. 1490 Digital Sensor. December 06, 1993.

April 19, 2001. http://www.hobbyrobot.com/sensors/docs/1490.pdf.

Garmin.

GPS25 LP Series. GPS Sensor Boards. Technical Specification. 2000

April 19, 2001. http://www.garmin.com/manuals/spec25.pdf.

Microsoft Developer Network.

http://www.msdn.microsoft.com

�PAGE \# "'Page: '#'�'" ��Reference the pinout figure.

ii

_1049199917.vsd

_1049215331.vsd

_1049224723

_1049195778.vsd

