Video Imaged Spatial Position System

Preliminary Design Review Document

CSE477 – Digital System Design

Friday, April 20, 2001
Kevin Chan

Esteban Salazar

Cephas Lin

Table of Contents

3INTRODUCTION

4PROJECT DESIGN

4Theory and Math

9Implementation

9Image Capture Subsystem

11Image Processor Subsystem

12Data Correlator Subsystem

13Data Presentation Subsystem

14PROJECT REQUIREMENTS

14Operating Environment

14Project Specifications

14VISPS External Interfaces

16Physical Operating Parameters of Internal Parts

17Intersystem Communication Protocols

18PARTS LIST

19DESIGN ANALYSIS

19Digital Image Consistency

20System Accuracy

20Rate of Data Collection Versus Data Output

22TEST PLANS

22Testing the Image Capture

22Testing the Image Processor

22Testing the Data Correlator

23Testing the Data Presentation

24DESIGN ISSUES

26TECHNICAL REFERENCES

INTRODUCTION

In many situations, it is useful to know the location of a point in space relative to some fixed reference frame. For example, a landscape architect may need to mark a specific height above a point in a yard. Another example is building contractors who need careful surveys to layout the exact location of the important points of a construction. Although there is a need for this kind of spatial data, current techniques are difficult and tedious. Surveyors need specialized training and expensive equipment to obtain an accurate spatial coordinate. The difficulty involved in these traditional techniques increases significantly if you wish to find the location of objects that have irregular shapes or are out of reach. Using traditional surveying techniques, obtaining more sophisticated spatial data, such as tracking the coordinates of a moving object, is nearly impossible.

It would be ideal in these situations if there were a way to know the exact location of a point instantly. For example, pointing at an object with a laser pen or holding up a location flare would enable us produce the X, Y, Z coordinates of the indicated location without having to do any additional measurements or calculations.

The goal of our design, the Video Imaged Spatial Positioning System (VISPS), is to provide 3-D coordinate information using the concept of stereo-vision. By finding a laser marker in image frames captured from two cameras arranged side-by-side, and applying simple trigonometry, we will be able to determine the X, Y, Z coordinates of the laser marker relative to the two-camera system.

Not only will VISPS simplify the task of acquiring spatial coordinates; it will also extend the capability beyond what traditional techniques can provide. Digital hardware solutions intrinsically have an advantage over mechanical designs because data is easily fed to computers for quick analysis. The high frame rates of the cameras and the ability to do rapid mathematical calculations in hardware means that VISPS will be able to capture the coordinates of a moving point in rapid succession. For example, the laser, used either as a flare or a pointer, could actually be used to draw arbitrary shapes in space or against other objects. Since we will be tracking a laser dot, finding the coordinates of points that are out of reach will be trivially easy by simply pointing at the object with the laser.

PROJECT DESIGN

Triangulation is the idea behind stereo-vision. Stereo-vision allows things with two eyes (i.e. animals, VISPS) to determine X, Y, and Z coordinates for an arbitrary point in space. First, we will describe the theory and mathematics of triangulation and stereo-vision that make VISPS possible. Second, we will discuss how these calculations are implemented in hardware.

Theory and Math

Figure 1 is an example of the visual data we will have to work with.

[image: image1.png]

[image: image2.png]

Figure 1 – The view of our two cameras in an example scene

Two cameras are located one foot apart and are both facing in the same direction as shown in Figure 6. From this data, our goal is to discover functions that will tell us the X, Y, and Z coordinates of the white dot (the laser marker appears as a point of saturation). X is defined as the horizontal location of that dot relative to a point exactly between the two cameras with positive X to the right of center and negative X to the left. Y is defined as the vertical component of the distance from the point exactly between the two cameras to the white dot. Z is defined as the distance that the white dot is in front of the cameras.

To discover these coordinates, the important values we will need from the visual data are the horizontal and vertical components of the angles from each camera to the laser marker.

There are several basic techniques for extracting the angle from the data. All techniques rely on the fact that the image at a given pixel location always exists at a fixed angle from the camera. For example, 20 pixels from the left edge of the frame are always five degrees from that edge, no matter how near or far the object at that pixel is.

We use the following algorithm to determine the angles between each camera and the laser marker.

First, we will determine the total viewing width (M) and viewing height (P) at a given distance (N). Figure 2 below shows the widths and distances we will predetermine.

[image: image3.png]Finding the Viewing Width and Height of the Cameras

Viewing Wit (1) Viewing Height (F)

prom e,

Distance Distance

w o

Figure 2 -- Finding the viewing width of the camera

After predetermining M, P, and N as shown in Figure 2, we then find the pixels that correspond to the laser marker. This is done through taking three successive frames, averaging the frames together to remove white noise, and then locating the set of brightest intensity values within a certain pixel distance from each other. This set of pixels corresponds to the marker. From the set of pixels, we will identify the pixel that is at the center of the marker. For the rest of our computations, we use the row and column index of this pixel as the location of the laser marker.

Since we know that an image width contains 356 pixels and the image height contains 292 pixels, we know that the center of the image is located at column 178 and row 146. From this information we know that the height of the pixel at distance N is defined as:

[image: image4.wmf])

146

index

row

(

*

292

deviation

vertical

-

÷

ø

ö

ç

è

æ

=

P

We also know that the horizontal deviation distance at a distance N is defined as:

[image: image5.wmf])

178

index

column

(

*

356

deviation

horizontal

-

÷

ø

ö

ç

è

æ

=

M

From the laser marker’s pixel coordinates we can find the horizontal and vertical deviation from the point half way between the cameras. Once we find the two deviations, we can obtain the azimuth and elevation angles as shown in Figure 3.

[image: image6.png]Calculate the Azimuth and Elevation Angle from
the Vertical and Horizontal Deviations

Overhead View Side View
Horizontal Devistion
Etevation
Angle
Verical
Deviation

Azimuth N

Figure 3 – Calculating the azimuth and elevation angle from the vertical and horizontal deviations

The azimuth angle is determined by the following equations:

[image: image7.wmf](

)

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

-

-

N

P

N

*

356

178

-

index

column

*

tan

deviation

horizontal

tan

azimuth

1

1

[image: image8.wmf](

)

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

-

-

N

P

N

*

292

146

-

index

row

*

tan

deviation

vertical

tan

angle

elevation

1

1

We choose to determine the angles in this manner, rather than using a lookup table, for two reasons. First a lookup table requires a considerable amount of memory; we do not feel that the memory overhead is justified. Secondly, if we use a lookup table the number of entries in the table will limit our precision. We feel that by actually performing the floating-point calculations we will be able to obtain better accuracy.

Now that we have the angles from each camera we have enough information to compute the spatial coordinates of the laser marker.

To find the X coordinate we use the two azimuths obtained from the pixel coordinates. Because the cameras are at a fixed length apart and each azimuth is associated with a specific camera, we can construct the triangle shown in Figure 4 below.

[image: image9.png]Reference Triangle for the Horizontal and
Depth Coordinate Calculations

Azimuth from
Comer© (IohS_pgarker
_

Azimth from
Samera 2 (beta)

Depth (1)

Reference
Foint

Figure 4 – Triangle created from camera distances and azimuths

In Figure 4 the location exactly half way between the cameras will be used as the reference point. From the triangle in Figure 4, the value for C (in inches) can found by using the following equation:

[image: image10.png]D tan(alpha)
tan(alpha) + tan(beta)

After locating C, the X coordinate can be determined by using the equation:

X = D/2 - C

To find the Z coordinate, the C value will be used again. The relationship between C and the Z coordinate is defined by the following equation:

Z = C tan(beta)

Because the laser marker can never be behind the cameras, the value of Z will always be positive.

To calculate the Y coordinate, we will use the following equation:

Y = Z tan(the vertical angle)

Implementation

VISPS consists of four distinct subsystems:

· Image capture

· Image processor

· Data correlator

· Data presentation.

Figure 5 below shows the relationship between each of these subsystems.

[image: image11.png]Image
Capture

Image
Processing

Data
Correlation

User
Presentation

| | | E—

Subsystem Relationships

leo Imaged Spatial Position System

Marker —
Comera 1 Camera 2
[———
XS4010XL Bidirectional
FPGA Communcation

/

Microcontroller

T

RS.232
Protocol

Figure 5 – Subsystem relationships in VISPS

Image Capture Subsystem

The image capture subsystem uses two cameras and a laser marker. The purpose of the cameras is to take digital snapshots of the environment containing the laser marker and to feed the resulting images to the image processor subsystem.

The two cameras are Spectronix RC-2BW RoboCams. The digital image is in CIF format with a size of 356 x 292. The cameras will be mounted so they face the same direction and the centers of the two cameras are one foot apart. Figure 6 below shows this configuration.

[image: image12.png]Image Capture Subsystem Design
Camera Setup

Camera 1 Camera 2
N 1o ——— /
[e

Figure 6 – VISPS camera setup

We initially considered using a high contrast sticker as the marker. However, if we use a sticker we can only find the marker by searching for the sticker’s color or shape. Neither of these alternatives is practical. Firstly, the cameras can only produce black and white images so searching for color is impossible. Secondly, our initial research revealed that searching for a specific shape in an image is a difficult computational problem.

We found that the best marker option was to use a high intensity laser pointer. A laser delivers a high intensity and well-defined beam of light. This beam can easily be directed at an arbitrary point or be redirected into a baffle as shown in Figure 7 to form a flare. To construct the laser flare, a white baffle of reflective material will cross the laser’s beam to reflect light towards the cameras.

[image: image13.png]Image Capture Subsystem Design
Marker Construction with Baffle Demonstration

Baflle

s

Marker with baflle in
lowered position

Figure 7 – Marker construction with baffle demonstration

This flexibility makes the idea of using a laser attractive from the user interface perspective. Furthermore, the great intensity of the laser means that we can turn down the saturation of the frame to a point where only the beam saturates pixels in the frame. This makes our job of finding the laser marker much simpler. To find the laser marker we simply look for the brightest pixels in the frame. Once these pixels are located, we have found the laser marker.

Image Processor Subsystem

The purpose of the image processor is to take a pair of images (one from each camera) and find the pixels in each image that correspond to the marker. Once the set of pixels is found, the image processor will find the center point of the set of pixels and return the pixel coordinates to the data correlator. The pixel coordinates of the marker in the image frame will be defined as the pair: (row, column). Figure 8 below shows the coordinates that will be generated.

[image: image14.png]Pixel Coordinates - (Row, Column)

(214326)

1ow 213

Figure 8 – Pixel coordinates from image frame
After the pixel coordinates are determined, the row coordinates from the two cameras are compared. Since both cameras are at the same altitude, they should produce approximately the same row coordinate (See Figure 1). We will use this property as an initial error-checking scheme. The image processor will make sure that the two row indices are within six pixels of each other. If this condition fails, the image processor will resample the image from the cameras and recalculate the pixel locations. Otherwise, the image processor will send the two column indices and a row index. The row index will be an average of the row indices obtained from the two cameras.

To implement the image processor, we will use the XS-40 development board and program the onboard FPGA. The FPGA will contain the logic needed to find the pixels that make up the laser marker. The communication between the XS-40 and the camera is defined in the Project Requirements section

Before we look for the laser marker we need to filter out the noise. The image data is speckled with random points of saturation that will confuse the logic that looks for the laser marker. We will filter the image by averaging the intensity of every pixel over three frames before looking for the laser. Points that were saturated randomly will not appear as saturated in all three frames. The average will dim the noise so that it will not be confused with the laser marker since the pixels representing the laser marker will be saturated in all three frames.

Unfortunately, the laser marker does not appear as a single pixel point in the image data. The saturation region surrounding the laser marker is several pixels across. Not only do we want to locate the laser region, but we also want to determine a reasonable center of the saturation region to increase accuracy. Since we have already filtered out the noise and the image is dimmed so that no saturated regions exist except for the region saturated by the laser marker, we can look for the n brightest points in the averaged frame and then average the column and row values of these points. The optimal value for n will be empirically determined once we have a working system. This will give us a sufficiently accurate estimate of the laser marker’s center.

The communication between the data correlator and the image processor will be handled through a four-way handshake as described in the Project Requirements section.
Data Correlator Subsystem

After the image processor produces the two column coordinates and the single row coordinate, the data correlator will find two azimuth angles and the elevation angle. Then the data correlator applies trigonometric identities as defined in the Math and Theory section to determine the spatial X, Y, Z coordinates of the laser marker. We will implement the data correlator on an Atmel 8051 microcontroller ((C).
The reason we choose to implement the data correlator on an Atmel (C is because of its processing capabilities. The data correlator needs to handle a number of trigonometric functions with some degree of accuracy. This means floating-point arithmetic is required. Although the Atmel (C does not have native support for floating-point operations, it can emulate floating-point operations with some reduction in throughput. In VISPS, the decrease in throughput of the Atmel (C is not a concern because the data will be streaming out through the RS-232 port when the data is ready and not when the data is demanded.

Data Presentation Subsystem

To present the data, we chose to stream the data using the RS-232 protocol. The primary reason is that the Atmel (C has native support for the protocol. We will use the RS-232 protocol with the parameters listed in Table 1 below.

Table 1 – RS-232 protocol parameters
	Parameter
	Value

	Baud Rate
	19, 200 bps

	Number of bits
	8

	Parity
	No parity

	Number of stop bits
	1

	Flow Control
	None

The exact transfer protocol is discussed in detail in the Project Requirements section.

PROJECT REQUIREMENTS

For VISPS, we have defined a number of project requirements. Below are the operating parameters for VISPS and the operating conditions of the internal parts. We will also discuss the communication protocols that we will use between the subsystems.

Operating Environment

System functionality requires operation in an area that is NOT well lit by the sun or any intense light source.

Project Specifications

For the project specifications, we will first discuss the interface that VISPS will use. Afterwards, we will discuss the physical operating parameters of the internal parts of VISPS. Then we will discuss the communication protocols that occur internally.

VISPS External Interfaces

VISPS will transmit the spatial coordinates out using the RS-232 protocol. In the RS-232, two lines are required: a transmit line and a ground. Figure 9 shows the interface.

[image: image15.png]VISPS Interfaces

VISPS

[—— UART (RS-252)

—— Ground

Figure 9 – VISPS interfaces

In VISPS, the RS-232 protocol will run with the configuration shown in Table 2.

Table 2 – RS-232 configuration values

	Parameter
	Value

	Baud Rate
	19, 200 bps

	Number of bits
	8

	Parity
	No parity

	Number of stop bits
	1

	Flow Control
	None

When streaming the coordinates out, we will send the bytes the order shown in Figure 10.
[image: image16.png]Order of Bytes Sent on the RS-232 Port
by the Atmel Microcontroller

St >t > et >

Figure 10 – Order of bytes sent on RS-232 port by the Atmel 8051 (C

In the byte output, the start byte will be 255 (0xff in hex) because no coordinate will have the value of 255. Then the next three bytes are the X, Y, and Z coordinates.

The X and Y coordinates will be normalized to positive integers. When the data correlator finished finding the coordinates, the X and Y coordinates will range from –127 to 127. Before outputting the X and Y coordinates, the data correlator will normalize these coordinates so that –127 will be 0 and 127 will be 254. For the Z coordinate, the output will not be normalized but the max value will be 254. The primary reason is because the Z coordinate can never be negative. After normalizing X and Y and limiting the max value of Z, we can use the value 255 as the start byte as neither X, Y, nor Z will ever have this value.

We require the use of a start byte so that whoever is interfacing with VISPS will be able to determine when VISPS begins transmitting a set of coordinates.

Physical Operating Parameters of Internal Parts

In Table 3 through Table 6 are the operating parameters for the following parts: the Spectronix RC-2BW, the Xess XS40-010XL development board, and the Atmel AT98C55-33PC 8051 (C. These parts are used in the VISPS design.

Table 3 – Spectronix RC-2BW (VV5404) camera

	Operating Parameter
	Value

	Operating Voltage
	6.0-12.0V

	Supply Current
	< 75 mA

	Image Format
	CIF

	Image Size
	356 x 292 pixels

	Pixel Size
	12.0 x 11.0mm

	Sensor Signal/Noise Ratio
	46dB

	Minimum Illumination
	0.1 lux

	Scope of Vision
	28 degrees

	Chipset
	VLSI Vision VV5404

	Frame Rate
	30 fps

	Internal Clock
	7.15 MHz

	QCK
	Fast QCK

	Viewing Angle
	28 degrees

Table 4 – Xess XS40-010XL (XS-40) operating parameters

	Operating Parameter
	Value

	Operating Voltage
	9.0V (center positive)

	Supply Current
	< 25 mA

	Clock Speed
	24 MHz

	Gate Count
	20,000

Table 5 – Atmel AT89C55-33PC 8051 (C
	Operating Parameter
	Value

	Operating Voltage
	9.0V

	Supply Current
	< 300 mA

	Clock Speed
	20 MHz

	Program Memory
	20 Kbytes

Intersystem Communication Protocols

In VISPS, there are two internal communication channels. The first is between the RC-2BW cameras and the XS-40. In this communication channel, the cameras will be streaming digital images to the XS-40. The protocol that is used to configure the camera and to retrieve data from the camera is defined in VLSI Vision’s VV5404 datasheet.

The second internal communication channel is between the XS-40 and the Atmel (C. The protocol that will be used is modeled after a four-way handshake protocol. The protocol requires two control lines for the handshake and a data bus width of 8 bits for the data. Figure 11 shows a diagram of the control lines and the data bus.

[image: image17.png]The Communication Line Between the
XS-40 and the Atmel Microcontroller

new data

XS40

Ready

Atmel

Dore

|— 8-bit Data

Bus

Microcontroller

I

Figure 11 – Diagram of the communication lines between the XS-40 and the Atmel (C

The four-way handshake protocol has steps:

1. XS-40 drives the READY line high when the data bus contains the right values.

2. When the Atmel (C sees that the READY line is high, the (C reads that data and drives the DONE line high after finished reading the data.

3. The XS-40 returns an acknowledgement by pulling the READY line low.

4. The Atmel (C completes the handshake by pulling the DONE signal low.

This four-way handshake will be used to transmit each of the six pieces of pixel-coordinate data. There are three pixel coordinates that are 16 bits each in size. To reset the data transmission the Atmel (C will drive the new_data line high.

PARTS LIST

To implement VISPS, we require the parts shown in Table 6 below:

Table 6 – VISPS parts list

	Part Number
	Description
	Company
	Quantity

	Robocam RC-2BW
	Black and white camera
	Spectronix
	2

	XS40-010XL
	A Xess development board with a Xilinx FPGA that contains 40,000 gates
	Xess Corporation
	1

	AT89C55-33PC
	8051 Microcontroller, 8-bit 20KB flash in a PDIP package.
	Atmel
	1

	Laser Pen
	Laser Pointer at 630-680nm
	Hi Output
	1

	HyperTerminal
	A terminal communication program included with all version of the MS Windows used for test environment
	Hilgraeve
	1

	PIC16C73B
	PIC microcontroller used for test environment
	Microchip
	1

DESIGN ANALYSIS

There are three major factors that will determine the success of the project. These factors are:

1. Digital image consistency

2. System accuracy

3. Data collection speed versus coordinate calculations

In the following sections we will discuss each area in more detail.

Digital Image Consistency

For digital image consistency, we are concerned that the images from the two cameras are not synchronized. This can occur if the cameras are capturing images at slightly different rates and the laser marker is shifted rapidly. In this case, one camera may stream an image where the laser marker is in the top left corner of the image when the other camera streams an image where the marker is in the lower right corner. To handle this situation, the image processor will compare the row coordinates of the pixels that define the marker. If the row coordinates are within six pixels of each other, then we will keep the coordinates the image processor finds. If the row coordinates are not within this range, we will simply discard the coordinates. The reason we can do this is because on a theoretical level the cameras are mounted on a level plane so that the center of both cameras are on the same horizontal plane. In this case, the laser marker will appear at the same vertical position in both images.

There is another consistency issue: what if the laser marker is visible in the image from one camera but not visible in the image from the other camera? This condition will occur due to the limited viewing angles of the cameras. The marker can be placed such that camera 1 will see the marker, but camera 2 will not see it. To handle this situation, the image processor will not notify the data correlator that new data is available. Whenever the data correlator does not have new data available, the data correlator will not output anything. This is a reasonable solution and is within our operating parameters.

System Accuracy

The primary source of error comes from the low resolution of the cameras. A pixel is the map of a small area of light. As shown in Figure 12, an object far away can move a few inches and still map to the same pixel. The distance the object can move without this change in position being recognized is limited by the resolution of the cameras.

[image: image18.png]Pixel Variance versus Depth

Pixe!
~

Depth

Figure 12 – Pixel variance versus depth

Therefore the system has an inherent source of error. To address this, we limit the maximum distance an object can be from VISPS. In doing so we can reduce this systematic error.

Aside from systematic error, we argue that there is a loss of precision in carrying out the trigonometric calculations. To address this problem, we plan to emulate the floating-point operations on the Atmel (C. Using floating-point emulation we can maintain the required precision. The tradeoff for this is reduced throughput of the Atmel (C. In the next section we will argue that the loss of throughput will not affect the entire system.

So by limiting the distance between the marker and the cameras and by using floating-point emulation, we improve the accuracy of VISPS.

Rate of Data Collection Versus Data Output

In VISPS, we want to process every valid set of pixel coordinates from the image processor subsystem and generate the corresponding spatial coordinates. So the question we must answer is whether the rate of pixel coordinate generation from the image processor system is faster than the rate of output from the image processor. If the image processor system produces more valid pixel coordinates than we can handle, then the Atmel (C will not be able to keep up. This means we will lose pixel coordinates and not meet our goal. We argue that in the current state we will be able process all valid sets of pixel coordinates.

Currently the cameras are only capable of a 30 frames per second output. This means the camera will output a frame every 1/30th of a second. The image processor will then take each three consecutive frames and average the values and determine the pixel location of the marker. If there is no error, the fastest the image processor can produce a set of pixel coordinates is 1/10th of a second. If the Atmel (C runs at 24 MHz and pixel coordinates arrive every 1/10th of a second, this means Atmel (C has 2.4 million cycles to process the pixel coordinates. In 2.4 million cycles, we need to grab data from the image processor, process the data, and output the generated coordinates. We believe that even though we are doing floating-point emulation, we have enough cycles to complete the entire mathematical operations. In rough estimates, we believe the code will contain less than 400 lines of code. If every floating-point operation translates to about 50 integer instructions, 400 lines of code result in 2000 instructions in the worse case. If we need to execute 2000 instructions in 2.4 million cycles, the Atmel (C will have calculated and sent the spatial coordinates through the RS-232 output line before the next set of pixel coordinates arrive.

Using the estimate, we have shown that the Atmel (C will complete its computation before the next set of pixel coordinates arrive. Thus we can guarantee that we will be able to process every valid set of pixel coordinates.

TEST PLANS

As described in the project design section VISPS is broken into four subsystems: image capture, image processor, data correlation, and data presentation. To test VISPS, we will break it into similar boundaries.

Testing the Image Capture

The image capture subsystem’s purpose is to produce a digital image of the marker in an environment. The issue within this subsystem is to make sure that the marker is distinguishable in the image. To test this, we need to take the digital image data from the camera and display the image onto a monitor.

Currently in the lab, a pre-made board with an XS-4010XL FPGA takes the data from the camera and displays the image onto a monitor. Using this pre-made development board, we will be able to see whether the marker will be visible in the digital image that the camera generates.

Testing the Image Processor

From our design, the image processor only finds the marker in the digital images. To test this functionality, we will create a test environment in hardware where we will capture the marker’s pixel location and stream the location in binary format out of an available pin on the XS-4010XL board. Then we can monitor this signal using a logic analyzer and see the coordinates our hardware actually produces. By comparing the outputted coordinates with the image on the monitor, we can see if the generated coordinates are in close proximity to the marker on the monitor. To get a more precise measurement, we plan to take the pixel coordinates and place a colored pixel there. So when the image is displayed on the monitor, we can see if the colored pixel is at the marker’s location.

Testing the Data Correlator

The data correlator takes three pixel coordinates: two column indices corresponding to the marker’s location in each image and an average of the row indices from the two images. From these pixel coordinates, the data correlator will generate two azimuths and determine the coordinates. There are two sections to the data correlator that needs to be tested. First, we need to test the interface between the data correlator and the image processor. Second, the logic to calculate the coordinates needs to be verified.

To begin testing the data correlator, we use a PIC microcontroller (PIC) to simulate the image processor. The PIC will send mock data to the Atmel (C via the four-way handshake protocol. To test the four-way handshake protocol on the Atmel (C, we will make sure the Atmel can communicate with the PIC and receive the data. To guarantee the data is received correctly, we will output the data to a PC. We will use the Hyperterminal software in MS Windows to display the data to the screen and compare the output to the test data we use.

Once we verify the four-way handshake protocol, we will use the same test environment to test the logic for the coordinate calculations. We will have the Atmel (C ask the PIC for data through the four-way handshake protocol. The Atmel (C will then process the data and output a set of coordinates via the RS-232 protocol to a PC. We can then verify that the coordinates that the Atmel (C outputs are within reasonable error boundaries of the coordinates we calculate by hand.

Testing the Data Presentation

Currently there is no need to test this subsystem of the project. HyperTerminal will serve to take whatever data is transferred through the COM port onto the monitor. The Atmel (C will output the data continuously via RS-232 to the COM port.

DESIGN ISSUES

Understanding the details of the specifications for the parts we intend to use is the primary design issue we are currently facing. On a theoretical or logical level, almost all of the design issues have been worked out. However, over the last two weeks we have spent the majority of our time reading documentation on how to interface between the individual components: the cameras, the XS-40, and the Atmel (C. Three secondary issues also remain to be worked out regarding specific points of our overall design.

It is still a question how we plan to locate the laser marker in the visual data. Our original plan was to simply look for the brightest point in the pixel data and then use that as the location for our laser marker. After seeing the VGA display of the camera output we immediately realized that such a simple scheme would not work.

First of all, the images are speckled with noise that manifests itself as many points of saturation, or 100% brightness. This is a problem because no point is brighter than a point that is saturated in an image and there are many saturated points in every frame because of this noise. If the hardware simply looks for the brightest point, the pixel coordinates of the point is useless because it cannot tell whether the brightest point is the pixel representation of the laser marker or the result of the noise in the picture. To resolve this problem we plan to average intensity over three frames instead of using just one frame. Since saturated pixels from noise appear at random locations around a frame, averaging should reduce the intensity of the noisy pixels to below the intensity of the laser marker.

Also, we found that the cheap camera we are currently using saturates very easily. Any light source appears in the image as a region of saturation. In addition, every white surface reflecting a moderate light source appears as a region of saturation. Again, saturated regions in our image means that we will not be able to find the laser marker simply by looking for the brightest point in a single frame.

Lowering the exposure of the camera does help to reduce the noise (or randomly saturated pixels) in the image, although it also makes the laser marker hard to see. We hope that by using a much stronger laser and by reducing the camera exposure time, we can get a uniquely bright dot in the image. Our goal is to adjust the camera exposure time so that objects that are prone to reflect light do not cause saturation in the image data. However, lowering the exposure time to prevent undesired saturation does not work well since this requires a very low exposure time; at this level of exposure, even the laser marker is significantly dimmed in the image. Instead of finding a way to remove regions of saturation caused by light sources in the images, we will apply a usage constraint that requires VISPS to not have any substantial light source in its field of vision. In most indoor circumstances, we feel this constraint is reasonable.

Another design issue that we will be facing is the question of whether we will have enough pins on the XS-40 board to receive data from both of the cameras and interface with the Atmel microcontroller to output the angle data. The total number of pins for all these operations is 24. As we mentioned above, our understanding of the XS-40 board is not yet complete. One of the things we need to understand is how to use I/O pins on the board to which signal pads are normally mapped for other purposes. If it turns out that the board does not have enough unused pins to handle the interface of both cameras and of the Atmel (C, we will need to use one XS-40 for each camera.

We are still facing the question of how accurate our X, Y, Z coordinate outputs will be given that all of the components of our system work perfectly. There are several sources for the accumulation of significant random error in our system: because the output from one component is the input for the next, and the result of one computation is sometimes used in the computation of another value, these errors will be multiplicative. Multiplicative error across several stages will likely stack up to be quite significant, which means that our system as a whole will likely produce X, Y, Z coordinates that are not very accurate.
TECHNICAL REFERENCES

Atmel. (2000). AT89C55-33PC Datasheet. http://64.71.159.17/atmel/acrobat/doc1921.pdf.

CSE Department. (2000). Camera Proto-board Schematic.

PIC Microchip Technology Inc. (2000). PIC16C73B Datasheet. http://www.microchip.com/download/lit/pline/picmicro/families/16c7x/devices/16c73b/30605c.pdf.

Sci.Electronics. (2000). I2C FAQ. http://perso.club-internet.fr/mbouget/i2c-faq.html.

Spectronix. (2000). RoboCam II Digital Camera Module Datasheet. http://www.spectronix.net/pdfs/RoboCam5404A.pdf.

VLSI Vision. (2000). VV5404 Datasheet. http://www.vvl.co.uk/tech_support/docs/datasheets/404.htm.

Xess Corporation. (2000). XS40-010XL User Manual. http://www.xess.com/manuals/xs40-manual-v1_4.pdf.

Right Camera

Left Camera

_1049242764

_1049619660.unknown

_1049619846.unknown

_1049619805.unknown

_1049619573.unknown

_1049246490

_1049210659

_1049229832

_1049232510

_1049227202

_1049210643

