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Abstract

Our project, Laser Mouse, gives a user the ability to control a mouse on a projection screen, using a laser pointer.  It contains six major components:  a laser pointer, a projector, a projection screen, a CMOS video camera, a XESS XS40 Board (includes a Xilinx FPGA, a Atmel 8051 microcontroller and 256K RAM), and a personal computer or laptop.  The PC is connected to the projector, which displays the monitor screen on to the projection screen.  The camera will consistently monitor the projection screen for the laser pointer’s movement.  When movement from the laser pointer is detected, the FPGA will drive the mouse on the laptop, through the PS/2 mouse port.  

The Laser Mouse project will be useful in many situations.  For instance, professors and business professionals at seminars will now be able to control their presentation on the projection screen without being constrained by the location of the PC.  The laser pointer will also have an extra button which will allow the user to simulate a mouse click, thereby enabling remote interaction with programs running on their PC.  
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Introduction

The Laser Mouse project gives users the ability to run presentations simply using a laser pointer.  The basic project overview is given in Figure 1.  We begin by connecting a personal computer or laptop to a projector to display the laptop monitor on the projection screen.  In order to move the mouse on the actual laptop, we need to detect where the laser is pointing on the projection screen.  To accomplish this, we use a small CMOS camera (the RC-2 camera available in the hardware lab) to take consistent images of the projection screen.  The camera is connected to the FPGA on the XS40 board.  The FPGA project determines where the laser is located in the image.  The, the information is sent to the 8051 Atmel microcontroller through the Xbus interface designed in lecture.  The microcontroller performs some correlation and calculations and then puts the data into standard PS/2 protocol packets.  The microcontroller also recognizes mouse click input, through an external button press, and that data is added into the PS/2 packet.  Once the PS/2 packets are ready, the microcontroller sends the data across the standard PS/2 cable back to the laptop and the mouse arrow on the laptop monitor will move accordingly.
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Within the FPGA, there are six major components.  The Camera interface takes the image data from the CMOS RC-2 Camera and writes it to memory.  The Memory interface is responsible for allowing reading and writing to the 256K memory attached to the XS40 board.  As the Camera is writing data to memory, the LaserSpot module reads the data for a single image and finds the laser pointer, which is the brightest spot in the image.  It then sends the information to the SendData module which signals the microcontroller that data is ready to be sent across the Xbus interface.  The Xbus interface allows two way communication between the FPGA and the microcontroller.

There are two modules in the FPGA that are used for testing purposes.  The CrossHairs module reads an image from memory and draws cross hairs in the row and column in which the laser pointer was detected.  The VGA interface displays this modified image on the screen, which allows us to verify the LaserSpot module is functioning properly.  

The microcontroller contains three major components.  The Xbus interface monitors the FPGA to detect when new data is ready to be transmitted across the Xbus.  It then starts the receive process that correctly assembles the data into the X and Y coordinates of the laser point.  The correlation and calculation component maps camera pixels to laptop monitor pixels, determines the relative movement of the laser spot, and outputs relative X and Y coordinate information.  Finally, the PS/2 interface takes these coordinates, as well as button click information, and creates data packets to send to the laptop according to the standard PS/2 protocol.  Once these packets are received, the mouse cursor on the laptop monitor will move accordingly.  

Design Description

The laser mouse project includes many different components, including a CMOS RC-2 camera, 256k Memory, 24MHz Oscillator, FPGA, Atmel 8051 microcontroller, PS/2 cable, and a laser pointer.

Each of these components are interfaced through a Xilinx project for the FPGA and a Keil program for the microcontroller.  Each component is described below in detail and is referenced according to its location in our project (FPGA or Controller).  Please see the entire FPGA  Xilinx schematics included in Appendix B.  Also, the verilog code for each FPGA module is included in Appendix C.  And please refer to Appendix D for the  Keil program for the microcontroller.

FPGA Component: Camera Interface

The camera interface is implemented in the FPGA as the CameraIn module.  Please see Appendix B for its location in the schematics and Appendix C for the verilog code that is contained within the camera interface.

The purpose of the CameraIn module is to obtain pixel information directly from the CMOS camera and send the information to memory one pixel at a time.  The CameraIn schematic module is shown below in Figure 2.  This is the standard CameraIn interface that was distributed to the entire class.
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FPGA Component: Memory and VGA Monitor Interface

The memory interface (Mem2Port) and VGA monitor interfaces (BankSelect and VGAControl8) are implemented in the FPGA.  Please see Appendix B for their locations in the schematics and Appendix C for the verilog code that is contained within these modules.

The Memory, BankSelect, and VGA monitor interface components were part of the camera project that was originally distributed to the entire class.  Although we did not need the extra memory and we didn’t need to display to the VGA monitor, they were very valuable in debugging the LaserSpot module, which finds the laser point in the current image.  

The CrossHairs module was created to test the LaserSpot module.  This module takes data from the LaserSpot module and intercepts data being read from memory by the VGA monitor interface.  According to the image currently being displayed, this module will draw cross hairs up on the screen that contains the row and column of the laser point.  This allowed us to verify that the LaserSpot module was finding the actual laser point in each image.
These components are shown in the schematic modules in Figures 3-6.
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FPGA Component: LaserSpot Module

The LaserSpot module is implemented in the FPGA.  Please see Appendix B for its location in the schematics and Appendix C for the verilog code that is defines this module.

The LaserSpot module reads the data from the camera module as it is being written to memory.  For each image written to memory, this module finds the brightest three pixels in a row and this is considered to be the laser spot.  See Figure 7 below for the LaserSpot module schematic.
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The LaserSpot interface signals are as follows:

· Inputs:

· CLK 
– Common clock signal to synchronize every component

· RowAddr [7:0] 
– Row address being analyzed (written to memory)

· ColAddr [7:0] 
– Column address being analyzed (written to memory)

· PixelData [7:0] 
– Pixel data at RowAddr and ColAddr

· CameraBank [1:0] 
– Image that is currently being analyzed (and written to memory)

· MonitorBank [1:0] 
– Image information that is being sent to Controller (and monitor)

· Outputs:

· LaserPoint 
– Assert when a laser spot is detected in the image being sent to the Controller

· BrightRow [7:0] 
– Row with laser spot that is being read from memory

· BrightCol [7:0] 
– Column with laser spot that is being read from memory
The LaserSpot module determines the brightest spot in each image as it is being written to memory.  Then, the brightest spot information is saved until it can be sent to the controller through the Xbus interface.

The brightest spot in the image is defined as the brightest spot seen so far that also has a bright spot to it’s left and a bright spot to it’s right.  It has been determined (through testing) that on a 256 color intensity scale, a common red laser will have brightness that is greater than 253.  However, to allow for variations in laser pointers, the threshold brightness has been set to be 250.  Thus, the laser spot must be the brightest spot in the image seen so far and have a pixel to the immediate left that is greater than 250 and a pixel to the immediate right that is greater than 250 as well.  See Figure 8 below for a graphical representation of the brightest pixel in an image.
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This algorithm works as follows.  It maintains local variables to store data for the previous two pixels that were written to memory.  The sliding window of analysis includes the previous two pixels that are maintained in these local variables, and the current pixel being analyzed.  If all 3 pixels are greater than 250 and the middle pixel (Data0) is greater than the brightest pixel in the image, then the middle pixel is the new brightest pixel in this image.  The current row and (column-1) is stored in local variable to maintain the location of the brightest pixel in this image.  Also, the LaserPoint bit is asserted to show that the algorithm has found a laser spot in the current image (a valid bit).  Figure 9 below shows pseudo-code for the LaserSpot algorithm.
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[image: image29.png]
Note:
Although the camera image is 256x256, we effectively only have a 254x256 image size.  This is a direct result of needing three pixels in a row.  Thus, the leftmost column will not be analyzed because there is no pixel to it’s left (by definition).  And similarly, the rightmost column will not be analyzed either.  As a result, our effective range of the image is 254 columns and 256 rows.
FPGA Component: SendData and Xbus Modules

The SendData and Xbus modules are implemented in the FPGA.  Please see Appendix B for their locations in the schematics and Appendix C for the verilog code that is compose these modules.

The SendData module takes the bright pixel information obtained in the LaserSpot module and signals the microcontroller that new data is ready to send across the Xbus interface.  If the LaserSpot module did not detect a laser spot in the current image, then no data is sent across the Xbus.

[image: image30.png]The Xbus module provides the two way communication between the FPGA and the microcontroller.  This is the standard Xbus module that was designed in lecture and distributed to the entire class.  Please see Figure 10 for the schematic of the SendData and Xbus modules.
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Microcontroller Component: Xbus Interface

Please see Appendix G.  This interface was designed during lecture of the Spring 2000 session of CSE 477.  The documentation was written by Carl Ebeling. 

Microcontroller Component: Correlation Module

This module maps camera pixels to laptop monitor pixels.  Please see Appendix D for the code for this module.   

The Correlation Module polls a register in the FPGA to determine when the FPGA is ready to send it data over the Xbus interface.  Once it receives the signal, it performs a read on the data register in the FPGA where the X and Y coordinate data is waiting.  The data comes over the Xbus in 4 bit slices, but the Xbus interface puts the slices back together for the correlation module.  

Once the correlation module has both X and Y data in camera pixels, it maps this data to X and Y pixels in laptop monitor pixels.  Currently, it does this by straight multiplication, on the assumption the laptop resolution is 1280 x 1024.  Because the camera has a 256 x 256 resolution, this translates into approximately 5 camera pixels by 4 camera pixels per laptop pixel.  We multiply the X and Y data by these ratios respectively, to obtain laptop monitor pixels.  

Microcontroller Component: Calculation Module

The calculation module determines the relative movement of the mouse from one camera frame to the next, and sends these relative X and Y coordinates to the PS/2 Protocol module.  Please see Appendix D for the code for this module.  Please see figure 11 below, for a graphical representation of the relative movement algorithm contained in this module.
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The calculation module takes the X and Y coordinate information from the Correlation module as input.  To be able to determine relative movement, it must remember the mouse location of the previous camera frame (referred to as Xold and Yold).  The module compares the new X and Y coordinate information with Xold and Yold through subtraction to determine integer values of relative X and Y coordinates.  It then calls a function that compares the signs of these values to determine the direction of movement.  This is encoded in a sign bit according to the 4 quadrants of the X-Y plane, which along with the X and Y coordinate information, is then passed to the PS/2 Protocol.

Microcontroller Component: PS/2 Protocol

This module gets relative movement coordinates after correlation and calculations and sends the information back to the computer using standard PS/2 mouse protocol.

To send the relative mouse coordinates, packets into three data streams, to the PC through PS/2 cable.  After each sending, signal the correlation component that it is ready for new data.

System/Mouse dialog.

System mouse driver must dialogue with the Mouse to initialize and enable its data transmission. The minimal data exchange is as follows: (many other commands, exception handling and responses are available): 

System:(driver): - F6h - set default - sampling rate of 100/s, linear scaling, stream mode, 4 counts /mm resolution and disabled. 

Mouse - FAh - ACKnowledge 

System - F4 - Enable transmission 

Mouse -FAh - ACK 

Mouse - send 3 byte data streams as per mouse movement/buttons 

Communication protocol (active = high, inactive = low)

Communication between the mouse and the system driver is bi-directional using the clock and data signal lines. The signal for each of these lines comes from an open collector device allowing either the Mouse or the system to force a line to the inactive level. During a non-transmission state, CLK a DATA are both held at an active level.

During a data transmission, CLK is used to clock serial data. The Mouse generates the clocking signal WHEN SENDING DATA THE SYSTEM. The system requests the Mouse to receive system data output by forcing the DATA line to an inactive level and allowing CLK to go to an active level.
Data Format

PS2 ports use synchronous serial signals to communicate between the mouse to the computer. Data transmission from the mouse to the computer is done, as in figure 1, each clock period is usually between 70 to 150 microseconds (10 to 25microseconds for transitions and 30 to 50 microseconds for high or low state.  The data line transition is made on the falling edge of the clock signal and is usually sampled when the clock is low. Each data packet is composed of 11 bits, 1 start bit (which is low), 8 data bits, 1 odd parity bit and 1 stop bit (high).
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When the PS2 mouse sends it's information it must send 3 consecutive data packets in a row. Each packet sent has different information for button pressed movement and direction of movement. The table below shows what information is sent in each packet. 

	
	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	1st
	YV
	XV
	YS
	XS
	1
	0
	R
	L

	2nd
	X7
	X6
	X5
	X4
	X3
	X2
	X1
	X0

	3rd
	Y7
	Y6
	Y5
	Y4
	Y3
	Y2
	Y1
	Y0


	L
	Left Button State (1 = pressed down)

	R
	Right Button State (1 = pressed down)

	X0-X7
	Movement in the X direction

	Y0-Y7
	Movement in the Y direction

	XS
	Direction of the movement in the X axis (1 = UP)

	YS
	Direction of the movement in the Y axis (1 = LEFT)

	XV, YV
	Overflow of the movement data bits (1 = overflow has occurred)



[image: image2.png]The X and Y direction bits send the number of bits you moved since the last time this information was sent, the actual direction of the movement is sent in the XS and Y bits. If the movement of the mouse was higher than 255 data displacements since the information was last sent the overflow bit will go to one and will reset back to 0 as soon as the current data is sent. The way the driver handles overflow can change from one mouse driver to another, some may move the pointer 256 data bits and some may even decide to leave the pointer where it is! 

PS/2 Mouse adapter.
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	Pin no
	SIGNAL NAME

	1
	Data

	2
	Reserved

	3
	Ground

	4
	+ 5 Volts

	5
	Clock

	6
	Reserved


Data [image: image4.png] [image: image5.png]
Mouse data packets or keyboard scan codes are sent from the mouse or keyboard to the computer on this single wire serially. 

Clock [image: image6.png] [image: image7.png]
This signal is sent from the mouse or keyboard to synchronies the data signal. 

+5 Vdc [image: image8.png] [image: image9.png]
This is a simple 5 volts signal for giving power to the mouse or keyboard. 

Ground - 
This is a common ground signal used as a return path for data and is a reference to logical 0.
[image: image10.png]
Commentary and Retrospective

Over the past eight weeks of Spring Quarter 2000, we’ve spent countless hours in the hardware lab.  As with most students in the class, this is our home away from home.  However, we didn’t just spend lots of time here, we learned quite a bit about developing large projects in a short amount of time.  

We’d like to take this time to recognize those people who were instrumental in helping us this past quarter.  

First and most importantly, Carl Ebeling.  Without his guidance, we would not have been able to surmount the obstacles that we faced throughout the quarter. Thanks for meeting us many times and being in the lab working with us late into the night.

Chris Morgan helped us a lot, especially at the beginning of the quarter.  He helped us get our board ready for the camera project and adding new memory.  He also allowed us to switch XS-40 boards many times, when we thought ours wasn’t working anymore.

Final Status

All of our components work individually.  Currently, the project is divided into two halves:  the FPGA components and the microcontroller components.  Both halves work individually, and all components within the two halves work together nicely.  However, the halves will not currently talk to each other, as we appear to be having issues with the PS/2 Protocol module on the old XS40 board, where the camera lives. 

We’re still working on fixing this issue.

What We Learned

We have learned many things while doing this project, of both a technical and non-technical nature.  On the technical side, we played with, screamed at, laughed at, and eventually learned:  all about the RC-2 Camera and its interface, how to read from and write to external memory on the XS40 board, how to send images to the VGA monitor, how to communicate between the FPGA and the microcontroller, how to do pixel and mouse movement correlation in hardware that is normally done in a software driver, and how to use the PS/2 protocol to communicate between our microcontroller and the laptop.  

On the non-technical side of our project we learned how to present our ideas through both documentation and presentation.  While writing project updates, status documents, project reports, figuring out schedules, and developing the rest of our web page, we have learned how to put our thoughts, ideas, and plans into tangible documentation.  In addition, we learned that reporting our progress regularly is quite a motivation to make progress on our project.  From class presentations, we learned how to creatively present our ideas to the audience, and got over our fears of talking in front of others.

We learned many other things as well.  Below is a randomly ordered list of some of them.

· We learned that you could never predict what is going to be difficult

· We learned how difficult hardware is to work with. Hardware never quite seems to work just how you want it to.

· Hardware is much different than software.
· If you think it’s gonna work this time, it won’t.  If you think it won’t work this time, it still won’t.
· Google is our newest ‘favoritest’ search engine (it was invaluable in finding good information on the internet for the PS/2 protocol).
Some other notes about our project

The success of our project lied in a few key areas. One of the things that we did well was to divide the work evenly between the three group members. Rebekah constructed the hardware interface; Anita and Anh developed the software side. At any point during this project, all members were fully aware of what the other members were doing and how they did it. Furthermore, we learned that the first idea for a project is not always the best or easiest to implement. Initially, we wanted to use Windows driver to do correlation and calculations, but that idea was shutdown due to time constraints and complexity level. Likewise, the hardware solution was easier to implement. Overall, the group dynamics were very good, and our planning and coordination efforts helped our project a lot.   

Basically everything in this project was new to us.  The camera interface and writing to memory was new.  Reading from memory and sending to the VGA monitor was new, but we did cover this in a lab.  Communication from the FPGA to the microcontroller through the Xbus interface was new and developed in class.  Writing a calibration program to correlate camera pixels to monitor pixels was new.  And the PS/2 protocol was definitely new to all of us.

Our Advice to Anyone Who Wants to Listen

We’ve included another collection of random thoughts that will help future CSE 477 students get through their projects more easily.  Trust us, we’ve learned these the hard way.  

· Read Murphy’s Law.  Understand it’s infinite wisdom.
· As Carl so correctly stated: What we thought would be hard was easy and what we thought would be easy was really hard.

· Consider doing a project that has components you’ve covered in other classes or in the lab.  Most everything in our project was new to us, especially the Windows mouse driver effort, and the PS/2 protocol (which took a long time to figure out).
· When developing a schedule for your project, immediately double the allocated time for integration.  It always takes longer than expected.

What We Would Have Done Differently

Knowing what we know now, there are a few things we would have liked to have the chance to do differently.  We have included a couple of the big ones below.  

We would have spent less time on NT Mouse Driver, which would have left more time and resources for integration.  

We would also have not assumed anything, or jumped to conclusions without good evidence. Our initial design used old board without having the PS/2 port connected.   So we switched to the new board with PS/2 port on board for convenient.  We thought it would work fine on the other board if needed.  After implementing our PS/2 code, we discovered our implementation should be run on the old board, but it turned out it couldn’t for some reasons.  By the time, we figured it out, it was too late. If our initial design had been researched thoroughly, we could have made it work.

We would have developed FPGA and MicroController components using the same version board (to reduce the possibility of integration problems at the end).

We should have thought about integration earlier and planned for more integration time.  This includes figuring out board real estate earlier.  Determine what pins are used and which are free, how much space is used in the FPGA, etc.

Future Improvements to Laser Mouse

This section contains one more list of improvements we’d like to see to Laser Mouse in the future.  If any future CSE 477 group would like to implement any of these ideas, let us know! We can probably help out a bit.

· The camera image is currently 256x256.  It can be enlarged to the maximum size of 356x292

· Perform a more sophisticated algorithm to find the laser point

· NT Mouse Driver to perform pixel mapping and correlation

· Implement the ping between the mouse and the PC

· Wireless mouse click

· Standard left and right mouse click

· Design a laser pointer that is more user-friendly for presentation purposes (so you don’t have to try to press two buttons with one hand)

· Add laser mouse functionality to include a graffiti style handwriting program that allows presenters to annotate their presentation in real time.

Contact Information

Please feel free to contact any of us if you have any questions, or would like to extend our project.  We’d be happy to talk about it!

Anita Phillips

anita@cs.washington.edu

Anh Ton

anhton@cs.washington.edu

Rebekah Henkel

henkel@u.washington.edu
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Appendix E - Operating and Testing Instructions

Operating Instructions

Given a breadboard, XESS XS40 board, Xilinx FPGA, Atmel 8051 Microcontroller, and RoboCam RC2 Camera, fully wired together according to project specs, follow the instructions below to set up the Laser Mouse project.  You will also need a separate XS40 configuration board, wired for RC2 camera configuration.

Setup Instructions
1. Attach config board to main project board

a. Wire config GND to main GND.

b. Wire config SCL to main SCL signal.

c. Wire config SDA to main SDA signal.

2. Program Atmel Microcontroller

a. Copy ledreg.hex file (located in Appendix D) onto a 3.5” floppy disk.

b. Take floppy and Atmel Microcontroller to 2900 Data IO Chip Programmer (located in Sieg 327)

c. Follow Chip Programmer Instructions to program Atmel chip with ledreg.hex.

d. Re-insert Atmel Microcontroller in main XS40 board.

3. Power up boards

a. Connect the XS40 power supply to the main board and a wall socket, to power the main XS40 board.

b. Connect the XS40 power supply to the config board and a wall socket, to power the config XS40 board.

c. Connect the main breadboard power supply to the board and a wall socket, to power the breadboard and RC2 Camera.

d. Push the switch on the main board until LED turns off (approximately 15 times).  This will reset the microcontroller.

4. Configure Camera

a. Connect a parallel port cable from the config XS40 board to a PC with Xilinx FPGA tools.

b. Open a DOS prompt.

c. Load the camera configuration program by entering the following command at the DOS prompt:

· XSLOAD camconf.bit

d. Configure the camera by entering the following commands at the DOS prompt:

· Config –w 10 08

· Config –w 11 02

· Config –w 14 4C

e. Disconnect the XS40 power supply from the config board.

f. Disconnect the SDA and SCL signals from the main board.

g. Disconnect the parallel port from the config board.

h. Disconnect GND that connected the config board to the main board.

5. Configure Main Board

a. Connect the parallel port cable to the main XS40 board.

b. Load the main board configuration program by entering the following command at the DOS prompt:

· XSLOAD vgacam.bit

c. Reset the system by entering the following command at the DOS prompt:

· XSPORT 1

d. Unplug the parallel port cable from the main XS40 board.

e. Plug VGA monitor into main XS40 board VGA port.

f. Turn on the VGA monitor.

g. Unplug the mouse from the back of the PC.

h. Plug the Laser Mouse PS/2 connector into the back of the PC.

i. Start the Laser Mouse tracking by entering the following command at the DOS prompt:

· XSPORT 0

Operating Instructions
1. Connect and setup laptop and projector.

2. Place the Camera where it can view the laptop monitor projection.

3. Run the Laser Mouse Calibration program from the laptop.

4. Use the laser pointer to point to the projected top left corner of the Calibration Screen.

5. Click the Button on the main XS40 board.

6. Use the laser pointer to point to the projected bottom right corner of the Calibration Screen.

7. Click the Button on the main XS40 board.

8. Close the Laser Mouse Calibration program on the laptop.

9. Use the laser pointer to point to the projected screen to move the mouse as desired.

Testing Instructions

Testing of the camera was mostly done through the attached VGA monitor.  This tests the functionality of the camera as well as functionality of the FPGA.  The image shown on the VGA monitor is a color mapped image of what the camera is seeing.  All you see is what the FPGA detects as the brightest spot (the laser pointer).  We show that we are tracking the bright spot correctly by adding crosshairs at the X and Y coordinates of the detected bright spot.  This ‘tracks’ the brightest spot.

Testing of the Microcontroller programs and the PS/2 protocol were done by first using the simulation program in the Keil C compiler to verify values were as expected.  We then wrote a test program to feed values (which would normally come from the camera) into the microcontroller code to move the mouse in a diamond shape.  We then hooked the Laser Mouse PS/2 cable to a computer, to verify the mouse moved on the PC monitor.

To then test the complete system, we integrated the microcontroller and PS/2 portions with the camera and FPGA portions.  Once set up, we could test our complete system by verifying our mouse would move by moving the laser pointer.
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Appendix F – Information Sources

Internet Sources

Mouse hardware information at http://www.hut.fi/~then/mytexts/mouse.html
PS/2 Device Description http://www.smsc.com/main/appnotes/an619.html
Mouse Protocol http://govschl.ndsu.nodak.edu/~achapwes/PICmicro/PS2/ps2.htm
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Appendix G – Xbus Interface Specification

Written by Carl Ebeling
FPGA Component: Camera Interface

Component: Xbus
Description: Stream interface between Microcontroller and Xilinx chip for the XS40 board

[image: image11.png]
Bus Interface Signals:

STROBE
- “Clock”, generated by controller 

Com[1:0]
– Command indicates type of transfer 
Data[3:0]
- Data transferred on the bus

(refer to the ucf file to see which pins correspond to the signals)

FPGA Interface Signals:

    Inputs

ReadData[7:0]
- Data returned to the microcontroller
Busy

- Assert to hold up Read/Write

     Outputs

Address[15:0]
- Address
WriteData[7:0]
– Data written by the microcontroller
Read
- Asserted for a read request (1 cycle)
Write
- Asserted for a write request (1 cycle)

Operation:

This interface allows the microcontroller to write and read data to/from the FPGA.  The microcontroller is always the bus master.  If the FPGA needs attention, then it would have to use an interrupt to cause the microcontroller to wake up and do something.  (This interrupt is not part of the Xbus interface.)  Each read/write transaction uses 16 bits of address and 8 bits of data.  The address can be used in the FPGA to reference memory and registers.  The default is to map the low 32K bytes of the address space to memory and the upper 32K bytes to user registers.

Since there are a limited number of pins, only 4 bits of address/data are transferred at a time, and several transfers on the data bus are needed to perform a single write or read transaction to the FPGA.  It takes 4 transfers to send a 16 bit address on the bus and 2 transfers to send a byte of data.  The interface collects the address and data from the controller and then it executes a single read or write transaction to the FPGA.  Data can be read/written to consecutive addresses by sending the first address and then using an implicit auto-increment to generate the remaining addresses.(The auto-increment feature is not tested but  should work).

A transfer on the bus is indicated by a rising edge on the STROBE signal.  That is, a rising edge on STROBE indicates a bus transfer. The controller indicates the type of transfer using the COM signals as follows:

00 – NOP.  
01 – Part of the address is being sent.
11 – A Read is being performed.

10 – A Write is a being performed.

The timing diagram above shows how transactions take place on the bus.  The top part shows a write followed by a read using six cycles each.  In the case of a read, the controller must tristate the data bus when issuing the read command.  The FPGA drives the data bus when it sees the Read command and tristates it for all other commands.  Note that for this interface, the microcontroller is the master and the FPGA is the slave.

The lower part shows consecutive writes to sequential addresses.  Each write (or read) without a new address causes the address to be auto-incremented in the FPGA interface.  This allows consecutive reads and writes to be done much more quickly.

The FPGA runs much faster than the microcontroller, but it may still have to stall the microcontroller if a read or write to memory is done and the memory is busy, e.g. doing reads for the VGA interface.  The FPGA causes the microcontroller to wait by pulling down on the STROBE signal, releasing it only when it is ready.  The microcontroller tests the STROBE after it asserts it when reading and writing, and waits if it sees it is pulled low.

The Xbus interface in the FPGA collects the address and issues reads and writes using the Read and Write signals.  If the user cannot perform the read or write because the memory is busy, then the Busy signal must be asserted until the read or write can be done. If the user circuit cannot perform the read or write when the strobe is asserted, then it must assert the Busy signal, and continue asserting it until the read or write has completed.  For writes, the Busy signal should be reset when the data is written.  For reads, the Busy signal can be reset the cycle before the read data is ready.  The interface drives the bus as long as Write is asserted and tristates it otherwise.

For reads, the interface sends the data returned on the data bus to the microcontroller.  Since a read can take a long time, the interface pulls STROBE low until the data is ready.  The microcontroller must wait until STROBE rises before reading the data on the data bus.  Writes can also take a long time, and thus STROBE must be checked after a Write before another transaction is started.  Note that STROBE is pulled low on the first Read cycle and on the second Write cycle.  This is because in case of write the interface needs to get the full data before performing the write operation to the memory whereas in case of read it has to provide the microcontroller the first nibble during the first cycle and hence has to remain in the first cycle until it retrieves the data from the address. In each case the microcontroller must wait for STROBE to go high before proceeding with the next bus transfer.

IMPORTANT:

DO NOT FORGET TO USE PULL UP 1K-PULLUP RESISTORS FOR DATA LINES AND FOR STROBE SIGNAL WHILE USING THE INTERFACE. 

Notes:

1. STROBE is pulled low until the memory has been able to do the write

2. STROBE is pulled low until the memory has been able to do the read

3. When the Read command is asserted, the controller stops driving the bus and the FPGA starts driving the bus.  The read data is not available until after STROBE goes high. 
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Figure 10.  SendData and Xbus Schematic Interfaces that send laser spot coordinates from the FPGA to the microcontroller.





For each image being read from memory:

    if (beginning of image) {

	Reset output data for this image:  BrightRow = 0, BrightCol = 0, LaserPoint = 0

	Reset previous two pixel data information:  Data0 = 0, Data1 = 0

	Reset brightest pixel data for this image:  BrightestPixelData = 0

    }

    else {

	Shift data into previous pixel temp variables*:  Data0 <= CurrentData, Data1 <= Data0

	   * This will shift the data for the next pixel we analyze (not the current pixel) because we use non-blocking

      assignment statements

	if (beginning of a row) {

		reset data for previous pixels:  Data0 = 0, Data1 = 0

	}

	if(  (Data0 > 250) & (Data1 > 250) & (CurrentData > 250) & (Data0 > BrightestPixelData) ) {

		Save current row and column information:  Row = CurrentRow, Col = (CurrentCol – 1)

		Save current BrightestPixelData:  BrightestPixelData = Data0

		Assert LaserPoint bit to show that we’ve found a laser spot in this image:  LaserPoint = 1

	}

    }



Figure 8: How the brightest pixel in each image is found.



Figure 9.  Pseudo-code for finding the laser point in an image.



Figure 1.  Laser Mouse Project Overview.



Figure 12.  Data transmission for a single PS/2 Packet.



Figure 2.  CameraIn Schematic Interface.



Figure 5.  VGAControl8 Schematic Interface that writes data to the VGA monitor for testing purposes.



Figure 4.  BankSelect Schematic Interface that keeps track of the memory bank the camera is writing to and the memory bank the VGA is reading from. 



Figure 3.  Mem2Port Schematic Interface that uses 256K memory added to the XS40 board.



Figure 6.  CrossHairs Schematic Interface that writes cross hairs on the image being displayed on the VGA (for testing purposes).



Figure 7.  LaserSpot Schematic Interface that finds the laser point in the current image, if there is one.
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Figure 11.  Algorithm to determine relative mouse movement.
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