PAGE
5
Old Flock Specification, for revision for CREATURES

NOTE: Not all of the creature implementations need to be the same. The implementations must only meet the specifications outlined. Differences in creature behavior will not be penalized as long as the behavior is within the specifications contained in this document.
Flock Algorithm:

Within a single "creature", the crowd algorithm that you will implement is as follows:

	A)
	INITIALIZATION STATE: (only used when creature is first turned on)

set gNum = Local # % 16

Wait to receive a packet of type AdjustGlobals then go to C
(optional: accept PlaySoundN, just keep the gNum = Local # % 16 instead of a random sound)

	B)
	WAIT STATE

Wait to receive a packet of type AdjustGlobals or PlaySoundN

IF(AdjustGlobals)
set gNum = random sound
On AdjustGlobals go to C

	IF(PlaySoundN)
set gNum = received in message

On PlaySoundN go to D

	C)
	CLEAR STATE

With radio off, clear FIFO data (all historical data)

Wait for random amount of time (1000- 4000 milliseconds)

	D)
	PLAY STATE

With radio off, play gesture(gNum),

If got to PLAY STATE from a PlaySoundN packet goto WAIT STATE after sending a PlayedSound message

	E)
	Start the radio and set listen timer for random(minListen, maxListen) milliseconds. Goto F (unless silent).
Do not wait for listen timer to complete (done in state G.)

	F)
	Set a timer for minListen/2 milliseconds for sending a "I played sound" message when timer fired

	G)
	When listen timer runs out, decide next gNum (see below for algorithm. You need to follow the
specified algorithm)

	H)
	Repeat steps D through H.

Some Implementation Details:
Each of your creature’s Node ID (LOCAL_ADDRESS) will be your (Kit Number*2)-1 or (Kit Number*2).

The first item in the data/payload section of a crowd message is the address of the sender. There are two designators for the sender address in the message specifications: “Node0” and “TransmittingNodeNum”. The “Node0” designator is used to signify that a packet should only be processed if it was sent from the root node (address == 0). The “TransmittingNodeNum” designator signifies that packets should be accepted from any source.

There are 5 types of Active Messages your program must handle; they are as follows:

	AM #
	Flock Message / Packet

	50
	AdjustGlobals - A message from Node 0 containing global parameters for all creatures.

uint16_t

Node0

uint16_t

Repetition

default 3

uint16_t

minListen

default 2000 millisec.

uint16_t

maxListen

default 15000 millisec.

uint16_t

Threshold

default 600

uint16_t

minThreshold

default 100

uint16_t

Probability

default 10

uint16_t

Silence

default 10

uint16_t

TransmitPower

default 1

uint16_t

StartledHopCount

default 1

	51
	StopandListen - A message from Node 0 telling you to stop and listen.

uint16_t

Node0

On receipt, go to B

	42
	PlayedSound - The "I played sound" message; a message from some other creature indicating what
sound it played.
 You also send this packet after playing.
Notes:

1) If you are sending this after a packet 52 PlaySoundN, set all data = 0 except your node num
and gNum.
2) The contents of a PlayedSound packet should be calculated when the sound decision
is made right before playing, NOT when the packet is sent.

uint16_t

TransmittingNodeNum

local # of node playing
uint16_t

SequenceNum

start at 1, increment each time you send this packet

uint16_t

gNum

sound# that was sung

uint16_t

soundWeight

usually same as Weightmax

uint16_t

WeightmaxGNum

uint16_t

Weightmax

uint16_t

TopSound2Num

uint16_t

TopSound2Weight

runner-up weight

uint16_t

WeightminGNum

uint16_t

Weightmin

uint16_t

TopNodeNum

Strongest node you've heard

uint16_t

TopNodeStrength

Highest RSSI

	52
	PlaySoundN - A message from Node 0 telling you to play sound N immediately. Then Go To B

uint16_t

Node0

PlaySoundN immediately, then

uint16_t

PlaySoundN

send PlayedSound AM 42, then Go To B

	60
	Startled - a message from some other creature indicating that they have been startled. Stop what you
are doing and play your startled message. After the startled message you should just continue
the algorithm.
Do NOT send a PlayedSound packet for the startle sound. Instead send the startled message.
Remember to decrement the HopCount when you send the message.

On reception, If (HopCount > 0) process message

 Else ignore message

uint16_t

TransmittingNodeNum

local # of startled node

uint16_t

HopCount

Number of hops remaining. If startled by radio message. Decrement value before sending.

uint16_t

StartledSeqNum

A randomly generated number that is stored to check to see if you have been startled by this startle packet before

While listening, collect the information on the surrounding sounds being played (AM #42 type packets) in a 64-entry circular FIFO queue. Each queue entry should contain the following information:

	
	Uint16_t
	TransmittingNodeNum

	
	Uint16_t
	gNum

	
	Uint16_t
	RSSI

Each entry writes over the oldest entry in the queue.

RSSI = rf69.lastRssi();

The algorithm for deciding the sound to play is as follows:

For all entries in our circular FIFO queue that stores the sounds heard(up to 64 entries)
{
 // calculate weighti for gNum i == 0 to 15
 Weighti = sum of RSSI in circular FIFO queue for each gNum
}
Find Weightmax == Largest Weight; Weightmax gNum is sound with Weightmax
Find Weightmin == Smallest Weight (>0); Weightmin gNum is sound with Weightmin

x = rand() % Probability
y = rand() % Silence

if (x == 0) SOUND = Weightmin gNum
else if (y == 0) Silence… Don't play a sound-- go to E. Skip F.
else {
 if ((Weightmax < minThreshold) ||
 ((Weightmax > Threshold) &&
 (You have already sung Weightmax gNum more than Repetition times)))
 gNum = random sound not among the last three sounds
 you've sung more than Repetition times
 else
 gNum = WeightmaxGNum
}

Method for determining when to startle a creature:

Use the PIR sensor to trigger the creature being startled by detecting motion. A startle should be triggered when the when the motion is detected (0 to 1 transition), not when it ends. A state machine should be used to ensure there are no repeated startles until the 0 state has been sensed. If a startle occurs go immediately to PLAY_STATE and play the startled sound. After you finish playing the startled sound then send a startled packet and return to the normal play and listen, steps D through F. You do not send a PlayedSound packet for a startle.

The startle detection mechanism should only detect one startle for a single movement. We want to avoid two startles being caused by the same movement. For example if someone puts their hand over the creature an edge transition will be detected as the light level is reduced (the creature becomes startled) and as the person takes his hand away the light level increases causing a second edge detection (second startle event). A person walking by a creature obscuring the light should also only cause one startle sound to be played. You will need to come up with a solution to this problem so the creature is only startled once. You will need to keep the startle mechanism working the same so that the creature can still be startled by quickly increasing or decreasing the light level.
If you creature receives the startled packet then your creature should check to see if 1) (HopCount > 0) and 2) (StartledSeqNum != previousStartledSeqNuM). Basically check if your creature has already been startled by this startled sequence so that a creature is not continually startled by the same initial startle. If these two checks are true, then your creature should become startled. After you finish singing the startled sound, decrement the HopCount, store the startledSeqNum, and send a startled packet if HopCount is > 0, then return to the normal play and listen, steps D through F.

Method for causing sounds to diverge:
We want to make sure our Crowd algorithm is not dominated by a single sound. Basically, we want to keep track of the sounds that have been popular so that we can force the crowd to move to another sound. The “Threshold” and “Repetition” values are meant to ensure that sounds are allowed to propagate through the crowd, but then die off after a while. This growth and die off is accomplished by limiting the number of sound repetitions once the “Threshold” is reached. The repetition count allows a strong sound to propagate to a large number of nodes, but then once a sound has played for a while, it should die off.

You will need to create a FIFO list of 3 sounds that will basically act as a do-not play list. You will increment the count on this list each time a sound is sung that has a weight greater than the threshold (i.e. Weightmax > Threshold) Once the creature has sung a sound over the “Threshold” value “Repetition” times you should pick a new sound. Basically, if weightMax is above the “Threshold” value and the sound has been sung greater than Repetitions, you should play a random sound not on your last three Repetitions list. (NOTE: The entire list is reset in state C.) Once a new sound is above the Threshold repetitions times it will push the oldest sound off the do-not-play list. You will cycle through other sounds, until something changes. You can always play something, because you track only the last three sounds sung greater than Repetition times that means there are thirteen sounds not on that list.
The count of the number of times you've sung a sound should be incremented only when you play the weightMax sound and the weight of that sound is above the threshold value. This count is what you'll compare against Repetition to determine whether or not the sound can no longer be sung. If the sound count is greater than “Repetition” then you should no longer play the sound and should NOT choose that sound when choosing a random sound. The do-not-play list causes the strongest current sounds to die off.

