YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Lecture 5: Hardware & Machine Organization

Vikram lyer

Adapted from material by Blake Hannaford and Justin Hsia

YA/ UNIVERSITY of WASHINGTON

CSE/ECE 474, Spring 2024

Administrative

April
Monday | Tuesday Wednesday Thursday Friday
9:30-11:30 OH (Deeksha) 08 © 13:00-15:00 OH (Zach) 09 = 9:30-11:30 OH (Deeksha) 10 | 10:00-12:00 OH (Zach) 11| 12:30-14:20 Lecture 12
ECE 345 ECE 345 ECE 345 ECE 345 MOR 230
Lecture 6: Working with Registers and IMU Demo
11:30-13:30 OH (Alex) 12:30-14:20 Lecture 12:30-14:30 OH (Alex)
ECE 345 MOR 230 ECE 345 14:00-15:00 OH (Vikram)
Lecture 5: Hardware and Machine Organization ECE 345
ECE 345
9:30-11:30 OH (Deeksha) 15 | 13:00-15:00 OH (Zach) 16 | 9:30-11:30 OH (Deeksha) 17§ 10:00-12:00 OH (zach) 18 §12:30-1420 Lecture 19
ECE 345 ECE 345 ECE 345 ECE 345 MOR 230
Lecture 7: ATMega 2560 Datasheet and Timers
11:30-13:30 OH (Alex) 12:00-13:00 Remote OH (Vikram) 12:30-14:30 OH (Alex)
ECE 345 Zoom ECE 345 14:00-15:00 OH (Vikram)
ECE 345
23:59 Lab 1due
9:30-11:30 OH (Deeksha) 22 | 13:00-15:00 OH (Zach) 23 | 9:30-11:30 OH (Deeksha) 24 | 10:00-12:00 OH (Zach) 25 | 12:30-14:20 Lecture 26
ECE 345 ECE 345 ECE 345 ECE 345 MOR 230
Lecture 9: Tasks, Threads, Scheduling |,
11:30-13:30 OH (Alex) 12:30-14:20 Lecture 12:30-14:30 OH (Alex)
Interrupts
ECE 345 MOR 230 ECE 345
Lecture 8: Reading Analog Data and Intro to 3 14:00-15:00 OH (Vikram)
14:00-15:00 OH (Vikram)
ECE 345

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

CSE/ECE 474 C-Programming Assignment 2:

C Programming with bit manipulation and structs
Updated: April 8, 2024

In this assignment we will learn how to inspect and modify individual bits in memory. Remember that
everything in computers is represented by just a series of 0’s and 1’s. This means that the software has to
remember how each part of memory is converted from 0’s and 1’s to something else. Here’s a simple
example: Suppose the memory location 0XAFF5C3 contains the following:

0xAFF5C3 —

010 (1101 O]|1([O

We will focus on the exact bits in memory and the powerful (but yes, low-level) C-functions which allow
you to work with them. This 8-bit segment of memory could be a uint8 t type (an 8-bit integer
between 0-255). In that case, 00101010 equates to 2+8+32 = 42. However, if it is a char (character), the
same pattern of 00101010 equates to “*’ (the asterisk character).

Working with bits is important because hardware control bits need to be set or cleared in order to control a
computer chips. You could turn on or off on-chip peripheral devices to save battery life for example.

Instructions
This 1s an individual assignment

We have provided template C files, c_prog2.c and ¢_prog2.h which contain comments indicating
where to put each part of your code as well as directions and sample outputs. These are the two files you
will turn in on canvas. In addition to this we have provided the file ¢_prog2 arduino.ino contains
a set of function calls in the setup () function that will run your code. A sample output is provided in
sample output. txt.

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Lab Assignment 1 CSE474 Spring 2024

Prof. Vikram lyer’ University of Washington

Getting Started with the Arduino Mega

Learning Objectives

With successful completion of this lab, the
student will be able to
e Install and set up Arduino IDE
e Build and run a basic sketch (program)
using the Arduino Libraries
e Modify and demonstrate blinking light
code and speaker output tone.
e Learn to use an oscilloscope for
debugging

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Lab Overview and Policies CSE/ECE 474

University of Washington 27-Mar-2024
Spring 2024

Vikram lyer®

Alex Ching
Zachary Englhardt
Deeksha Prabhu

Introduction to the Labs

The Lab assignments are (see 474 main spreadsheet for links):
Lab 1 Getting Started with the Arduino Mega

Lab 2 Digital I/0 and timing of outputs

Lab 3 Round Robin Scheduling and multitasking

Lab 4 FreeRTOS and Project

This document contains general advice and policy for the labs.

LAB ASSIGNMENTS

The lab projects are a significant part of your grade in the course. Each lab builds on the
previous lab, so it's important that you keep up with assignments and also ensure that your
designs are robust and well tested.

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Lab report template

[Your Last Names] CSE 474

Title of your work

[Your Name] [Student #] [Turn-in Date]
Assignment: [Assignment Name]

Page length guidance for written documents refers to single-spaced, 11 or 12 point font.

Content

Example: (top of first page:)

Lab 1: Getting Started with the Arduino Mega

Kyle Johnson, 12345678 12-Apr-2023
Vicente Arroyos, 2345678
Assignment: ECE474 Lab 1

... your work ...

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

CSE/ECE 474 Code standard

Vikram lyer Rev. March 2024
Alex Ching

Zachary Englhardt

Deeksha Prabhu

This document describes the formatting requirements for C source code in ECE474.

Libraries and online code

You are welcome to use example code online either directly or as a guide. For any such code
you use, you must cite the source. This must be included in your source code. This is an easy
step that you should get in the habit of doing.

Constants

All constants should be in symbolic form, defined at the top of the code, orin a . h file included
at the top of your code. This is an important feature of maintainable code. All constant names
and variable names must be descriptive. Descriptive names are names that tell you something
about what the variable or constant is used for. Example:

i€ (& > 31) {

This is a dangerous piece of code. First, it is hard to understand. Why is 31 important? Why
do we care if a is greater than 31? Second, it is hard to modify. Usually, this constant must

appear in more than one place. Suppose we need to scale up the software to solve a bigger

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

CSE/ECE 474 Resource Guide:

Basics of electronics hardware and breadboarding
University of Washington V0.1 30-Mar-2023

Learning Objectives:
After completing this unit, students will be able to
e Visually identify basic electronic components by site and explain their high level uses.
e Visually identify the basic electronics tools required in 474
e Demonstrate the use of the basic electronics tools used in 474
e Build an LED controlled by a power source, switch, and a current limiting resistor using a
solderless breadboard.
e Use a digital multimeter (DMM) to make Voltage, Current, and Resistance
Measurements.

Materials:

These are materials we have reviewed. Criteria for inclusion:
e SHORT videos that are to the point
e CORRECT information
e APPLICABLE to ECE474

Unit 1: Components, Tools, and Basics

The common parts used in almost all electrical circuits are: resistors, capacitors, LEDs,
inductors, and transistors. In this course, we will mainly be working with resistors, capacitors,
LEDs. You can find more information about all these parts on this website. [LINK]

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Intro to electronics resources

Physical Lesson 1: Voltage, current, and resistance
Computing Introduces three key electricity concepts, current, voltage, and resistance, which form the foundation
Home of electronics and circuits.
Intro to Electronics A
L1: Voltage, Current, and Lesson 2: Circuit Schematics
Resistance Introduces a visual language for describing circuits called circuit schematics, which are used in
L2: Circuit Schematics component datasheets, CAD programs (e.qg., circuit simulators, PCB layout software), and circuit

L3: Ohm's Law analyses. Also includes an activity using Fritzing to build your own schematics.

L4: Series and Parallel

Resistors Lesson 3: Ohm's Law
L5: Using Resistors Introduces Ohm'’s Law, one of the most important empirical laws in electrical circuits that describes
L6: LEDs how current, voltage, and resistance relate together. Also includes an activity to build and explore

resistive circuits in CircuitJS.
L7: Breadboards

L8: Variable Resistors

Lesson 4: Series vs. Parallel Resistors

Intro to Arduino v

https://makeabilitylab.github.io/physcomp/

https://makeabilitylab.github.io/physcomp/

CSE/ECE 474, Spring 2024

YA/ UNIVERSITY of WASHINGTON

Last time

* Allocating memory

* Number representation
e Overview of Binary and Hex
* Byte ordering
* Endianness
* Encoding integers

* Logical operators

* Boolean logic
* Bitwise operators

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Plan for today

 Hardware architecture- what'’s inside a processor?
* Registers

Data bus and signaling

How a processor works

Example of code execution

e Getting started with Arduino

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Register

Register- an array of D flip-flops which can store a collection of bits

An n bit register has n inputs, n outputs, and one clock line

Flip flop: Memory element that stores 1 bit

—CLK Q pP—

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Register

Register- an array of D flip-flops which can store a collection of bits

An n bit register has n inputs, n outputs, and one clock line

Flip flop: Memory element that stores 1 bit

J_ ek ap—

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Register

Register- an array of D flip-flops which can store a collection of bits

An n bit register has n inputs, n outputs, and one clock line

Flip flop: Memory element that stores 1 bit

e G e G G

D Q [Q)

J_ — CLK Q p— - r> [—> l—> >

O Q1 1 Q2 O Q3 1 Q4

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Buses

Bus- A parallel, bi-directional datapath

1
Wire 1 1
0
3
1 +>
Wire 2 . 0
. 1
Wire 3 1
0

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Buses

Bus- A parallel, bi-directional datapath
Multiple devices can send and receive data on one bus

CPU

e Address: N bits which specify which location.
* Data: Contents to/from memory or 1/O device
e Control: ‘Traffic signals’

YA/ UNIVERSITY of WASHINGTON

Detailed view

Address Comparator

A combinatorial logic circuit at each device
2 n-bit binary inputs:

1. ADDR bus (changing)
2. Device address (fixed)

Control input
Output =1if inputl ==input2

CSE/ECE 474, Spring 2024

input OxA1B2

16,1» ,tls

Address
comparator

!

Oorl

YA/ UNIVERSITY of WASHINGTON

CSE/ECE 474, Spring 2024

Detailed view

* Control bus is gated by ADDR comparator

* Device register is strobed by CTL pulse only if addresses match.
o

ADDR

/7 (8 bits)
| —»CTL
. L:/
@ L

-
>

Lo A B

LI e
-00
(\)

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Multiple limes

4‘><_— ckavanha\

p—

‘L
L Logic ‘o

=*---—A Pulse e QJQ
Multiple HINES

| ddfert logie 'l : ;
s Vu‘MCS

Trownsichow o

. Pu,‘se ‘ "H; _2" ou‘fpu*
| I————— shite

’ka.:‘": ve Pu|¢

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

How do devices share a bus?

Solution: Tri-state logic
* States: Logic 1, Logic O, switch OFF
* CPU and all devices can “talk” on data bus.

* Only ONE device my have the tri-state switch
closed at any time!

' v
(N =

7| ||

"

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Bus timing: Write cycle

WR\TC

ANOR C PV >< ~

DA™ CPu _

YA/ UNIVERSITY of WASHINGTON

CSE/ECE 474, Spring 2024

What happens inside our processor?

ADDPR $
DATA i>

it

=

ALU: Arithmetic & Logic Unit

PC: Program Counter. Holds Address
of next instruction.

IR: Instruction Register. Holds current
instruction.

ADDR: Address Register. Holds
address of next bus access.

GP#: General Purpose Registers. Hold
intermediate results.

Al, A2: ALU Arguments. Hold inputs
to an ALU operation.

r: 'Result’, holds result of ALU
operation.

FLAGS: a set of bits which tell things
like zero/non-zero, negative, etc
about the last Result.

CSE/ECE 474, Spring 2024

YA/ UNIVERSITY of WASHINGTON

Example: Adding two numbers

ADp
-) =
['Pc‘n] [TADDR | DATA ﬁ)
‘ v T 1
de &
ALL W
= r
= R -
FLAGS

Cstatement:c = a + b ;

. Load addr of a into ADDR

. Wait for data from memory

. Clock data into A1l

. Load addr of b into ADDR

. Wait for data from memory

. Clock data into A2

. Send ADD command to ALU

. Load addr of ¢

. Transfer RES to data bus

10. Wait for data write to memory.

O OO UL B~ WDN -

YA/ UNIVERSITY of WASHINGTON

CSE/ECE 474, Spring 2024

Machine Instructions

The processor is controlled by machine instructions. A machine
instruction is binary data typically broken up into fields:

* The Operation Code (Op-Code)
* One, two, or three Operands.

* Each instruction is typically between one and eight bytes

b 73 'S Vb 2ﬁ
'ﬁop.-(_ooﬁl RC & TK&G‘

CSE/ECE 474, Spring 2024

YA/ UNIVERSITY of WASHINGTON

Example: Add two numbers

Note: All assembler below is pseudo-code!

C code: ¢

Assembler output

a + b

°
4

mem addr | instruction | comment
0xA000 | MOV a, A1 | move mem location a to ALU Arg 1
0xA002 | MOV b, A2 | move mem location b to ALU Arg 2
0xA004 | ADD a one-byte instruction
0xA005 | MOV r, ¢ move ALU result to mem location ¢

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Atmel 1/0 Instructions

Example: AtMega2560 Chip (Arduino Mega)

e “Memory Mapped” I/O

* Devices and Memory share the same address space

* Device registers are just like memory locations / variables.

* Arduino libraries predeclare correct memory address for each register
you need.

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Setting up Arduino

YA/ UNIVERSITY of WASHINGTON CSE/ECE 474, Spring 2024

Power Rail

D croo mo
Circuit
I Area

Arduino MEGA

ANALOG IN

O-HNMUINWONES ©O
Al g

