
CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Lecture 16: Interprocess Communication, Critical
Sections

Adapted from material by Blake Hannaford

Vikram Iyer

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Announcements
Lab 3- 1 day extension
- Friday = 1 late days,

Sunday (weekend) = 2 late days

Lab 4 will be up soon
- Due during finals week to give you max

time/flexibility to work on it

Quiz on Wed 5/29 during lecture (20 min)
- In class, written, multiple choice (15 pts)
- Goal is to test concepts introduced after

the midterm
- List of concepts will be posted by Friday

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Last time: FreeRTOS examples

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Producer-Consumer Model

Producer: A task which generates blocks of data.

Consumer: A task which does something with the data blocks and discards them or
passes them to another consumer.

Human instructions: Producer

If there is room
add item to shared buffers

else
wait;

Human instructions: Consumer

If there are items in buffer
process items

else
wait;

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Producer-Consumer Pseudocode

Producer:
while(1) {

while(count >= BSIZE);
count++;
NextIt = {produce an item};
buffer[in] = NextIt;
in++;
if(in >= BSIZE) in = 0;

}

Consumer:
while(1) {
while(count==0); //"spinlock"
count--;
ConsIt = buffer[out]; out++;
if(out >= BSIZE)
out = 0;
Take(ConsIt); //Consume item

}

/* example.h */
#define BSIZE = 5
typedef item {plastic button};
struct item ConsIt, NextIt, buffer[BSIZE];
int in=0, out=0, count=0;

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Intertask Communication and Data Sharing

Method 1: Shared memory
• Global Variables
• Shared Buffer
• Ring Buffer
• FIFO

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Shared Buffer(s)

• Producer fills a buffer
• Signals Consumer
• Consumer clears buffer

Multiple buffers: Producer fills buffer A while Consumer clears buffer B.
switch pointers A and B

This scheme is called “double buffering”. Allows producer and consumer to work
simultaneously.

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Ring Buffer/FIFO

Producer
while(in != out) {

buffer[in++] = {new data}
if(in >= BUFFER_SIZE)

in = BUFFER;
}
print "BUFFER OVERFLOW!!!!" ;
halt;

Consumer
while(out != in) {

data = buffer[out++];
if(out >= BUFFER_END)

out = BUFFER;
}
print "BUFFER UNDERFLOW!!!!" ;
halt;

One buffer. Two Pointers *in, *out

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

LIFO

Producer
while(iop <= BUFFER_END) {

buffer[iop++] = {new data}
}
print "LIFO OVERFLOW!!!!" ;
halt;

Consumer
while(iop != BUFFER) {

data = buffer[--iop];
}
print "LIFO UNDERFLOW!!!!" ; halt;

“Last-In-First-Out” A stack
One buffer, One pointer *iop

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Intertask Communication and Data Sharing

Method 1: Shared memory
• Global Variables
• Shared Buffer
• Ring Buffer
• FIFO

Method 2: Message Passing
Problem with shared memory approaches is that processes are not protected from each
others’ bugs. OS can isolate processes better by supporting messages.

Two types:
• Message Passing
• Mailbox

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Passing Data: Message passing
/* Process 1*/
while(1) {

compute & produce data;
OS_send_message(Proc_ID);

}

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Passing Data: Mailboxes
/* Process 1 */
name="mailbox1_2";
status = mailbox_setup(name);
if(status != MB_SUCCESS)

error_exit(”Setup error");
while(1) {

compute & produce data;
OS_post_message(name);

}

/* Process 2 */
name ="mailbox1_2";
// assume Proc1 set up mailbox

while(1) {
OS_pend_message(name);
consume data;

}

OS message calls invoke the scheduler.

Sender is set to WAITING until receiver gets the message.

Receiver is set to WAITING until mailbox contains a message.

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Concurency Problem Statement

Fundamental Problem: make sure only one task accesses a resource during “Critical
Section”.

Critical Section: a short segment of code which must be done as a unit (also called
“atomic” operation).

Above example: testing buffer counter and taking/putting token must be done together
without interruption.

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Fix 1: Global interrupt mask
Make an OS call, or manipulate bits in interrupt controller to prevent any ISRs
from running during Critical Section.

OS_INT_MASK();// block interrupts

if(data_avail_flag) {
// if ISR occurs here --->
//Trouble!!
process(buffer);
data_avail_flag = FALSE;
buffer_avail_flag = TRUE;

}
OS_INT_ENABLE();

This prevents:

1) pre-emption by scheduler
which would start another
task.

2) An ISR which may mess with
buffers/ptrs.

Pros: Fast

Cons: Too greedy: blocks all I/O
devices and other tasks whether
they use the key resource or not!

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Fix 2: Test and set instruction
Use a specific machine language instruction that tests and sets a value in 1 cycle. For
example some architectures have TSR a single instruction and cannot be interrupted.

assembler:

TSR R, FailAddr # jump to FailAddr if R ne 0

explanation:

if(R==0) R = 1 ;

else jump FailAddr ;

Pros:
Extremely fast and can be specialized for many resources without blocking unnecessarily.

Cons:
Very low-level. Only allows one user per resource. What if resource permits N
users?

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Semaphores
Term Origin: Flags used in signaling.
Semaphore: An OS facility which guarantees exclusive access.
Three OS Calls:
semaphore os_get_semaphore(int N);

// establish a new semaphore

// initialize to N

void os_pend(semaphore S);

// wait for resource protected by S

void os_post(semaphore S);

// free up resource protected by S

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Semaphores: Pend and post
Identify the critical section in your code. “protect” it with Pend(S) and Post(S):

...

pend(S);

critical section

code post(S)

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Implementing Pend and Post inside a kernel
Notes:
S is typically a small integer.
S==0 → wait, S ≥ 1 → go

Pend (S):
Disable interrupts
if (S>0) {
S--;
EnableInterrupts;
return

}
else {
Enable Interrupts;
set task to ‘WAIT’;
Store in TCB.sem; start scheduler

}

Post(S):
S++
start scheduler

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Critical Section Summary
The Contention Problem can occur under two conditions:
1. There is preemption due to interrupts.
2. Two or more processes share a single resource.

A Critical Section is the part of code which, if interrupted, could cause a bug in sharing a
resource between two processes.
Example: Increment a counter and then put data in buffer.

Semaphores can be used to protect a critical section.
1. One semaphore, S, is established for each shared resource.
2. pend(S) operation is used at start of critical section.
3. post(S) operation is used at end of critical section. Pend means “wait” (i.e. “patent

pending”).
Scheduler makes sure that tasks waiting for a resource (i.e. pending a semaphore) are
set to “WAITING” and that other tasks can run instead

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Semaphores: Pros and Cons
Pros:
• Specialized, one semaphore per resource, no unnecessary blocking.
• Widely used standard.
• Low to medium implementation overhead in O/S.

Cons:
• Can cause priority inversion

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Priority Inversion
Consider the following scenario

Task A Priority 5 LOW

Task B Priority 10 MED

Task C Priority 15 HIGH

Task A, C → Buffer → semaphore S

1. Task C is running and uses OS pend(S) to get the buffer. OS grants the buffer to C
and C computes slowly on buffer.

2. Task A starts. Task A also requests buffer by OS pend(S). It has to wait for C to
finish with S.

3. With Task A still waiting, Task B starts.
4. C is pre-empted by an interrupt.
5. Scheduler runs B. Although B does not even want the buffer (semaphore S), it has

higher priority than A, and blocks A ...
6. C is effectively blocked by lower priority task B. (C is waiting for A to release

semaphore(S).

CSE/ECE 474, Spring 2022CSE/ECE 474, Spring 2024

Priority Inversion Fixes
• Priority Inheritance. O/S has to check each semaphore pend.

If a higher priority process is blocked by a pend, process having the resource
temporarily gets priority equal to the blocked process.

• Priority Ceiling Protocol. When getting a resource, process temporarily gets priority
equal to highest process sharing that resource.

