CSE/ECE 474, Autumn 2024

Lecture 5: Hardware & Machine Organization

Vikram lyer

Adapted from material by Blake Hannaford and Justin Hsia

CSE/ECE 474, Autumn 2024

Administrative

* HW1 Autograder
* If you get an error we will grade manually and give partial credit

* Lab 1- speakers in the lab at the TA desk

Administlrative

CSE/ECE 474, Autumn 2024

October
Monday Tuesday Wednesday Thursday Friday
14:30-15:50 Lecture 07 | 12:00-14:00 OH (Yousef) 08 | 12:30-14:30 OH (Kinnen) 09 | 12:00-14:00 OH (Kurt) 10 | 11:00-13:00 OH (Kurt) 11
MOR220 ECE 345 ECE345 ECE 345 ECE 345
Lecture 4: Number Representation and Bitwise .
o 14:00-16:00 OH (Kinner) 14:30-15:50 Lecture 16:00-17:00 OH (Yousef) 15:00-16:00 OH (Yousef)
4 i ECE 345 ECE 345 ECE 345
slides, slides (annotated) MOR220
Lecture 5: Hardware and Machine Organization .
16:00-17:00 OH (Vikram) 23:59 C Programming 1 due
ECE 345 16:00-17:00 OH (Vikram)
ECE 345
14:30-15:50 Lecture 14 | 12:00-14:00 OH (Yousef) 15| 14:30-15:50 Lecture 16| 12:00-14:00 OH (Kurt) 17 | R1:00-13:00 OH (Kurt) 18
MOR220 ECE 345 MOR 220 ECE 345 ECE 345
Lecture 6: Working with Registers and IMU Demo Lecture 7: ATMega 2560 Datasheet and Tii
S 14:00-16:00 OH (Kinner) ure r:Allega asneetana timers Y| 1 4.00-16:00 OH (Kinner) 5:00-16:00 OH (Yousef)
16:00-17:00 OH (Vikram) ECE 345 16:00-17:00 OH (Vikram) ECE345 FCE 345
ECE 345 ECE 345
16:00-17:00 OH (Yousef)
ECE 345
23:59 Lab1due
14:30-15:50 Lecture 21 | 12:00-14:00 OH (Yousef) 22 | 14:30-15:50 Lecture 23 | 12:00-14:00 OH (Kurt) 24 | 11:00-13:00 OH (Kurt) 25
MOR220 ECE 345 MOR 220 ECE 345 ECE 345
Lecture 8: Tasks, Threads, Scheduling I, . Lecture 9: Reading Analog Data and Intro to .
14:00-16:00 OH (Kinner) 14:00-16:00 OH (Kinner) 15:00-16:00 OH (Yousef)
Interrupts Interrupts
ECE 345 ECE 345 ECE 345
16:00-17:00 OH (Vikram) 16:00-17:00 OH (Vikram) 160017000]
ECE345 ECE345 UL e CTE)
CE345
23:59 C Programming 2 due A
il (tentative, posted soppn)

CSE/ECE 474, Autumn 2024

Last time

* Allocating memory

* Number representation
* Overview of Binary and Hex
* Byte ordering
* Endianness
* Encoding integers

* Logical operators
* Boolean logic
* Bitwise operators

CSE/ECE 474, Autumn 2024

Plan for today

* Introto Lab 1

 Hardware architecture- what’s inside a processor?
* Registers
* Data bus and signaling
* How a processor works
* Example of code execution

CSE/ECE 474, Autumn 2024

Lab Assignment 1 CSE474 Autumn 2024

Prof. Vikram lyer’ University of Washington
Getting Started with the Arduino Mega

Learning Objectives

With successful completion of this lab, the
student will be able to
e Install and set up Arduino IDE
e Build and run a basic sketch (program)
using the Arduino Libraries
e Modify and demonstrate blinking light
code and speaker output tone.
e Learn to use an oscilloscope for
debugging

Lab Overview and Policies CSE/ECE 474

University of Washington 24-Sept-2024
Spring 2024

Vikram lyer’
Kurt Gu
Kinner Parikh
Yousef Gomaa

Introduction to the Labs

The Lab assignments are (see 474 main spreadsheet for links):
Lab 1 Getting Started with the Arduino Mega

Lab 2 Digital I/0O and timing of outputs

Lab 3 Round Robin Scheduling and multitasking

Lab 4 FreeRTOS and Project

This document contains general advice and policy for the labs.

LAB ASSIGNMENTS

The lab projects are a significant part of your grade in the course. Each lab builds on the
previous lab, so it's important that you keep up with assignments and also ensure that your
designs are robust and well tested.

CSE/ECE 474, Autumn 2024

CSE/ECE 474, Autumn 2024

Lab report template

[Your Last Names] CSE 474

Title of your work

[Your Name] [Student #] [Turn-in Date]
Assignment: [Assignment Name]

Page length guidance for written documents refers to single-spaced, 11 or 12 point font.

Content

Example: (top of first page:)

Lab 1: Getting Started with the Arduino Mega

Kyle Johnson, 12345678 12-Apr-2023
Vicente Arroyos, 2345678
Assignment: ECE474 Lab 1

... your work ...

CSE/ECE 474 Code standard

Vikram lyer Rev. Sept 2024
Kurt Gu

Kinner Parikh

Yousef Gomaa

This document describes the formatting requirements for C source code in ECE474.

Libraries and online code

You are welcome to use example code online either directly or as a guide. For any such code
you use, you must cite the source. This must be included in your source code. This is an easy
step that you should get in the habit of doing.

Constants

All constants should be in symbolic form, defined at the top of the code, or in a . h file included
at the top of your code. This is an important feature of maintainable code. All constant names
and variable names must be descriptive. Descriptive names are names that tell you something
about what the variable or constant is used for. Example:

if (a > 31) {

This is a dangerous piece of code. First, it is hard to understand. Why is 31 important? Why
do we care if a is greater than 31?7 Second, it is hard to modify. Usually, this constant must
appear in more than one place. Suppose we need to scale up the software to solve a bigger
problem? How do we change all of the 31s to 301? Sure you can use a global search and
replace, but what if there are other 31s (like x=247314) that we do not want to change? Finally,
what the heck is “a” anyway? The variable should have a name that means something in the

CSE/ECE 474, Autumn 2024

CSE/ECE 474 Resource Guide:

Basics of electronics hardware and breadboarding
University of Washington V0.1 30-Mar-2023

Learning Objectives:
After completing this unit, students will be able to
e Visually identify basic electronic components by site and explain their high level uses.
e Visually identify the basic electronics tools required in 474
o Demonstrate the use of the basic electronics tools used in 474
e Build an LED controlled by a power source, switch, and a current limiting resistor using a
solderless breadboard.
e Use a digital multimeter (DMM) to make Voltage, Current, and Resistance
Measurements.

Materials:

These are materials we have reviewed. Criteria for inclusion:
e SHORT videos that are to the point
e CORRECT information
e APPLICABLE to ECE474

Unit 1: Components, Tools, and Basics

The common parts used in almost all electrical circuits are: resistors, capacitors, LEDs,
inductors, and transistors. In this course, we will mainly be working with resistors, capacitors,
LEDs. You can find more information about all these parts on this website. [LINK]

CSE/ECE 474, Autumn 2024

CSE/ECE 474, Autumn 2024

Intro to electronics resources

Physical Lesson 1: Voltage, current, and resistance
Computing Introduces three key electricity concepts, current, voltage, and resistance, which form the foundation
Home of electronics and circuits.
Intro to Electronics ~
L1: Voltage, Current, and Lesson 2: Circuit Schematics
Resistance Introduces a visual language for describing circuits called circuit schematics, which are used in
L2: Circuit Schematics component datasheets, CAD programs (e.g., circuit simulators, PCB layout software), and circuit

I3 Ohnis oW analyses. Also includes an activity using Fritzing to build your own schematics.

L4: Series and Parallel

Resistors Lesson 3: Ohm's Law
L5: Using Resistors Introduces Ohm'’s Law, one of the most important empirical laws in electrical circuits that describes
L6: LEDs how current, voltage, and resistance relate together. Also includes an activity to build and explore

resistive circuits in CircuitJS.
L7: Breadboards

L8: Variable Resistors

Lesson 4: Series vs. Parallel Resistors

Intro to Arduino v

https://makeabilitylab.github.io/physcomp/

Ground

Power

LED

Internal Pin

SWD Pin

CSE/ECE 474, Autumn 2024

ARDUINO
MEGA 2560 REV3

STORE.ARDUINO. CC/MEGA:2560-REV

ATMEGA16U2

D21/SCL.

AREF

R URRARAN AARRR06

Last update: 16/12/2020

Digital Pin A MAXIMUM current per /0 VIN 6-20 Vinput to the board
pin is 20mA
Analog Pin
A MAXIMUM current per +3.3V
Other Pin pin is 50mA

Microcontroller’s Port

Default

CSE/ECE 474, Autumn 2024

Setting up Arduino

CSE/ECE 474, Autumn 2024

— Power Rail

Erh"“ Ground Rail

Circuit T R
PWRIN

ll

Arduino MEGA

ANALOG IN

OHNM«EIOr ®O0
A Al A

CSE/ECE 474, Autumn 2024

Register

Register- an array of D flip-flops which can store a collection of bits

An n bit register has n inputs, n outputs, and one clock line

Flip flop: Memory element that stores 1 bit

CSE/ECE 474, Autumn 2024

Register

Register- an array of D flip-flops which can store a collection of bits

An n bit register has n inputs, n outputs, and one clock line

Flip flop: Memory element that stores 1 bit

oo ol
! D

] e ap-
L

CSE/ECE 474, Autumn 2024

Register

Register- an array of D flip-flops which can store a collection of bits

An n bit register has n inputs, n outputs, and one clock line

Flip flop: Memory element that stores 1 bit

1D af— Q—RZ—L‘ 1~~°|i‘ Qtli‘ 1”[]

D Qpf=— D Qf=—

] e ap- & t rt rt b

0 Q1 1 Q2 0 Q3 1 Q4

Buses

Bus- A parallel,

oN 1
Wire 1 of F o

Wire 2

Wire 3

bi-directional datapath

¥ I

LowD

B

CSE/ECE 474, Autumn 2024

CSE/ECE 474, Autumn 2024

Buses

Bus- A parallel, bi-directional datapath
Multiple devices can send and receive data on one bus

Device Device -
{ 2

> W A

amnatt -~ A A A
/.// / “ /.' B 'l

oo

* Address: N bits which specify which location.
e Data: Contents to/from memory or I/O device
* Control: ‘“Traffic signals’

CSE/ECE 474, Autumn 2024

Detailed view
input OxA1B2

Address Comparator
« A combinatorial logic circuit at each device 16 1/ ,t 16

* 2n-bitbinary inputs:
1. ADDR bus (changing)

2. Device address (fixed) Address
* Controlinput

* Output=1if inputl==input2

comparator

!

Oor1

Detailed view

* Control bus is gated by ADDR comparator

CSE/ECE 474, Autumn 2024

* Device register is strobed by CTL pulse only if addresses match.

—

ADDR

-
T

-
o

[

L=l A &

4

y

// (Ef:s
]

3

—»CTL

Loslic
_ I/
Logic. ©O
Multiple lines

V’ A ferest b"}'

velues

Pulce

MT-(-: ve Pu‘se

CSE/ECE 474, Autumn 2024

i Multiple lives

!‘: 3]N 1 ’ c\\av&u'uas

i A

p

X Pulse cQJe
\ Couges change
|

|

03(0\ | 0)(02.

b Tronsihion o

- \-H._—zu 0“—+P“*
7—"‘ shte

CSE/ECE 474, Autumn 2024

How do devices share a bus?

Solution: Tri-state logic

* States: Logic 1, Logic 0, switch OFF

* CPU and all devices can “talk” on data bus.

* Only ONE device my have the tri-state switch

closed at any time!
N .
SR e
) :
L +—

Ervable

CSE/ECE 474, Autumn 2024

Bus timing: Write cycle

WRITC
g | [_
=[O
Dam [N o X

CSE/ECE 474, Autumn 2024

What happens inside our processor?

\

ADDPR, b

DATA

v

ALU: Arithmetic & Logic Unit

PC: Program Counter. Holds
Address of next instruction.

IR: Instruction Register. Holds
current instruction.

ADDR: Address Register. Holds
address of next bus access.

GP#: General Purpose Registers.
Hold intermediate results.

A1, A2: ALU Arguments. Hold inputs
to an ALU operation.

r: 'Result!, holds result of ALU
operation.

FLAGS: a set of bits which tell
things like zero/non-zero, negative,
etc about the last Result.

CSE/ECE 474, Autumn 2024

Example: Adding two humbers

C statement:c = a + b ;
\ ADDR, b —
_— Load addr of a2 into ADDR
e v . Wait for data from memory

1.

2

3. Clock data into A1

4. Load addr of binto ADDR
5. Wait for data from memory
6

7

8

9.

1

. Clock data into A2
. Send ADD command to ALU
. Load addr of ¢
Transfer RES to data bus
0. Wait for data write to memory.

CSE/ECE 474, Autumn 2024

Machine Instructions

The processor is controlled by machine instructions. A machine
instruction is binary data typically broken up into fields:

* The Operation Code (Op-Code)

* One, two, or three Operands.

* Each instruction is typically between one and eight bytes

0 7
| op-cotf
0 19 1S
| Op-co0E Rea
b 73 1S \b 23

rgp..c_uﬂﬁl RE & RE & J

Example: Add two humbers

Note: All assembler below is pseudo-code!

C code: ¢

= a + b

Assembler output

é’-

°
14

mem addr | instruction | comment
0xA000 | MOV a, Al | move mem location a to ALU Arg 1
0xA002 | MOV b, A2 | move mem location b to ALU Arg 2
0xA004 | ADD a one-byte instruction
0xA005 | MOV r, ¢ move ALU result to mem location ¢

CSE/ECE 474, Autumn 2024

CSE/ECE 474, Autumn 2024

Atmel I/0 Instructions

Example: AtMega2560 Chip (Arduino Mega)

e “Memory Mapped” |I/O

* Devices and Memory share the same address space

* Device registers are just like memory locations / variables.

* Arduino libraries predeclare correct memory address for each
register you need.

