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Introduction to Digital Data Acquisition: 
 

Sampling 
 

Physical world is analog  

n  Digital systems need to 
q  Measure analog quantities 

n  Switch inputs, speech waveforms, etc 
q  Control analog systems 

n  Computer monitors, automotive engine control, etc 

n  Analog-to-digital: A/D converter (ADC) 
q  Example: CD recording 

n  Digital-to-analog: D/A converter (DAC) 
q  Example: CD playback 
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A little background 

n  For periodic waveforms, the duration of the waveform 
before it repeats is called the period of the waveform 
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Frequency 

n  the rate at which a regular vibration pattern repeats itself 
(frequency = 1/period) 
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Frequency of a Waveform 

n  The unit for frequency is cycles/second, also called Hertz 
(Hz).  

n  The frequency of a waveform is equal to the reciprocal of 
the period. 
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Frequency of a Waveform 

n  Examples: 
 frequency = 10 Hz 
 period = .1 (1/10) seconds 

 
 frequency = 100 Hz 
 period = .01 (1/100) seconds 

 
 frequency = 261.6 Hz (middle C) 
 period = .0038226 (1/ 261.6) seconds 
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Waveform Sampling 
n  To represent waveforms in digital systems, we 

need to digitize or sample the waveform. 

•  side effects of digitization: 
•  introduces some noise  
•  limits the maximum upper frequency range 7 CSE/EE474 

Sampling Rate 

n  The sampling rate (SR) is the rate at which amplitude 
values are digitized from the original waveform. 
 
q  CD sampling rate (high-quality): 

SR = 44,100 samples/second 
q  medium-quality sampling rate: 

SR = 22,050 samples/second 
q  phone sampling rate (low-quality): 

SR = 8,192 samples/second 
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Sampling Rate 

n  Higher sampling rates 
allow the waveform to be 
more accurately 
represented 
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Digital Data Acquisition 

n  Data Representation - Digital vs. Analog 
n  Analog-to-Digital Conversion 
n  Number Systems 

q  Binary Numbers 
q  Binary Arithmetic 

n  Sampling & Aliasing 
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n  Converts analog voltages to binary integers. 
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•  ADC calibration 
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n  Input Range 
q  Unipolar:  ( 0,  VADCMAX ) 

q  Bipolar:  ( -VADCMAX ,  +VADCMAX )     (Nominal Range) 

q  Clipping: 
          If |VIN| > |VADCMAX|, then |VOUT| = |VADCMAX| 
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n  Quantization Interval (Q) 
q  n bit ADC, the input range is divided into 2n-1 intervals. 
 
q  3 bit ADC: 

Q
V VADC ADC
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n  Voltage to Integer Code 
q  n bit ADC 
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n  Signals are analog by nature 
n  ADC necessary for DSP 
n  Digital signal processing 

provides: 
q  Close to infinite SNR 
q  Low system cost 
q  Repetitive system 

ADC DAC 
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signal  

Processing 

Digital signal processing 

Analog  
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Analog 
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•  ADC bottle necks: 
•  Dynamic range 
•  Conversion speed 
•  Power consumption 

Why A/D-conversion? 
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Quantizer
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The Theory 

n  Sampling theory is a subset of 
communications theory 
q  Same basic math 

n  Want to record signal, not noise 
q  Quantization: Conversion from 

analog to discrete values 
q  Coding: Assigning a digital word to 

each discrete value 
n  Thermometer code, Gray code... 

n  Quantization adds noise 
q  Analog signal is continuous 
q  Digital representation is 

approximate 
q  Difference (error) is noiselike 
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Some terminology 

n  Resolution (n): Number of states in bits 
q  Example: A 3-bit A/D 

n  Full-scale range (FSR): The input or output voltage range 
q  Example: ADC inputs outside the FSR are always 111 or 000 

n  Step size (Q): 

n  RMS quantization error:  

q  RMS value of triangle wave 

q  http://www.analog.com/media/en/training-seminars/tutorials/MT-001.pdf 

FSR
2n Q

12
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• N-bit converter: δ =
VFSR
2N

Quantization noise  
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n  Noise energy: 
n  SNR for ideal ADC: 
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n  Noise energy: 
n  SNR for ideal ADC: 
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D/A converters 

n  Easier to design and use than A/
Ds 

n  Types 
q  Weighted current source DAC 
q  R–2R DAC 
q  Multiplying DAC 

n  Need to smooth the output 
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You will use DACs 

n  DAC specs are tricky! 
q  Check the errors 
q  Check the settling 

n  Vendors use deceptive 
advertising 
q  16-bit DAC!!! 

n  But errors may give only 12-
bit accuracy 

n  You have to figure this out 
from the specs 

Datel Data Acquisition and 
Conversion Handbook 
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A/D converters 

n  Hard to design 
n  Contain digital parts 

q  Encoders 
q  FSMs 

n  Many types 
q  Successive approximation  
q  Flash 
q  Pipelined-flash 
q  Integrating 
q  Sigma-delta 
q  Charge balanced 
q  Folding 
q  Others 
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Example: Flash A/D 

n  Advantages 
q  Ultra-fast 

n  Disadvantages 
q  High power 
q  Low resolution 
q  Metastability 

n  Sample/hold improves 
performance 
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Example: Successive approximation ADC 

n  Advantages 
q  Low power 
q  High resolution 

n  Disadvantages 
q  Slow 

n  Problem: DAC must 
settle to LSB 
accuracy at every 
step 

Datel Data Acquisition and 
Conversion Handbook 

27 CSE/EE474 

Sampling 

n  Quantizing a signal 
1) We sample it 
2) We encode the samples 

n  Questions: 
q  How fast do we sample? 
q  How do we so this in 

hardware? 
q  What resolution do we 

need? 

Datel Data Acquisition and 
Conversion Handbook 
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Shannon's sampling theorem 

 If a continuous, band-limited signal 
contains no frequency components 
higher than fc, then we can recover the 
original signal without distortion if we 
sample at a rate of at least 2fc samples/
second 

http://www.videomicroscopy.com/vancouverlecture/nyquist.htm 

✦  2fc is called the Nyquist rate 

✦  Real life 
➭  Sample at 2.5fc or faster 
➭  Sample clock should not be coherent 

with the input signal 
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Frequency domain analysis 

n  Take the Fourier Transform of the signal 
q  Shows a signal’s frequency components 

n  Undersampled frequency components fold back! 

Datel Data Acquisition and 
Conversion Handbook 
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Sampling speed versus bit resolution 

n  Hardware issues 
q  Sampling speed depends 

on bit resolution 
n  Think time constants 

n    

n  Examples: 
q  8-bit resolution takes 5.5τ 
q  12-bit resolution takes 8.3τ 
q  16-bit resolution takes 11τ 

Settling error
t

e
− τ=

Datel Data Acquisition and 
Conversion Handbook 
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n  A theorem, developed by Harry Nyquist, and 
proven by Claude Shannon,  which states that an 
analog signal waveform may be uniquely 
reconstructed, without error, from samples taken 
at equal time intervals.  

Nyquist–Shannon sampling theorem 
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n  The sampling rate must be equal to, or 
greater than, twice the highest frequency 
component in the analog signal. 
  

n  Stated differently: 
n  The highest frequency which can be 

accurately represented is one-half of the 
sampling rate.  

Nyquist–Shannon sampling theorem 
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Nyquist Theorem and Aliasing 

n  Nyquist Theorem: 
 We can digitally represent only frequencies up 
to half the sampling rate.  

q  Example: 
 CD: SR=44,100 Hz 
 Nyquist Frequency = SR/2 = 22,050 Hz 

q  Example: 
 SR=22,050 Hz 
 Nyquist Frequency = SR/2 = 11,025 Hz 
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Nyquist Theorem and Aliasing 

n  Frequencies above Nyquist frequency "fold over" to 
sound like lower frequencies. 
q  This foldover is called aliasing. 

n  Aliased frequency f in range [SR/2, SR] becomes f': 
f' = |f – SR/2| 
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Nyquist Theorem and Aliasing 

  f' = |f - SR/2| 

n  Example: 
q  SR = 20,000 Hz 
q  Nyquist Frequency = 10,000 Hz 
q  f = 12,000 Hz --> f' = 8,000 Hz 
q  f = 18,000 Hz --> f' = 2,000 Hz 
q  f = 20,000 Hz --> f' = 0 Hz 
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Nyquist Theorem and Aliasing 

n  Graphical Example 1a: 
q  SR = 20,000 Hz 
q  Nyquist Frequency = 10,000 Hz 
q  f = 2,500 Hz (no aliasing) 

37 CSE/EE474 

Nyquist Theorem and Aliasing 
n  Graphical Example 1b: 

q  SR = 20,000 Hz 
q  Nyquist Frequency = 10,000 Hz 
q  f = 5,000 Hz (no aliasing) 

 (left and right figures have same frequency, but have different 
sampling points) 38 CSE/EE474 
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Nyquist Theorem and Aliasing 
n  Graphical Example 2: 

q  SR = 20,000 Hz 
q  Nyquist Frequency = 10,000 Hz 
q  f = 10,000 Hz (no aliasing) 
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Nyquist Theorem and Aliasing 

n  Graphical Example 2: 
q  BUT, if sample points fall on zero-crossings the sound is 

completely cancelled out 
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Nyquist Theorem and Aliasing 
n  Graphical Example 3: 

q  SR = 20,000 Hz 
q  Nyquist Frequency = 10,000 Hz 
q  f = 12,500 Hz, f' = 7,500 
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Nyquist Theorem and Aliasing 

n  Graphical Example 3: 
q  Fitting the simplest sine wave to the sampled points gives an 

aliased waveform (dotted line below): 
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Method to reduce aliasing noise 

ADC 
Sampling  
at 40KHz 

output code = n 
0110001 
0100010 
0100100 
0101011 
: 
: 
: 
 

Input voltage = V  

Low 
Pass 

Filter: 
fcorner=20KHz 

e.g.  
Max freq 
=20KHz 

 
Use low pass filter to remove high frequency  
before sampling 

Freq. 

Gain(dB) 
         0 
-3dB cut off 
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