

A little History

- What is a computer?
[Merriam-Webster Dictionary] one that computes; specifically : programmable electronic device that can store, retrieve, and process data.
\square [Wikipedia] A computer is a machine that manipulates data according to a list of instructions.
- Classification of Computers (power and price)
\square Personal computers
\square Mainframes
\square Supercomputers
\square Dedicated controllers - Embedded controllers

Mainframes

IBM 9000

- Massive amounts of memory

■ Use large data words... 64 bits or greater

- Mostly used for military defense and large business data processing
- Examples: IBM 4381, Honeywell DPS8

Personal Computers

- Any general-purpose computer \square intended to be operated \square directly by an end user

- Range from small microcomputers that work with 4-bit words to PCs working with 32-bit words or more
- They contain a Processor - called different names Microprocessor - built using Very-Large-Scale Integration technology; the entire circuit is on a single chip
Central Processing Unit (CPU)
\square Microprocessor Unit (MPU) - similar to CPU

Supercomputers

- Fastest and most powerful mainframes
\square Contain multiple central processors (CPU)
\square Used for scientific applications, and number crunching
\square Now have petaflops performance
- FLoating Point Operations Per Second (FLOPS)
- Used to measure the speed f the computer
- Examples of special-purpose supercomputers:
\square Belle, Deep Blue, and Hydra, for playing chess
\square Reconfigurable computing machines or parts of machines
\square GRAPE, for astrophysics and molecular dynamics
\square Deep Crack, for breaking the DES cipher
\square MDGRAPE-3, for protein structure computation

- An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions often with real-time
- An integrated device which consists of multiple devices

Microprocessor (MPU)
Memory
I/O (Input/Output) ports

- Often has its own dedicated software

A little about Microprocessor-based Systems

Evolution

- First came transistors
- Integrated circuits

SSI (Small-Scale Integration) to ULSI
\square Very Large Scale Integration circuits (VLSI)

- 1- Microprocessors (MPU)

Microcomputers (with CPU being a microprocessor)
\square Components: Memory, CPU, Peripherals (I/O)
\square Example: Personal computers

- 2- Microcontroller (MCU)
\square Microcomputers (with CPU being a microprocessor)
\square Many special function peripheral are integrated on a single circuit
\square Types: General Purpose or Embedded System (with special functionalities)

Microprocessor-Based Systems

- Central Processing Unit (CPU)
- Memory
- Input/Output (I/O) circuitry
- Buses
- Address bus
- Data bus
- Control bus

Microprocessor-based Systems Microprocessor

- The microprocessor (MPU) is a computing and logic device that executes binary instructions in a sequence stored in memory.
- Characteristics:
\square General purpose central processor unit (CPU)
\square Binary
\square Register-based
\square Clock-driven
\square Programmable

Evolution of CPUs

Transistors

- Vacuum Tubes: A devise to control modify, and amplify electric signals
- Then can transistors
\square Designed by John Bardeen, Will Shockley, and Walter Brattain, scientists at the Bell Telephone Laboratories in Murray Hill, New Jersey - 1947
- In 1960 Jack Kilby and Robert Noyce designed the first integrated circuit (IC)

- Fairchild company manufactured logic gates

Integrated Circuits

- Advances in manufacturing allowed packing more transistors on a single chip

- Transistors and Integrated Circuits from SSI (Small-Scale Integration) to ULSI
- Birth of a microprocessor and its revolutionary impact

Microprocessors

- Noyce and Gordon Moore started Intel
- Intel designed he first calculator
- Intel designed the first programmable calculator
- Intel designed the first microprocessor in 1971

Model 4004
\square 4-bit; 2300 transistors, 640 bytes of memory,
108 KHz clock speed

First Processors

- Intel released the 8086, a 16-bit microprocessor, in 1978
- Motorola followed with the MC68000 as their 16bit processor

The 16-bit processor works with 16 bit words, rather than 8 bit words
Instructions are executed faster
Provide single instructions for more complex instructions such as multiply and divide

- 16 bit processors evolved into 32 bit processors
- Intel released the 80386
- Motorola released the MC68020

Evolution of CPUs

Evolution of CPUs

- Intel ${ }^{\circledR}$ Core $^{\text {TM }} \mathrm{i} 7$

Intel® Core ${ }^{\text {TM }}$ i7-5960X Processor Extreme

 Edition(20M Cache, up to 3.50 GHz)
8 Cores, 16 Threads
64 bit Instruction Set

Microprocessor-based Systems Memory Types

R/W: Read/Write Memory; also called RAM

- It is volatile (losses information as power is removed)
- Write means the processor can store information
- Read means the processor can receive information from the memory
- Acts like a Blackboard!

ROM: Read-Only memory;

- It is typically non-volatile (permanent) - can be erasable
- It is similar to a Page from your textbook

Erasable ROMs

- Masked Programmed ROM
\square Programmed by the manufacturer
- Programmable ROM (PROM)
\square Can be programmed in the field via the programmer
- Erasable Programmable ROM (EPROM)
\square Uses ultraviolet light to erase (through a quartz window)
\square OTP refers to one-time programmable
- Electrically Erasable Programmable ROM (EEPROM)
\square Each program location can be individually erased
\square Expensive
- Requires programmer
- FLASH
\square Can be programmed in-circuit (in-system)
\square Easy to erase (no programmer)
\square Only one section can be erased/written at a time (typically 64 bytes at a time)

Microprocessor-based Systems I/O Ports

- The way the computer communicates with the outside world devices
I/O ports are connected to Peripherals
\square Peripherals are I/O devices
- Input devices
- Output devicesExamples
- Printers and modems,
- keyboard and mouse
- scanner
- Universal Serial Bus (USB)

Microprocessor-based Systems - BUS

- The three components - MPU, memory, and I/O - are connected by a group of wires called the BUS
- Address bus
- consists of $\mathbf{1 6}, \mathbf{2 0}, \mathbf{2 4}$, or 32 parallel signal lines (wires) - unidirectional
- these lines contain the address of the memory location to read or written
- Control bus
consists of 4 to 10 (or more) parallel signal lines
\square CPU sends signals along these lines to memory and to I/O ports
- examples: Memory Read, Memory Write, I/O Read, I/O Write
- Data bus
\square consists of 8,16 , or 32 parallel signal lines
bi-directional
only one device at a time can have its outputs enabled,
\square this requires the devices to have three-state output

Expanded Microprocessor-Based System

1. Note the directions of busses
2. What is the width of the address bus?
3. What is the value of the Address but to access the first register of the $\mathrm{R} /$ WM?

Remember: $11111111111=2^{\wedge} 11=2 \mathrm{~K}$

So what are microcontrollers?

First Microcontrollers

- IBM started using Intel processors in its PC Intel started its 8042 and 8048 (8-bit microcontroller) - using in printers
- Apple Macintosh used Motorola 68000
- 1980 Intel abandoned microcontroller business
- By 1989 Microchip was a major player in designing microcontrollers
\square PIC: Peripheral Interface Controller

Embedded controllers

Software Characteristics

- No operating systems
- Execute a single program, tailored exactly to the controller hardware
- Assembly language (vs. High-level language)

Not transportable, machine specific
\square Programmer need to know CPU architecture \square Speed
\square Program size
Uniqueness

Microcontroller Unit (MCU)
Block Diagram

- An integrated electronic computing and logic device that includes three major components on a single chip
\square Microprocessor
\square Memory
\square I/O ports
- Includes support devices
\square Timers
\square A/D converter
\square Serial I/O
\square Parallel Slave Port

- All components connected by common communication lines called the system bus.

MCU Architecture

- RISC (Harvard)
\square Reduced instruction set computer
Simple operations
Simple addressing modes
Longer compiled program bust faster to execute
Uses pipelining
- CISC (Von Neuman)

Complex instruction set computer
\square More complex instructions (closer to highlevel language support)

Main 8-bit Controllers

- Microchip-- PIC® Microcontrollers
\square RISC architecture (reduced instruction set computer)
\square Has sold over 2 billion as of 2002
\square Cost effective and rich in peripherals
- Motorola- now Freescale
\square CISC architecture
Has hundreds of instructions
\square Examples: $68 \mathrm{HC05}, 68 \mathrm{HC} 08,68 \mathrm{HC} 11$
- Intel- now Marvell
\square CISC architecture
- Has hundreds of instructions
\square Examples: 8051, 8052
\square Many difference manufacturers: Philips, Dallas/MAXIM Semiconductor, etc.
- Atmel
\square RISC architecture (reduced instruction set computer) -
\square Cost effective and rich in peripherals
\square AVR

Software: From Machine
Machine Language to High-Level Languages (1 of 3)

- Machine Language: binary instructions
\square All programs are converted into the machine language of a processor for execution

Difficult to decipher and write
\square Prone to cause many errors in writing

	High-level Language
	Assembly Language
So High-Level Languages (2 of 3)	Machine Language
to Assembly Language: machine instructions	
represented in mnemonics	
\square Has one-to-one correspondence with machine	
instructions	
\square Efficient in execution and use of memory;	
machine-specific and not easy to troubleshoot	

Software: From Machine to High-Level Languages (3 of 3)

Machine Language

- High-Level Languages (such as BASIC, C, and C++)

Written in statements of spoken languages
(such as English)

- machine independent
- easy to write and troubleshoot
- requires large memory and less efficient in execution

Unsigned

Signed

- Unsigned Integers: All eight bits (Bit0 to Bit7) represent the magnitude of a number
\square Range 0 to FF in Hex and 0 to 255 in decimal

Unsigned

Signed

Data Format (8-bit) (2 of 4)

- Signed Integers: Seven bits (Bit0 to Bit6) represent the magnitude of a number.
The eighth bit (Bit7) represents the sign of a number. The number is positive when
Bit7 is zero and negative when Bit7 is one.
Positive numbers: 0 to 7 F (0 to 127)
Negative numbers: 80 to FF (-1 to -128)
All negative numbers are represented in 2's complement

Data Format (8-bit) (3 of 4)

- Binary Coded Decimal Numbers (BCD)

8 bits of a number divided into groups of four, and each group represents a decimal digit from 0 to 9
Four-bit combinations from A through F in Hex are invalid in BCD numbers

- Example: 00100101 represents the binary coding of the decimal number 25 d which is different in value from 25 H .

Data Format (8-bit) (4 of 4)

- American Standard Code for Information Interchange (ASCII)
\square Seven-bit alphanumeric code with 128 combinations (00 to 7F)
Represents English alphabet, decimal digits from 0 to 9 , symbols, and commands

Storing Bits in Memory

- We can store in different memory types
\square EEPROM, FLASH, RAM, etc.
- In an 8-bit RAM
\square Each byte is stored in a single memory register
\square Each word is stored in two memory locations (registers)
\square DATA 0x1234
- $0 x 12 \rightarrow$ REG11 (High-order byte) - 00010010
- 0x34 \rightarrow REG10 (Low-order byte) - 00110100

Remember -8 $\boldsymbol{\rightarrow}$ 111 1000 (in two' s complement)

Design Examples

Microcontrollers vs. Microprocessors

MCU-Based Time and Temperature System

Standard Feature \qquad Optional Feature

