CSE 473:
 Artificial Intelligence

Hanna Hajishirzi

Markov Models

Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Our Status in CSE473

- We' re done with Search and planning
- We are done with learning to make decisions
- Probabilistic Reasoning and Machine Learning
- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

Probability Summary

- Conditional probability

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$-b$	0.999

E	$P(E)$
$+e$	0.002
$-e$	0.998

$P(M \mid A) P(J \mid A)$ $P(A \mid B, E)$

A	J	$P(J \mid A)$
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

A	M	$P(M \mid A)$
$+a$	$+m$	0.7
$+a$	$-m$	0.3
$-a$	$+m$	0.01
$-a$	$-m$	0.99

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Example: Traffic

Causal direction

$P(T, R)$

$+r$	$+t$	$3 / 16$
$+r$	$-t$	$1 / 16$
$-r$	$+t$	$6 / 16$
$-r$	$-t$	$6 / 16$

Example: Reverse Traffic

- Reverse causality?

T	$P(T)$		
	+t		16
			16
R	$P(R \mid T)$		
	+t	+r	1/3
		-r	2/3
	-t	+r	1/7
		-r	6/7

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

- Value of X at a given time is called the state

$$
\begin{aligned}
X_{1} & \rightarrow X_{2} \\
P\left(X_{1}\right) & P\left(X_{4}\right) \rightarrow \\
P\left(X_{t} \mid X_{t-1}\right) & P\left(X_{t}\right)=?
\end{aligned}
$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action
- A (growable) BN: We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Markov Assumption: Conditional Independence

- Basic conditional independence:
- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

Example Markov Chain: Weather

- States: $\mathrm{X}=\{$ rain, sun $\}$
- Initial distribution: 1.0 sun

- CPT P $\left(X_{t} \mid X_{t-1}\right)$:

Two new ways of representing the same CPT

\mathbf{X}_{t-1}	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Bayes Nets -- Independence

- Bayes Net $P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i \pi^{1}}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
\circ Chain Rule $P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$

Markov Models (Markov Chains)

- A Markov model defines
- a joint probability distribution:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=
$$

- More generally:

$$
\begin{array}{ll}
\qquad \begin{array}{ll}
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \prod_{t=2}^{N} P\left(X_{t} \mid X_{t-1}\right) & \text { - Why? } \\
& \text { - Chain Rule, } \\
\text { - One common inference problem: } & \text { Indep. Assumption? }
\end{array} .
\end{array}
$$

- Compute marginals $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}}\right)$ for all time steps t

Example Markov Chain: Weather

- Initial distribution: 1.0 sun

- What is the probability distribution after one step?

$$
\begin{aligned}
P\left(X_{2}=\text { sun }\right)= & \sum_{x_{1}} P\left(x_{1}, X_{2}=\text { sun }\right)=\sum_{x_{1}} P\left(X_{2}=\operatorname{sun} \mid x_{1}\right) P\left(x_{1}\right) \\
P\left(X_{2}=\text { sun }\right)=\quad & P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { sun }\right) P\left(X_{1}=\text { sun }\right)+ \\
& P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right) \\
& 0.9 \cdot 1.0+0.3 \cdot 0.0=0.9
\end{aligned}
$$

Mini-Forward Algorithm

- Question: What's $\mathrm{P}(\mathrm{X})$ on some day t ?

Example Run of Mini-Forward Algorithm

- From initial observation of sun

- From initial observation of rain

- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:

Pac-man Markov Chain

Pac-man knows the ghost's initial position, but gets no observations!

CSE 473:
 Artificial Intelligence

Hanna Hajishirzi

Markov Models

Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Announcements

- PS3: Due today
- Solutions to HW3 -> released
- Quiz2: Nov 29;
- material -> everything up to and including Reinforcement learning
- 40-45 min.
- Lecture notes: Uncertainty
- HW3: Dec. 8th
- PS4: Dec. 14 ${ }^{\text {th }}$ (no extension after that)

Recap: Markov Models

- Value of X at a given time is called the state

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action
- A (growable) BN: We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example Markov Chain: Weather

- Initial distribution: 1.0 sun

- What is the probability distribution after one step?

$$
\begin{aligned}
& 0.9 \cdot 1.0+0.3 \cdot 0.0=0.9
\end{aligned}
$$

Mini-Forward Algorithm

- Question: What's $\mathrm{P}(\mathrm{X})$ on some day t ?

$$
\begin{aligned}
& P\left(x_{1}\right)=\text { known } \\
& P\left(x_{t}\right)=\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
&=\sum_{x_{t-1}}^{P\left(x_{t} \mid x_{t-1}\right)} P\left(x_{t-1}\right) \\
& \text { Forward simulation }
\end{aligned}
$$

Video of Demo Ghostbusters Circular Dynamics

Stationary Distributions

- For most chains:
- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$
\begin{array}{r}
P_{\infty}(X)=\frac{P_{\infty+1}(X)}{\alpha}=\sum_{x} P(X \mid x) P_{\infty}(x) \\
\end{array}
$$

Example: Stationary Distributions

- Question: What's $P(X)$ at time $t=$ infinity?

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =P(\text { sun } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { sun } \mid \text { rain }) P_{\infty}(\text { rain }) \\
P_{\infty}(\text { rain }) & =P(\text { rain } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { rain } \mid \text { rain }) P_{\infty}(\text { rain })
\end{aligned}
$$

$$
\begin{aligned}
\left\{\begin{aligned}
\frac{P_{\infty}(\text { sun })}{P_{\infty}(\text { rain })} & =0.9 P_{\infty^{\prime}}(\text { sun })+ \\
ج P_{\infty}(\text { sun }) & =3 P_{\infty}(\text { rain }) \\
P_{\infty}(\text { rain }) & =1 / 3 P_{\infty}(\text { sun })
\end{aligned}\right.
\end{aligned}
$$

Also: $\quad P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$

Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
- Each web page is a possible value of a state
- Initial distribution: uniform over pages
- Transitions:
- With prob. c, uniform jump to a random page (dotted lines, not all shown)
- With prob. 1-c, follow a random outlink (solid lines)

- Stationary distribution
- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)

Hidden Markov Models

Pacman - Sonar

Hidden Markov Models

- Markov chains not so useful for most agents

- Need observations to update your beliefs

- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Example: Weather HMM

Example: Ghostbusters HMM

- $P\left(X_{1}\right)=$ uniform
- $P\left(X \mid X^{\prime}\right)=$ usually move clockwise, but sometimes move in a random direction or stay in place

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$P\left(X_{1}\right)$		

- $P\left(R_{i j} \mid X\right)=$ same sensor model as before: red means close, green means far away.

Video of Demo Ghostbusters - Circular Dynamics -- HMM

Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process: future depends on past via the present
- Current observation independent of all else given current state

- Does this mean that evidence variables are guaranteed to be independent?
- [No, they tend to correlated by the hidden state]

Real HMM Examples

- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)
- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (the belief state) over time

- We start with $B_{1}(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example: Robot Localization

Example from

Michael Pfeiffer

Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b / c required 1 mistake

Example: Robot Localization

Prob 0

1
$\mathrm{t}=2$

Example: Robot Localization

Prob 1
$\mathrm{t}=3$

Example: Robot Localization

Prob
1
$\mathrm{t}=4$

Example: Robot Localization

Prob

1
$\mathrm{t}=5$

Recap: Reasoning Over Time

- Markov models

$$
P\left(X_{1}\right) \quad P\left(X \mid X_{-1}\right)
$$

- Hidden Markov models

$$
P(E \mid X)
$$

X	E	P
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Inference: Find State Given Evidence

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Idea: start with $P\left(X_{1}\right)$ and derive B_{t} in terms of B_{t-1}
- equivalently, derive B_{t+1} in terms of B_{t}

Inference: Base Cases

Inference: Base Cases

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

$\mathrm{T}=1$

$\mathrm{T}=2$
(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
$\mathrm{~T}=5$					

Inference: Base Cases

$$
P\left(X_{1} \mid e_{1}\right)
$$

$$
\begin{aligned}
P\left(x_{1} \mid e_{1}\right) & =P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
& \propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\
& =P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{aligned}
$$

Observation

- Assume we have current belief $P(X \mid$ previous evidence $)$:

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Or, compactly:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Filtering: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid\right.$ evidence $\left._{1: \mathrm{t}}\right)$

Elapse time: compute $P\left(X_{t} \mid e_{1: t-1}\right)$

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

Observe: compute $P\left(X_{t} \mid e_{1: t}\right)$

$$
P\left(x_{t} \mid e_{1: t}\right) \propto P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

Belief: $<\mathbf{P}($ rain $), \mathrm{P}($ sun $)>$		
$P\left(X_{1}\right)$	$<0.5,0.5>$	Prior on X_{1}
$P\left(X_{1} \mid E_{1}=\right.$ umbrella $)$	$<0.82,0.18>$	Observe
$P\left(X_{2} \mid E_{1}=\right.$ umbrella $)$	$<0.63,0.37>$	Elapse time
$P\left(X_{2} \mid E_{1}=u m b, E_{2}=u m b\right)$	$<0.88,0.12>$	Observe

Example: Weather HMM

Pacman - Sonar (P4)

Approximate Inference

- Sometimes $|\mathrm{X}|$ is too big for exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. when X is continuous
- $|\mathrm{X}|^{2}$ may be too big to do updates
- Solution: approximate inference by sampling
- How robot localization works in practice

Approximate Inference: Sampling

Sampling

- Sampling is a lot like repeated simulation
- Predicting the weather, basketball games, ...
- Basic idea
- Draw N samples from a sampling distribution S
- Compute an approximate probability
- Why sample?
- Learning: get samples from a distribution you don't know
- Inference: getting a sample is faster than computing the right answer

Sampling

- Sampling from given distribution
- Step 1: Get sample 4 from uniform distribution over $[0,1)$
- E.g. random() in python
- Step 2: Convert this sample u into an outcome for the given distribution by having each target outcome associated with a subinterval of $[0,1)$ with sub-interval size equal to probability of the outcome
- Example

- If random() returns $u=0.83$, then our sample is $C=$ blue
- E.g, after sampling 8 times:

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $\mathrm{N} \ll|X|$
- Storing map from X to counts would defeat the point
- $\mathrm{P}(\mathrm{x})$ approximated by number of particles with value x
- So, many x may have $P(x)=0$!
- More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- Samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
- Don't sample observation, fix it
- Downweight samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of $\mathrm{P}(\mathrm{e})$)

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)

$(2,2) w=.4$
 step, continue with the next one

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution
Resample

Elapse

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

Particles:
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(2,2)$

Weight

Particles: $(3,2) w=.9$
$(2,3) \quad w=.2$
$(3,2) \quad w=.9$
$(3,1) \quad w=.4$
$(3,3) \quad w=.4$
$(3,2) \quad w=.9$
$(1,3) \quad w=.1$
$(2,3) \quad w=.2$
$(3,2) \quad w=.9$
$(2,2) \quad w=.4$

(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Video of Demo - Moderate Number of Particles

Video of Demo - Huge Number of Particles

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Exact filter, uniform initial beliefs

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$

Particle Filter Localization (Sonar)

Global localization with

40000

Particle Filter Localization (Laser)

