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Our Status in CSE473

o We’re done with Search and planning
o We are done with learning to make decisions
o Probabilistic Reasoning and Machine Learning

o Diagnosis
o Speech recognition
o Tracking objects
o Robot mapping
o Genetics
o Error correcting codes
o … lots more!
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Probability Summary
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Bayes’ Net Representation

o A directed, acyclic graph, one node per random variable
o A conditional probability table (CPT) for each node

o A collection of distributions over X, one for each combination 
of parents’ values

o Bayes’ nets implicitly encode joint distributions

o As a product of local conditional distributions

o To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|A)
P(A|B,E)
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Example: Traffic

o Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Example: Reverse Traffic

o Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Reasoning over Time or Space

o Often, we want to reason about a sequence of observations
o Speech recognition

o Robot localization
o User attention

o Medical monitoring

o Need to introduce time (or space) into our models
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Markov Models

o Value of X at a given time is called the state

o Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

o Stationarity assumption: transition probabilities the same at all times
o Same as MDP transition model, but no choice of action
o A (growable) BN: We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length

X2X1 X3 X4
P(Xt) =?
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Markov Assumption: Conditional Independence

o Basic conditional independence:
o Past and future independent given the present
o Each time step only depends on the previous
o This is called the (first order) Markov property
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Example Markov Chain: Weather

o States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

§ Initial distribution: 1.0 sun

§ CPT P(Xt | Xt-1):
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Bayes Nets -- Independence

o Bayes Net
o Chain Rule
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Burglary Earthqk

Alarm

John 
calls

Mary 
calls



Markov Models (Markov Chains)

o A Markov model defines
o a joint probability distribution:

X2X1 X3 X4

§ One common inference problem:
§ Compute marginals P(Xt) for all time steps t

XN

Joint#Distribu8on#of#a#Markov#Model#

!  Joint#distribu8on:#

!  More#generally:#

!  Ques8ons#to#be#resolved:#
!  Does#this#indeed#define#a#joint#distribu8on?#
!  Can#every#joint#distribu8on#be#factored#this#way,#or#are#we#making#some#assump8ons#
about#the#joint#distribu8on#by#using#this#factoriza8on?#

X2 X1 X3 X4 

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)

Joint#Distribu8on#of#a#Markov#Model#

!  Joint#distribu8on:#

!  More#generally:#

!  Ques8ons#to#be#resolved:#
!  Does#this#indeed#define#a#joint#distribu8on?#
!  Can#every#joint#distribu8on#be#factored#this#way,#or#are#we#making#some#assump8ons#
about#the#joint#distribu8on#by#using#this#factoriza8on?#

X2 X1 X3 X4 

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1) § Why?
§ Chain Rule, 

Indep. Assumption?
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Example Markov Chain: Weather

o Initial distribution: 1.0 sun

o What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

P(X2 = sun)= Â
x1

P(x1, X2 = sun)= Â
x1

P(X2 = sun|x1)P(x1)
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Mini-Forward Algorithm

o Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)
17



Example Run of Mini-Forward Algorithm

§ From initial observation of sun

§ From initial observation of rain

§ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…

[Demo: L13D1,2,3]
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Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!
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Announcements

o PS3: Due today
o Solutions to HW3 -> released
o Quiz2: Nov 29;

o material -> everything up to and including Reinforcement 
learning

o 40-45 min.
o Lecture notes: Uncertainty
o HW3: Dec. 8th
o PS4: Dec. 14th (no extension after that)
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Recap: Markov Models

o Value of X at a given time is called the state

o Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

o Stationarity assumption: transition probabilities the same at all times
o Same as MDP transition model, but no choice of action
o A (growable) BN: We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length

X2X1 X3 X4
P(Xt) =?
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Example Markov Chain: Weather

o Initial distribution: 1.0 sun

o What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

P(X2 = sun)= Â
x1

P(x1, X2 = sun)= Â
x1

P(X2 = sun|x1)P(x1)
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Mini-Forward Algorithm

o Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)
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Video of Demo Ghostbusters Circular Dynamics
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§ Stationary distribution:
§ The distribution we end up with is called 

the stationary distribution   of the 
chain

§ It satisfies

Stationary Distributions

o For most chains:
o Influence of the initial distribution 

gets less and less over time.
o The distribution we end up in is 

independent of the initial 
distribution

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1

28



Example: Stationary Distributions

o Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:
29



Application of Stationary Distribution: Web Link 
Analysis

o PageRank over a web graph
o Each web page is a possible value of a state
o Initial distribution: uniform over pages
o Transitions:

o With prob. c, uniform jump to a
random page (dotted lines, not all shown)

o With prob. 1-c, follow a random
outlink (solid lines)

o Stationary distribution
o Will spend more time on highly reachable pages
o E.g. many ways to get to the Acrobat Reader download 

page
o Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines 
use link analysis along with many other factors (rank 
actually getting less important over time) 30



Hidden Markov Models

32



Pacman – Sonar
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Hidden Markov Models

o Markov chains not so useful for most agents
o Need observations to update your beliefs

o Hidden Markov models (HMMs)
o Underlying Markov chain over states X
o You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

o An HMM is defined by:
o Initial distribution:
o Transitions:
o Emissions:

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)
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Example: Ghostbusters HMM

o P(X1) = uniform

o P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

o P(Rij|X) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X|X’=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X5

X2

Ri,j

X1 X3 X4

Ri,j Ri,j Ri,j 37



Video of Demo Ghostbusters – Circular Dynamics -- HMM
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Conditional Independence

o HMMs have two important independence properties:

o Markov hidden process: future depends on past via the present

o Current observation independent of all else given current state

o Does this mean that evidence variables are guaranteed to be independent?

o [No, they tend to correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Real HMM Examples

o Robot tracking:
o Observations are range readings (continuous)
o States are positions on a map (continuous)

o Speech recognition HMMs:
o Observations are acoustic signals (continuous valued)
o States are specific positions in specific words (so, tens of thousands)

o Machine translation HMMs:
o Observations are words (tens of thousands)
o States are translation options
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Filtering / Monitoring

o Filtering, or monitoring, is the task of tracking the 
distribution Bt(X) = Pt(Xt | e1, …, et) (the belief state) over 
time

o We start with B1(X) in an initial setting, usually uniform

o As time passes, or we get observations, we update B(X)

o The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program
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Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, 

never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer
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Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob
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Example: Robot Localization

t=2

10Prob
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Example: Robot Localization

t=3

10Prob
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Example: Robot Localization

t=4

10Prob
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Example: Robot Localization

t=5

10Prob
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Recap: Reasoning Over Time

o Markov models

o Hidden Markov models

X2X1 X3 X4 rain sun
0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P
rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8



Inference: Find State Given Evidence

o We are given evidence at each time and want to know

o Idea: start with P(X1) and derive Bt in terms of Bt-1
o equivalently, derive Bt+1 in terms of Bt



Inference: Base Cases

E1

X1

X2X1



Inference: Base Cases

X2X1



Passage of Time

o Assume we have current belief P(X | evidence to date)

o Then, after one time step passes:

o Basic idea: beliefs get “pushed” through the transitions
o With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

§ Or compactly:

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

P (Xt+1|e1:t)



Example: Passage of Time

o As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Inference: Base Cases

E1

X1



Observation
o Assume we have current belief P(X | previous evidence):

o Then, after evidence comes in:

o Or, compactly:

E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic idea: beliefs “reweighted” 
by likelihood of evidence

§ Unlike passage of time, we have 
to renormalize



Example: Observation

o As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Filtering: P(Xt | evidence1:t)

Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe

X2X1

X2

E2



Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117



Pacman – Sonar (P4)



Approximate Inference

§ Sometimes |X| is too big for exact inference
§ |X| may be too big to even store B(X)
§ E.g. when X is continuous
§ |X|2 may be too big to do updates

§ Solution: approximate inference by sampling
§ How robot localization works in practice



Approximate Inference: Sampling
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Sampling
o Sampling is a lot like repeated simulation

o Predicting the weather, basketball games, …

o Basic idea
o Draw N samples from a sampling distribution S

o Compute an approximate probability

§ Why sample?
§ Learning: get samples from a distribution 

you don’t know

§ Inference: getting a sample is faster than 
computing the right answer 



Sampling

o Sampling from given 
distribution
o Step 1: Get sample u from uniform 

distribution over [0, 1)
o E.g. random() in python

o Step 2: Convert this sample u into 
an outcome for the given 
distribution by having each target 
outcome associated with a sub-
interval of [0,1) with sub-interval 
size equal to probability of the 
outcome

§ Example

§ If random() returns u = 0.83, 
then our sample is C = blue

§ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

§ Filtering: approximate solution

§ Sometimes |X| is too big to use exact inference
§ |X| may be too big to even store B(X)
§ E.g. X is continuous

§ Solution: approximate inference
§ Track samples of X, not all values
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large
§ In memory: list of particles, not states

§ This is how robot localization works in practice

§ Particle is just new name for sample



Representation: Particles

o Our representation of P(X) is now a list of N particles 
(samples)
o Generally, N << |X|
o Storing map from X to counts would defeat the point

o P(x) approximated by number of particles with value x
o So, many x may have P(x) = 0! 
o More particles, more accuracy

o For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Particle Filtering: Elapse Time

§ Each particle is moved by sampling its next 
position from the transition model

§ Samples’ frequencies reflect the transition 
probabilities

§ Here, most samples move clockwise, but some move in 
another direction or stay in place

§ This captures the passage of time
§ If enough samples, close to exact values before and 

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



§ Slightly trickier:

§ Don’t sample observation, fix it

§ Downweight samples based on the evidence

§ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Particle Filtering: Resample

o Rather than tracking weighted samples, we 
resample

o N times, we choose from our weighted 
sample distribution (i.e. draw with 
replacement)

o This is equivalent to renormalizing the 
distribution

o Now the update is complete for this time 
step, continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Recap: Particle Filtering
o Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Video of Demo – Moderate Number of Particles



Video of Demo – Huge Number of Particles



Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles



Which Algorithm?

Exact filter, uniform initial beliefs



Which Algorithm?
Particle filter, uniform initial beliefs, 300 particles



Robot Localization

o In robot localization:
o We know the map, but not the robot’s position
o Observations may be vectors of range finder 

readings
o State space and readings are typically continuous 

(works basically like a very fine grid) and so we 
cannot store B(X)

o Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)


