# CSE 473: <br> <br> Artificial Intelligence 

 <br> <br> Artificial Intelligence}

## Hanna Hajishirzi <br> Uncertainty, Bayes Nets

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer


## Announcements

- HW3: Nov 15
- PS3: Nov 22
- Quiz 2: Nov 29
- RL Lecture notes released
- HW2 solutions released


## Recap: Approximate Q-Learning

$$
Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
$$

- Q-learning with linear Q-functions:

$$
\begin{aligned}
& \text { transition }=\left(s, a, r, s^{\prime}\right) \\
& \text { difference } \left.=\uparrow r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a) \\
& Q(s, a) \leftarrow \overline{Q(s, a)+\alpha[\text { difference] }} \begin{aligned}
& w_{i} \leftarrow w_{i}+\alpha \text { [difference] } f_{i}(s, a) \quad \\
& \text { Exact Q's } \\
& \text { Approximate Q's }
\end{aligned}
\end{aligned}
$$

- Intuitive interpretation:

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

$$
0
$$

## Policy Search*



## Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate $\mathrm{V} / \mathrm{Q}$ best
- E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
- Q-learning's priority: get Q-values close (modeling)
- Action selection priority: get ordering of Q-values right (prediction)
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights


## Policy Search

- Simplest policy search:
- Start with an initial linear value function or $Q$-function
- Nudge each feature weight up and down and see if your policy is better than before
- Problems:
- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...



## Summary: MDPs and RL

## Known MDP: Offline Solution

## Goal

Compute $\mathrm{V}^{*}, \mathrm{Q}^{*}, \pi^{*}$
Evaluate a fixed policy $\pi$

Technique
Value / policy iteration
Policy evaluation

| Unknown MDP: Model-Based |
| :--- | :--- |
| Goal *use features <br> to generalize <br> Compute $\mathrm{V}^{*}, \mathrm{Q}^{*}, \pi^{*}$ Technique <br> Evaluate a fixed policy $\pi$ PE on approx. MDP |

Unknown MDP: Model-Free

| Goal$*$ use features <br> to generalize | Technique |
| :--- | :--- |
| Compute $\mathrm{V}^{*}, \mathrm{Q}^{*}, \pi^{*}$ | Q-learning |
| Evaluate a fixed policy $\pi$ | Value Learning |

## Conclusion

- We've seen how AI methods can solve problems in:
- Search
- Games
- Markov Decision Problems
- Reinforcement Learning
- Next up: Uncertainty and Learning!



## Our Status in CSE473

- We' re done with Search and planning
- We are done with learning to make decisions
- Probabilistic Reasoning and Machine Learning
- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!



## Outline

Probability

- Bayes Nets
- You'll need all this stuff for the next few weeks, so make sure you go over it now!



## Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

- Sensors are noisy, but we know P(Color | Distance)

| P(red \| 3) | P(orange \| 3) | P(yellow \| 3) | $P($ green \| 3) |
| :---: | :---: | :---: | :---: |
| 0.05 | 0.15 | 0.5 | 0.3 |

## Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $\quad$ = Is it raining?
- T=Is it hot or cold?
- $D=$ How long will it take to drive to work?
- $\mathrm{L}=$ Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains

- $R$ in $\{$ true, false $\}$ (often write as $\{+r,-r\}$ )
- T in \{hot, cold\}
- D in $[0, \infty)$
- L in possible locations, maybe $\{(0,0),(0,1), \ldots\}$


## Probability Distributions

- Associate a probability with each outcome
- Temperature:
- Weather:



## Probability Distributions

- Unobserved random variables have distributions

| $P(T)$ |  |
| :---: | :---: |
| T | P |
| hot | 0.5 |
| cold | 0.5 |

- A distribution is a TABLE of probabilities of values

$$
\begin{gathered}
P(T=\text { Shorthand notation: } \\
P(\text { hot })=P(T=\text { hot }) \\
P(\text { cold })=P(T=\text { cold }) \\
P(\text { rain })=P(W=\text { rain }) \\
\ldots
\end{gathered}
$$

- A probability (lower case value) is a single number

$$
P(W=\text { rain })=0.1
$$

- Must have: $\quad \forall x P(X=x) \geq 0 \quad$ and $\quad \sum_{x} P(X=x)=1$


## Joint Distributions

- A joint distribution over a set of random variables: $X_{1}, X_{2}, \ldots X_{n}$ specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
& E_{\text {obey: }} \quad P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0
\end{aligned}
$$

- Must obey:

$$
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1
$$



## Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\mid\left(x_{1} \ldots x_{n}\right) \in E} P\left(x_{1} \ldots x_{n}\right)
$$

- From a joint distribution, we can calculate the probability of any event
- Probability that it's hot AND sunny?
- Probability that it's hot?

- Typically, the events we care about are partial assignments, like $\mathrm{P}(\mathrm{T}=$ hot $)$


## Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding


$$
P\left(X_{1}=x_{1}\right)=\left(\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)\right.
$$

## Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

| $P(T, W)$ |  |  |
| :---: | :---: | :---: |
| T | W | P |
| hot | sun | 0.4 |
| hot | rain | 0.1 |
| cold | sun | 0.2 |
| cold | rain | 0.3 |



## The Product Rule

- Sometimes have conditional distributions but want the joint

$P(y) P(x \mid y)=P(x, y)$

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$



## The Product Rule

$$
P(y) P(x \mid y)=P(x, y)
$$

- Example:



| $D$ | $W$ | $P$ |
| :---: | :---: | :---: |
| wet | sun | 0.1 |
| dry | sun | 0.9 |
| wet | rain | 0.7 |
| dry | rain | 0.3 |

$P(D, W)$

| $D$ | $W$ | $P$ |
| :---: | :---: | :---: |
| wet | sun |  |
| dry | sun |  |
| wet | rain |  |
| dry | rain |  |

## Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box

- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)

Independence


## Independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write:

- Independence is a simplifying modeling assumption
- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?


## Example: Independence?



## Example: Independence

- N fair, independent coin flips:
$P\left(X_{1}\right)$

| $H$ | 0.5 |
| :---: | :---: |
| T | 0.5 |


| $P\left(X_{2}\right)$ | $P\left(X_{n}\right)$ |  |
| :---: | :---: | :---: |
| H | 0.5 |  |
| T | 0.5 |  |




# CSE 473: <br> <br> Artificial Intelligence 

 <br> <br> Artificial Intelligence}

## Hanna Hajishirzi <br> Uncertainty, Bayes Nets

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer


## RecapUncertainty Summary

- Conditional probability

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- $X$ and $Y$ are conditionally independent given $Z$ if and only if:

$$
X \Perp Y \mid Z
$$

BN lecture $\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)$

## Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box

- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)


## Conditional Independence



## Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether l have a toothache:
- $\mathrm{P}(+$ catch | + toothache, favity) $=\mathrm{P}(+$ catch | +cavity)
- The same independence holds if I don't have a cavity:
- $\mathrm{P}(+$ catch | +toothache, -cavity $)=\mathrm{P}(+$ catch | -cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) = P(Catch | Cavity)

- Equivalent statements:
- P(Toothache | Catch , Cavity) $=\mathrm{P}($ Toothache | Cavity)
- P (Toothache, Catch | Cavity) $=\mathrm{P}$ (Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily


## Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- $X$ is conditionally independent of $Y$ given $Z$

$$
X \Perp Y \mid Z
$$

if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

## Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

- What about this domain:
- Fire
- Smoke
- Alarm



## Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining



## Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm



## Conditional Independence and the Chain Rule

- Chain rule:

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$ $P$ (Rain) $P$ (Traffic|Rain) $P$ (Umbrella|Rain, Traffic)
- With assumption of conditional independence:

$P($ Traffic, Rain, Umbrella $)=$ $P$ (Rain) $P$ (Traffic|Rain) $P$ (Umbrella|Rain)
- We can represent joint distributions by multiplying these simpler local distributions.
- Bayes'nets / graphical models help us express conditional independence assumptions 53


## Bayes'Nets: Big Picture



## Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min, we'll be vague about how these interactions are specified



## Example Bayes' Net: Insurance



## Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)



## Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence


## Example: Traffic

- Variables:
- R: It rains
- T : There is traffic

- Model 1: independence

- Model 2: rain causes traffic

- Why is an agent using model 2 better?


## Example: Traffic II

- Variables
- T:Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity



## Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!



## Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!



## Bayes' Net Semantics



## Bayes' Net Semantics

- A set of nodes, one per variable $X$
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over $X$, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table


$$
P\left(X \mid A_{1} \ldots A_{n}\right)
$$

- Description of a noisy "causal" process

A Bayes net $=$ Topology (graph) + Local Conditional Probabilities

## Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Example:


$$
\begin{aligned}
& P(\text { +cavity, +catch, -toothache }) \\
& =\mathrm{P}(\text { (-toothache } \mid+ \text { cavity }) \mathrm{P}(+ \text { catch } \mid+ \text { cavity }) \mathrm{P}(+ \text { cavity })
\end{aligned}
$$

## Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over $X$, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$



- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$



$$
P\left(X \mid A_{1} \ldots A_{n}\right)
$$

## Probabilities in BNs

- Why are we guaranteed that setting

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$
- Assume conditional independences: $\quad P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
$\rightarrow$ Consequence: $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies


## Example: Coin Flips



$$
P(h, h, t, h)=\mathrm{P}(\mathrm{~h}) \mathrm{P}(\mathrm{~h}) \mathrm{P}(\mathrm{t}) \mathrm{P}(\mathrm{~h})
$$

## Example: Traffic



## Example: Alarm Network



## Uncertainty Summary

- Conditional probability

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

$X \Perp Y \mid Z$
BN lecture

## Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$



