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Announcements

§ HW3: Nov 15
§ PS3: Nov 22
§ Quiz 2: Nov 29
§ RL Lecture notes released
§ HW2 solutions released
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Recap: Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

§ Formal justification: online least squares

Exact Q’s

Approximate Q’s



Model-Free RL
Playing Atari Games
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Policy Search*



Policy Search

§ Problem: often the feature-based policies that work well (win games, maximize 
utilities) aren’t the ones that approximate V / Q best
§ E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they 

still produced good decisions
§ Q-learning’s priority: get Q-values close (modeling)
§ Action selection priority: get ordering of Q-values right (prediction)

§ Solution: learn policies that maximize rewards, not the values that predict them

§ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Policy Search

§ Simplest policy search:
§ Start with an initial linear value function or Q-function
§ Nudge each feature weight up and down and see if your policy is better than before

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

§ Better methods exploit lookahead structure, sample wisely, change 
multiple parameters…



RL: Learning Soccer

[Bansal et al, 2017]



Summary: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

*use features
to generalize

*use features
to generalize



Conclusion

§ We’ve seen how AI methods can solve 
problems in:
§ Search
§ Games
§ Markov Decision Problems
§ Reinforcement Learning

§ Next up: Uncertainty and Learning!



Our Status in CSE473

§ We’re done with Search and planning
§ We are done with learning to make decisions
§ Probabilistic Reasoning and Machine Learning

§ Diagnosis
§ Speech recognition
§ Tracking objects
§ Robot mapping
§ Genetics
§ Error correcting codes
§ … lots more!
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Outline

§ Probability

§ Bayes Nets

§ You’ll need all this stuff for the next few 
weeks, so make sure you go over it now!
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Inference in Ghostbusters

§ A ghost is in the grid 
somewhere

§ Sensor readings tell how 
close a square is to the 
ghost
§ On the ghost: red
§ 1 or 2 away: orange
§ 3 or 4 away: yellow
§ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

§ Sensors are noisy, but we know P(Color | Distance)
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Random Variables

§ A random variable is some aspect of the world about 
which we (may) have uncertainty

§ R = Is it raining?
§ T = Is it hot or cold?
§ D = How long will it take to drive to work?
§ L = Where is the ghost?

§ We denote random variables with capital letters

§ Random variables have domains

§ R in {true, false}   (often write as {+r, -r})
§ T in {hot, cold}
§ D in [0, ¥)
§ L in possible locations, maybe {(0,0), (0,1), …} 16



Probability Distributions

§ Associate a probability with each outcome

§ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

§ Weather: 
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Shorthand notation:

OK if all domain entries are unique

Probability Distributions

§ Unobserved random variables have distributions

§ A distribution is a TABLE of probabilities of values

§ A probability (lower case value) is a single number

§ Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0
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Joint Distributions
§ A joint distribution over a set of random variables:

specifies a real number for each assignment (or outcome): 

§ Must obey:

§ Size of distribution if n variables with domain sizes d?

§ For all but the smallest distributions, impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Events

§ An event is a set E of outcomes

§ From a joint distribution, we can 
calculate the probability of any event

§ Probability that it’s hot AND sunny?

§ Probability that it’s hot?

§ Probability that it’s hot OR sunny?

§ Typically, the events we care about 
are partial assignments, like P(T=hot)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Marginal Distributions

§ Marginal distributions are sub-tables which eliminate variables 
§ Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4
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Conditional Probabilities

§ A simple relation between joint and conditional probabilities
§ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)
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The Product Rule

§ Sometimes have conditional distributions but want the joint

35



The Product Rule

§ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06
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Probabilistic Models

§ Models describe how (a portion of) the world works

§ Models are always simplifications
§ May not account for every variable
§ May not account for all interactions between variables
§ “All models are wrong; but some are useful.”

– George E. P. Box

§ What do we do with probabilistic models?
§ We (or our agents) need to reason about unknown 

variables, given evidence
§ Example: explanation (diagnostic reasoning)
§ Example: prediction (causal reasoning)
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Independence
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§ Two variables are independent if:

§ This says that their joint distribution factors into a product two 
simpler distributions

§ Another form:

§ We write: 

§ Independence is a simplifying modeling assumption

§ Empirical joint distributions: at best “close” to independent

§ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence
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Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Example: Independence

§ N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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RecapUncertainty Summary
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BN lecture



Probabilistic Models

§ Models describe how (a portion of) the world works

§ Models are always simplifications
§ May not account for every variable
§ May not account for all interactions between variables
§ “All models are wrong; but some are useful.”

– George E. P. Box

§ What do we do with probabilistic models?
§ We (or our agents) need to reason about unknown 

variables, given evidence
§ Example: explanation (diagnostic reasoning)
§ Example: prediction (causal reasoning)
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Conditional Independence

46



Conditional Independence

§ P(Toothache, Cavity, Catch)

§ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

§ The same independence holds if I don’t have a cavity:
§ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

§ Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily
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Conditional Independence

§ Unconditional (absolute) independence very rare (why?)

§ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

§ X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if
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Conditional Independence

50

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Conditional Independence

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining
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Conditional Independence

§ What about this domain:

§ Fire
§ Smoke
§ Alarm
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Conditional Independence and the Chain Rule

§ Chain rule: 

§ Trivial decomposition:

§ With assumption of conditional independence:

§ We can represent joint distributions by multiplying these simpler local distributions.
§ Bayes’nets / graphical models help us express conditional independence assumptions 53



Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

§ Two problems with using full joint distribution tables 
as our probabilistic models:
§ Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
§ Hard to learn (estimate) anything empirically about more 

than a few variables at a time

§ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)
§ More properly called graphical models
§ We describe how variables locally interact
§ Local interactions chain together to give global, indirect 

interactions
§ For about 10 min, we’ll be vague about how these 

interactions are specified
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Example Bayes’ Net: Insurance

57



Graphical Model Notation

§ Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)

§ Arcs: interactions
§ Indicate “direct influence” between variables
§ Formally: encode conditional independence 

(more later)

§ For now: imagine that arrows mean 
direct causation (in general, they don’t!)
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Example: Coin Flips

§ N independent coin flips

§ No interactions between variables: absolute independence

X1 X2 Xn
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Example: Traffic

§ Variables:
§ R: It rains
§ T: There is traffic

§ Model 1: independence

§ Why is an agent using model 2 better?

R

T

R

T

§ Model 2: rain causes traffic
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§ Variables
§ T: Traffic
§ R: It rains
§ L: Low pressure
§ D: Roof drips
§ B: Ballgame
§ C: Cavity

Example: Traffic II
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Example: Alarm Network

§ Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!
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Example: Alarm Network

§ Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!

Burglary Earthqk

Alarm

John 
calls

Mary 
calls 65



Bayes’ Net Semantics
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Bayes’ Net Semantics

§ A set of nodes, one per variable X

§ A directed, acyclic graph

§ A conditional distribution for each node

§ A collection of distributions over X, one for each 
combination of parents’ values

§ CPT: conditional probability table

§ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
67



Probabilities in BNs

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

§ Example:

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity) 68



Bayes’ Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents’ values

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:

A1

X

An
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Probabilities in BNs

§ Why are we guaranteed that setting

results in a proper joint distribution?  

§ Chain rule (valid for all distributions): 

§ Assume conditional independences: 

à Consequence:

§ Not every BN can represent every joint distribution

§ The topology enforces certain conditional independencies 70



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)
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Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

P(+r)P(-t|+r) = ¼*1/4 

72



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|A)
P(A|B,E)
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Uncertainty Summary
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Bayes’ Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents’ values

§ Bayes’ nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:
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