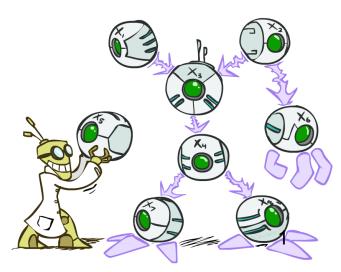
CSE 473: Artificial Intelligence

Hanna Hajishirzi Uncertainty, Bayes Nets

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer



Announcements

- HW3: Nov 15
- PS3: Nov 22
- Quiz 2: Nov 29
- RL Lecture notes released
- HW2 solutions released

Recap: Approximate Q-Learning

Exact Q's

Approximate Q's

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

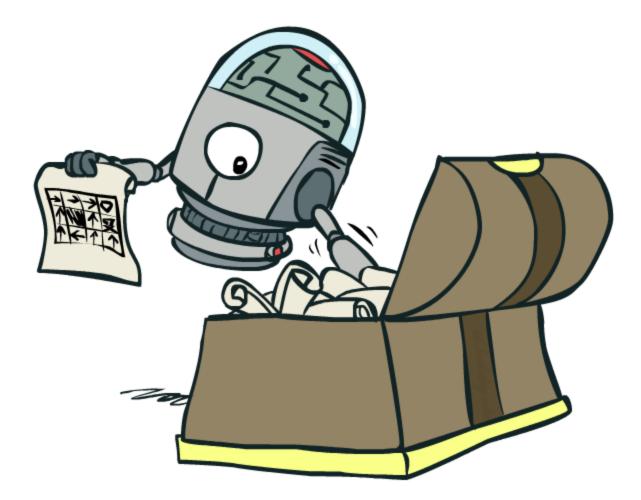
transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow \overline{Q(s, a)} + \alpha$ [difference]
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Model-Free RL Playing Atari Games

Policy Search*



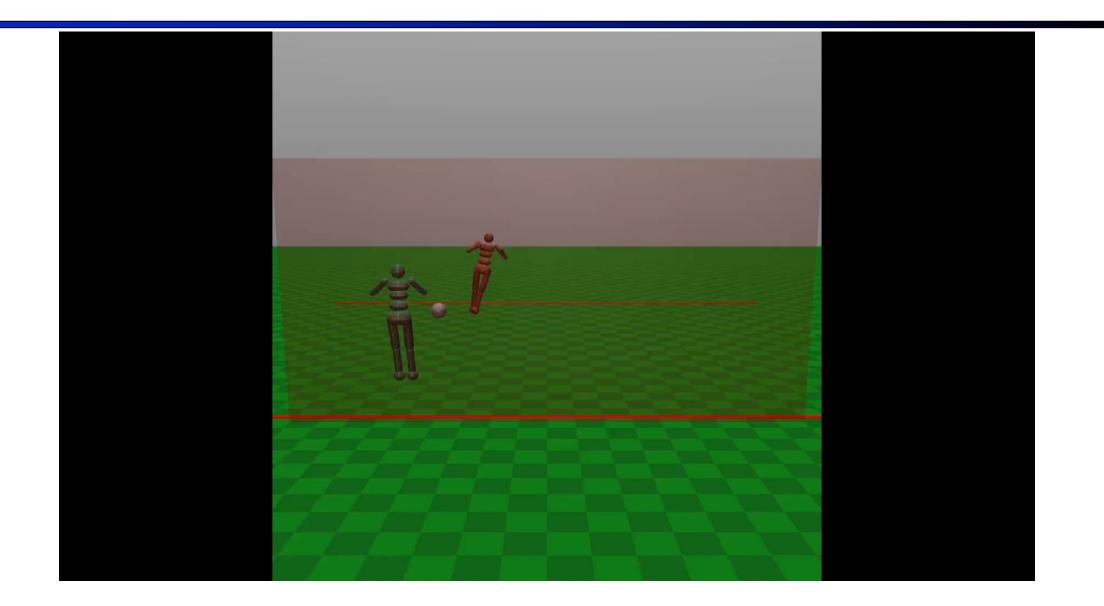
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
- Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...



Summary: MDPs and RL

Known MDP: Offline Solution	
-----------------------------	--

Goal	Technique
Compute V*, Q*, π^*	Value / policy iteration
Evaluate a fixed policy π	Policy evaluation

Unknown MDP: Model-Based

Goal	*use features to generalize	Technique	
Compute V*,	Q* , π*	VI/PI on approx. MDP	
Evaluate a fixed policy π		PE on approx. MDP	

Unknown MDP: Model-Free

Goal	*use features to generalize	Technique
Compute V	/*, Q*, π*	Q-learning 4
Evaluate a	fixed policy π	Value Learning 🥂

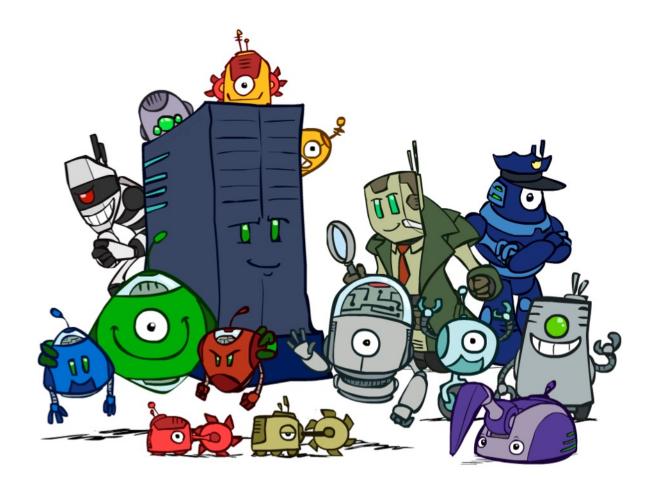
Conclusion

We've seen how AI methods can solve problems in:

Search

Games

- Markov Decision Problems
- Reinforcement Learning
- Next up: Uncertainty and Learning!

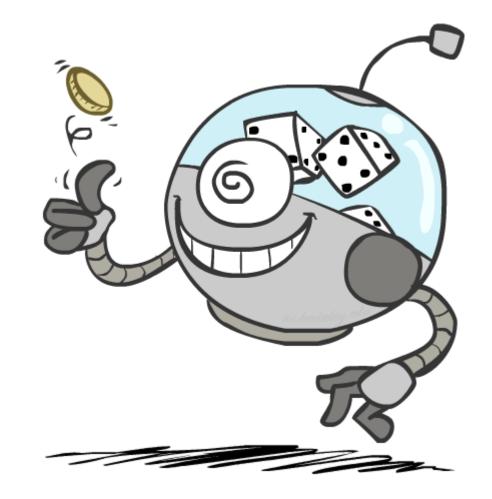


Our Status in CSE473

- We're done with Search and planning
- We are done with learning to make decisions
- Probabilistic Reasoning and Machine Learning
 - Diagnosis
 - Speech recognition
 - Tracking objects
 - Robot mapping
 - Genetics
 - Error correcting codes
 - Interpretended in the second secon

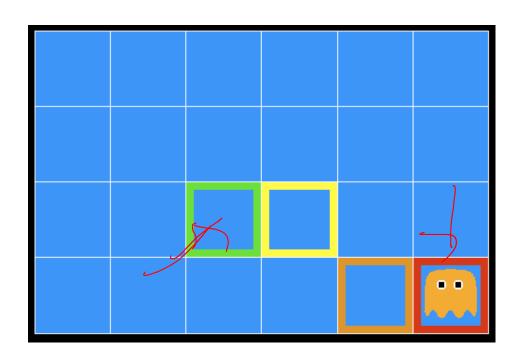
Outline

- Probability
- Bayes Nets
- You'll need all this stuff for the next few weeks, so make sure you go over it now!



Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green

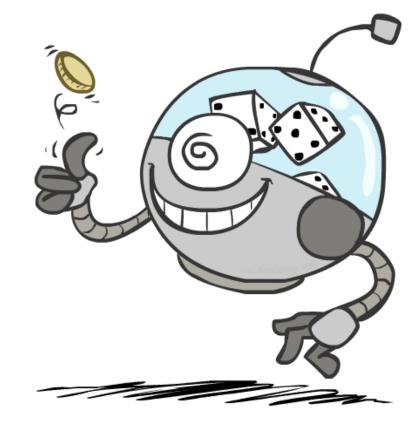


Sensors are noisy, but we know P(Color | Distance)

0.05 0.15 0.5 0.3	P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
	,0.05	0.15	0.5	0.3

Random Variables

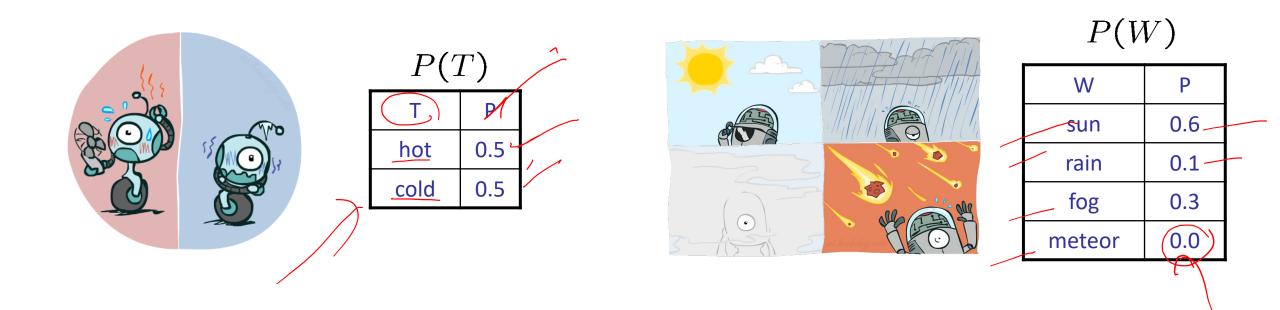
- A random variable is some aspect of the world about which we (may) have uncertainty
 - R =Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

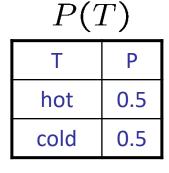
- Associate a probability with each outcome
 - Temperature:

• Weather:

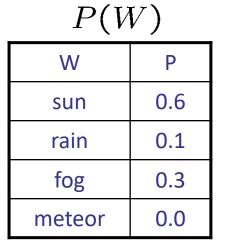


Probability Distributions

Unobserved random variables have distributions



 \forall



- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

Must have:

$$x P(X = x) \ge 0$$
 and

Shorthand notation:

$$P(f_{-h_0} \in J) \subseteq (f_{-h_0} \in J)$$

 $P(hot) = P(T = hot),$
 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
....

OK *if* all domain entries are unique

$$\sum_{x} P(X = x) = 1$$
18

Joint Distributions

A joint distribution over a set of random variables: X₁, X₂,...X_n specifies a real number for each assignment (or outcome):

$$P(X_{1} = x_{1}, X_{2} = x_{2}, \dots X_{n} = x_{n})$$

$$P(x_{1}, x_{2}, \dots x_{n})$$

• Must obey: $P(x_1, x_2, \dots x_n) \geq 0$

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

Size of distribution if n variables with domain sizes d?
For all but the smallest distributions, impractical to write out!

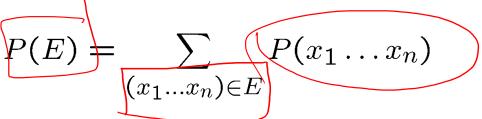
19

Events

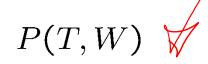
D. (j

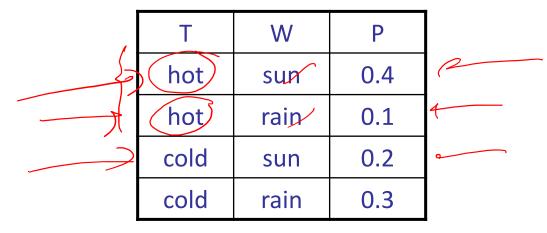
0.5

• An *event* is a set E of outcomes



- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)



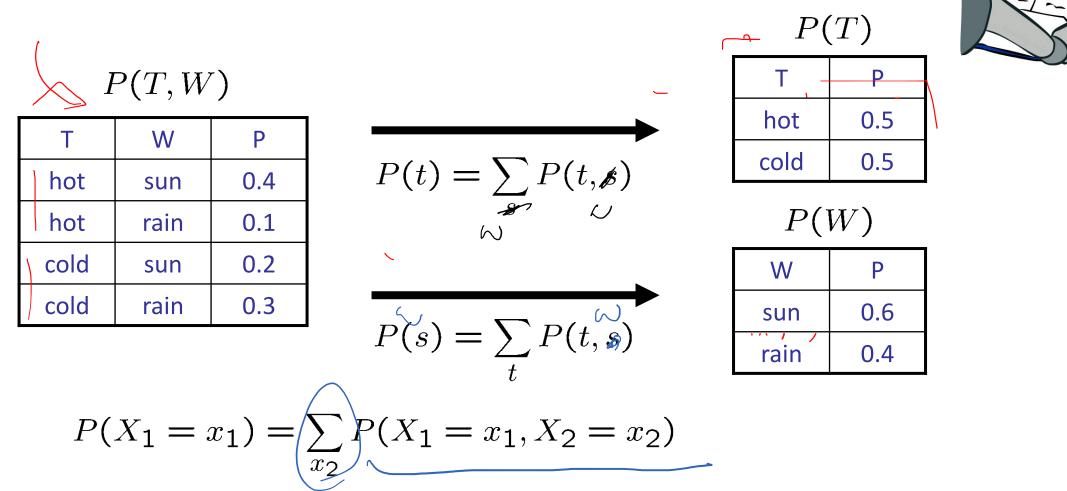


Marginal Distributions

P(x,y)

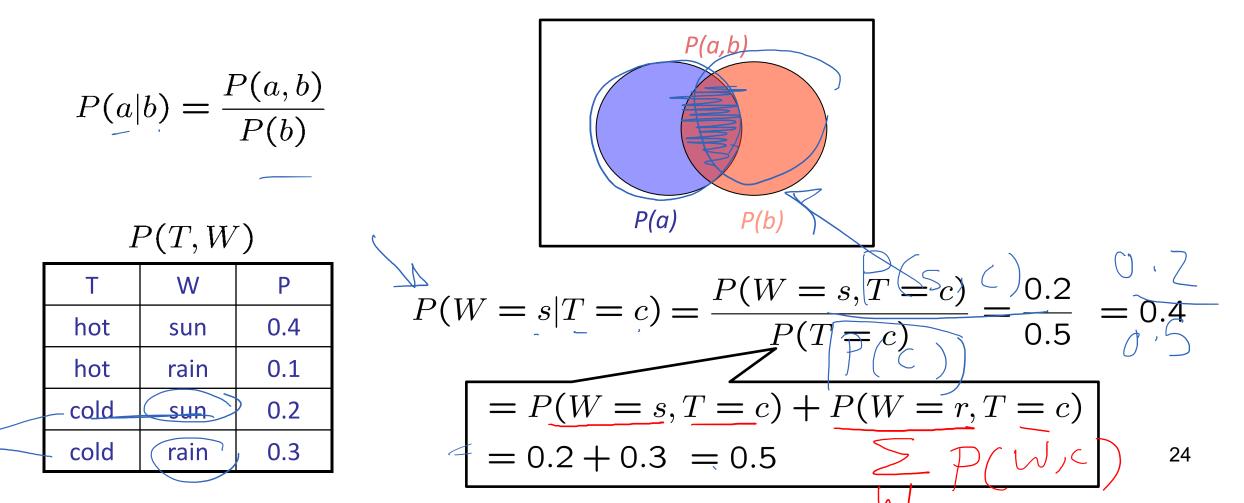
21

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding



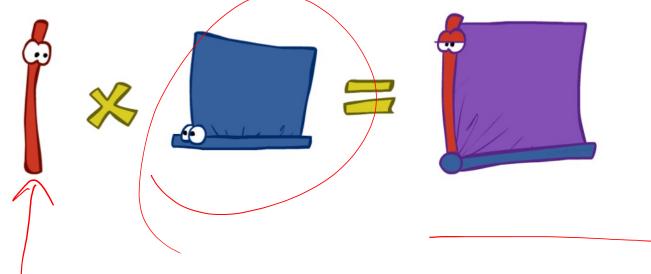
Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

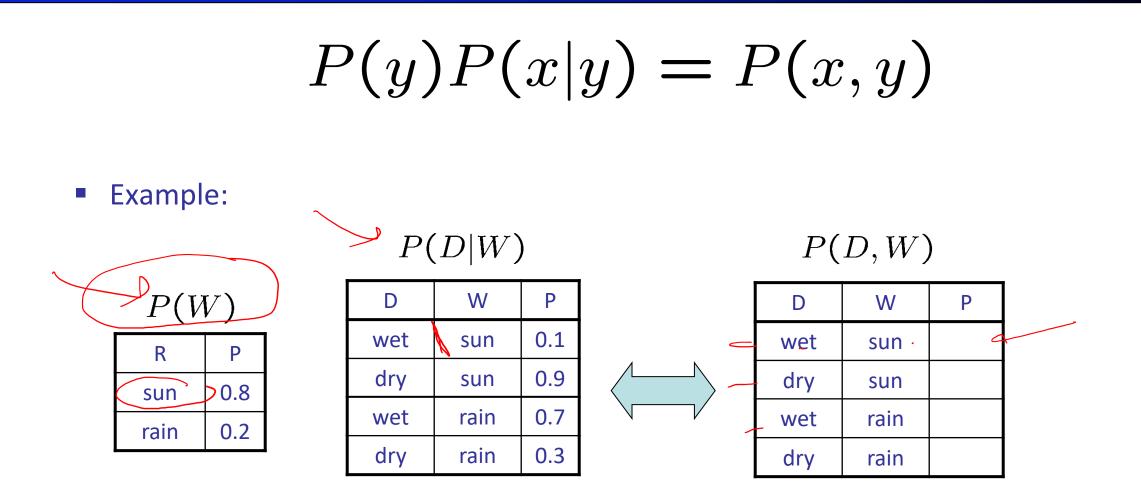


The Product Rule

• Sometimes have conditional distributions but want the joint P(x|y) = P(x|y) = P(x,y) P(x|y) = P(x,y) $P(x|y) = \frac{P(x,y)}{P(y)}$

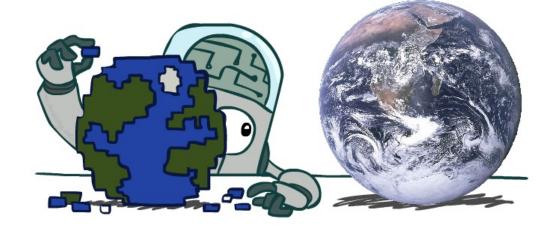


The Product Rule



Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box



- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)

Independence



Independence

Two variables are *independent* if:

$$\forall x, y : P(x, y) = \underline{P(x)}P(y)$$

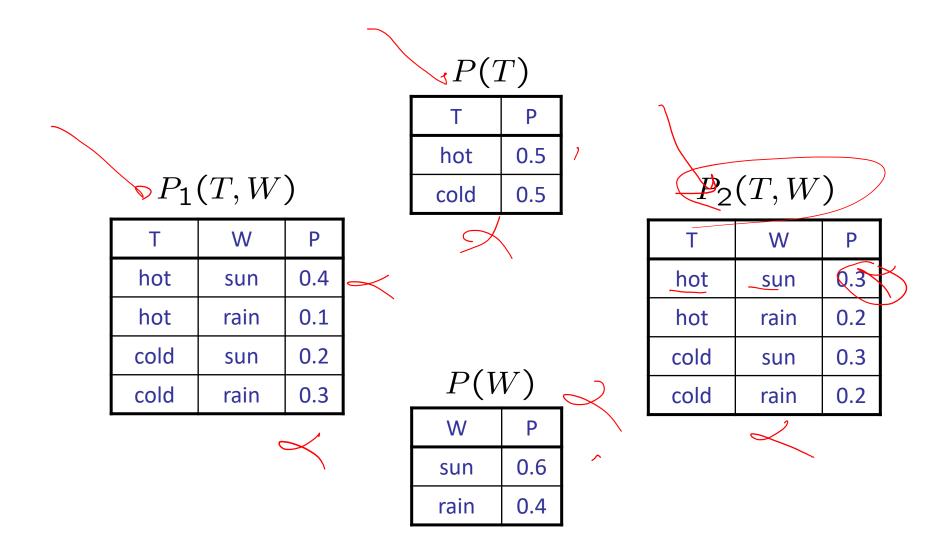
- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

 $\forall x, y : P(x|y) = P(x)$

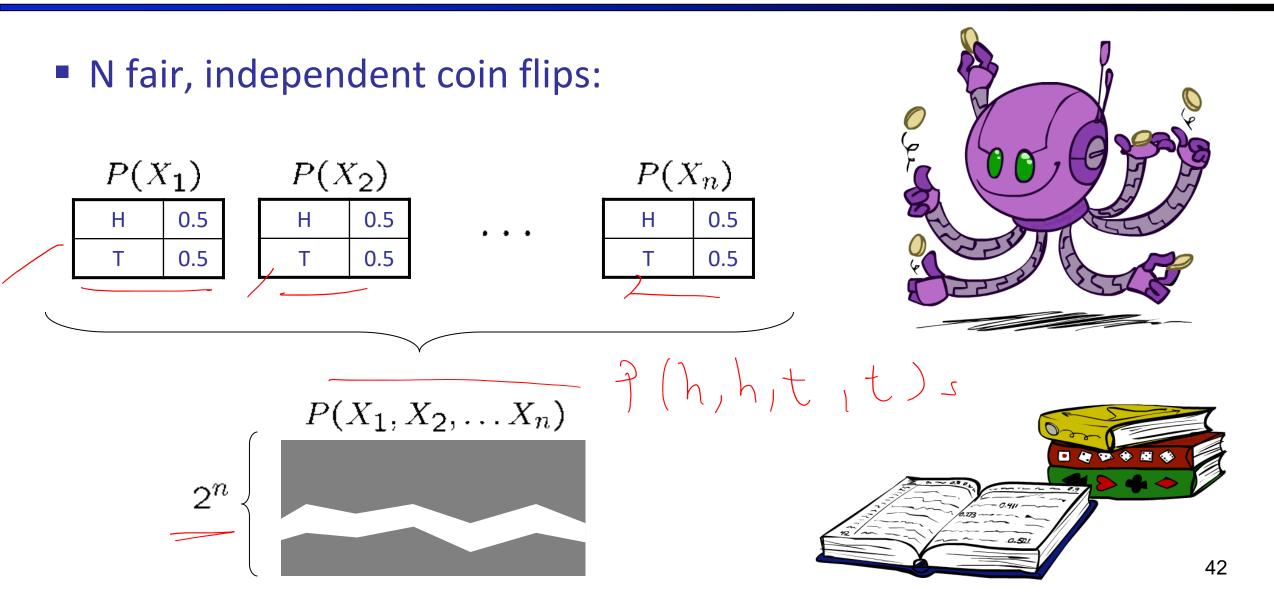
 $X \parallel Y$

- We write:
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?



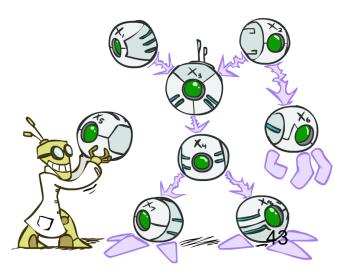
Example: Independence



CSE 473: Artificial Intelligence

Hanna Hajishirzi Uncertainty, Bayes Nets

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer



RecapUncertainty Summary

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

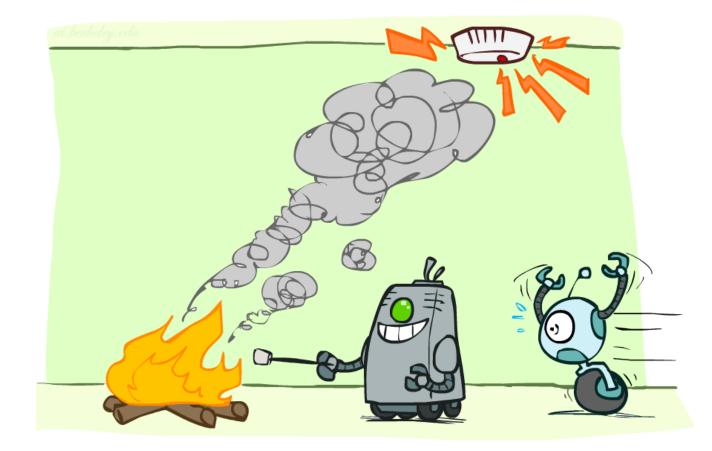
$$P(x,y) = P(x|y)P(y)$$

- Chain rule $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ $= \prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$
- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if: $X \perp |Y|Z$ BN lecture $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

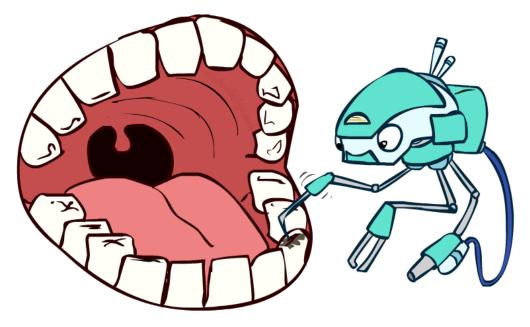
Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)



- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, -cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily



- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

 $X \perp \!\!\!\perp Y | Z$

if and only if:

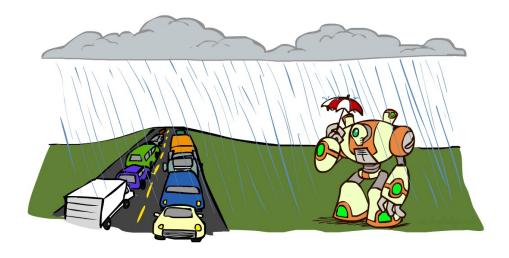
 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

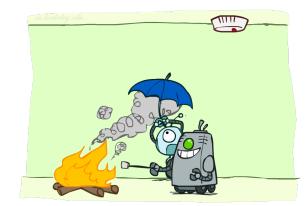
or, equivalently, if and only if

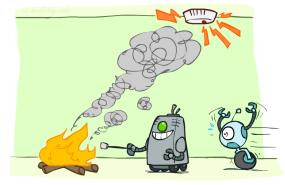
$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm

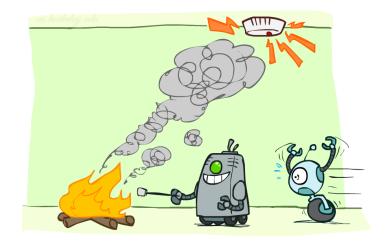


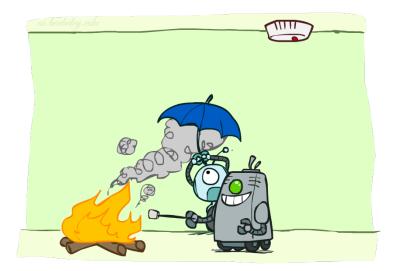




- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm





Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$
- Trivial decomposition:

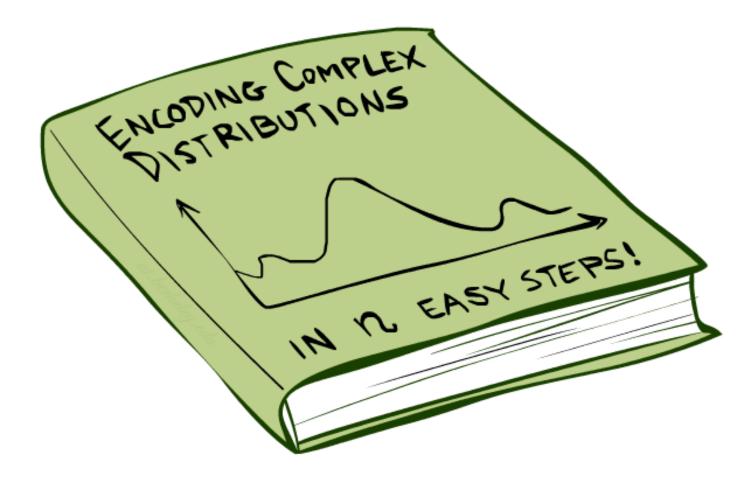
P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

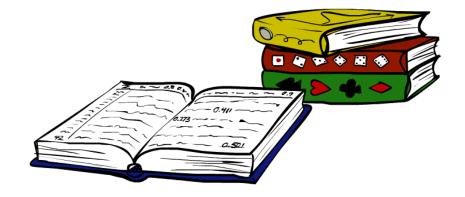
- We can represent joint distributions by multiplying these simpler local distributions.
- Bayes'nets / graphical models help us express conditional independence assumptions 53

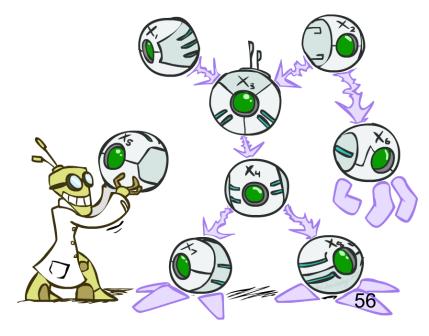
Bayes'Nets: Big Picture



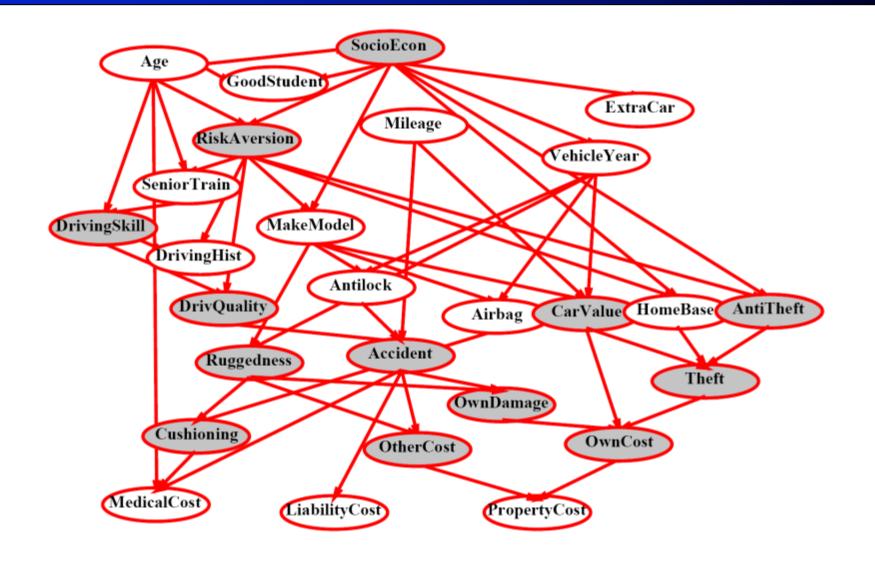
Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified





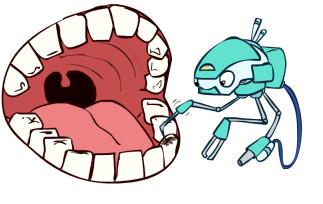
Example Bayes' Net: Insurance

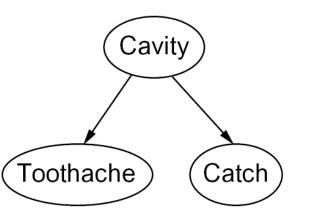


Graphical Model Notation

59

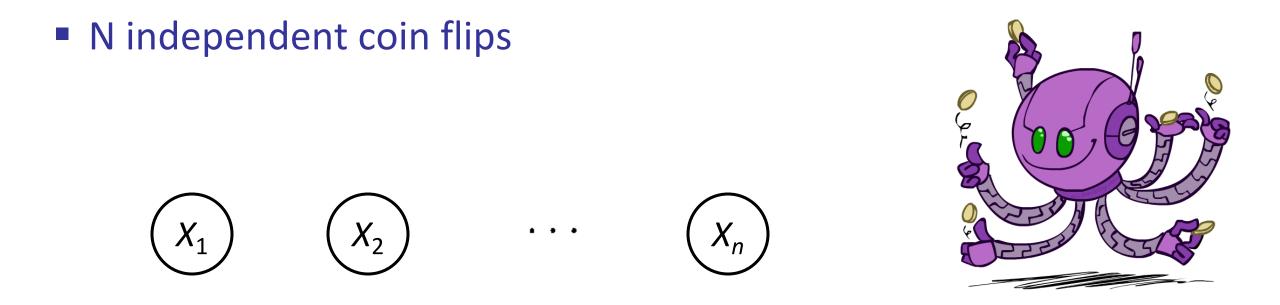
- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)





Weather

Example: Coin Flips

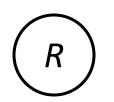


No interactions between variables: absolute independence

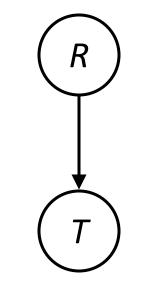
Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

Model 1: independence



Model 2: rain causes traffic



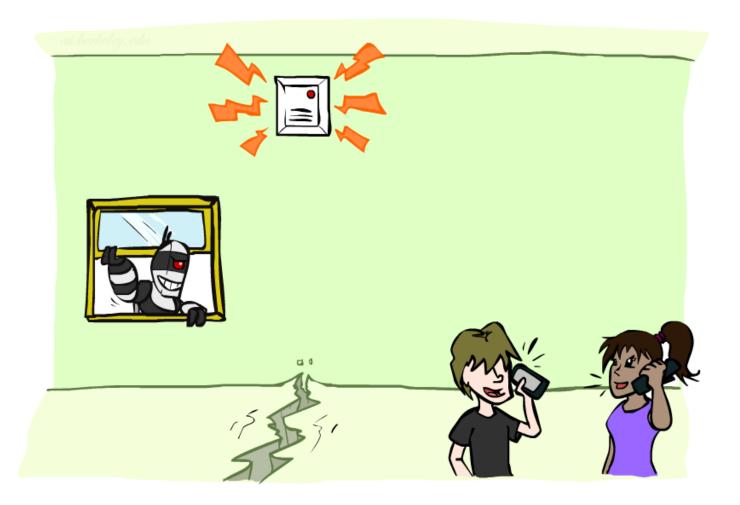
Why is an agent using model 2 better?

Example: Traffic II

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

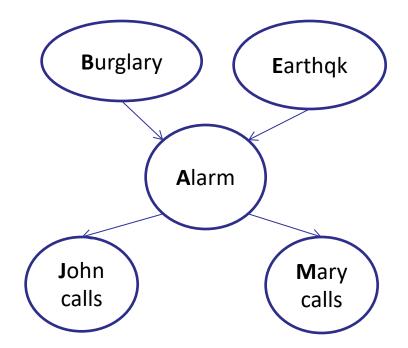
Example: Alarm Network

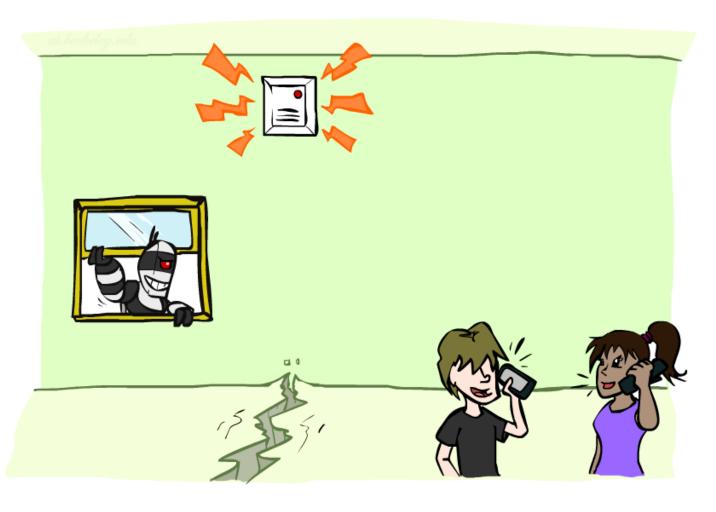
- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!



Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!





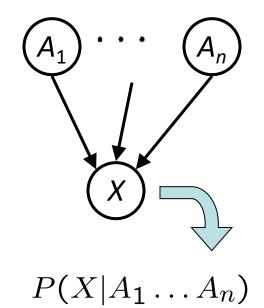
Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- CPT: conditional probability table
- Description of a noisy "causal" process



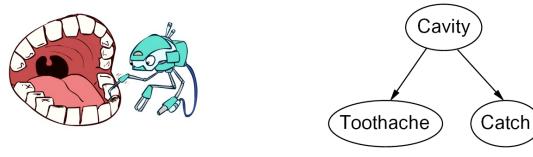
A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:



P(+cavity, +catch, -toothache)

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)

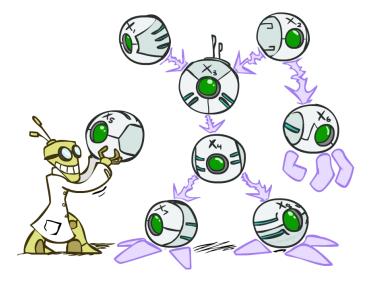
Bayes' Net Representation

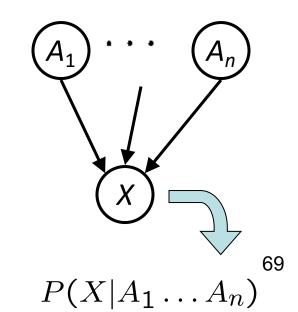
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$





Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

• Chain rule (valid for all distributions):

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

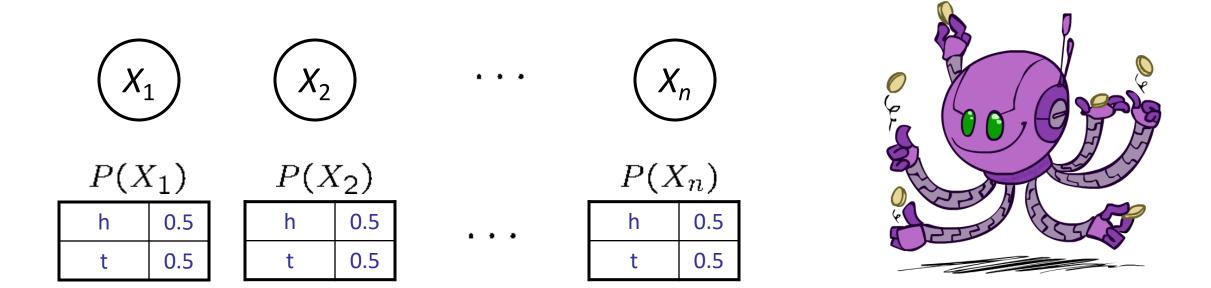
<u>Assume</u> conditional independences:

$$P(x_i|x_1,\ldots,x_{i-1}) = P(x_i|parents(X_i))$$

→ Consequence:
$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

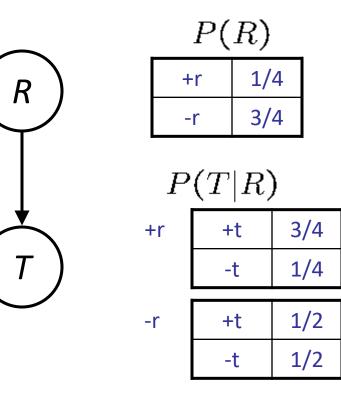
Example: Coin Flips



P(h, h, t, h) = P(h)P(h)P(t)P(h)

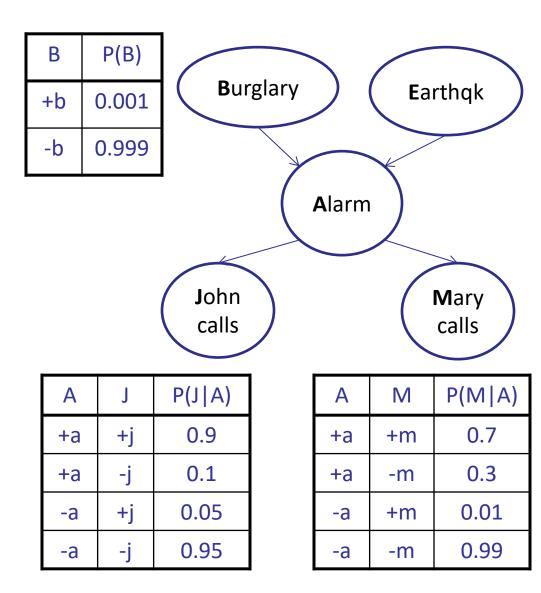
Only distributions whose variables are absolutely independent can be represented by a Bayes ' net with no arcs.

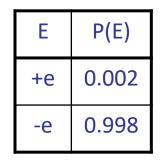
Example: Traffic

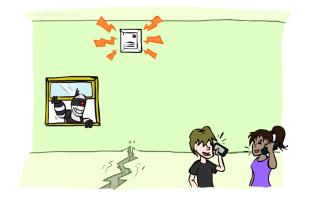


$$P(+r, -t) = P(+r)P(-t|+r) = \frac{1}{4} \cdot \frac{1}{4}$$

Example: Alarm Network







В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

P(M|A)P(J|A)P(A|B,E)

Uncertainty Summary

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

- Product rule P(x,y) = P(x|y)P(y)
- Chain rule $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ $= \prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$
- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$

• X and Y are conditionally independent given Z if and only if: $X \perp \!\!\!\perp Y | Z$ $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

BN lecture

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

