CSE 473: Artificial Intelligence

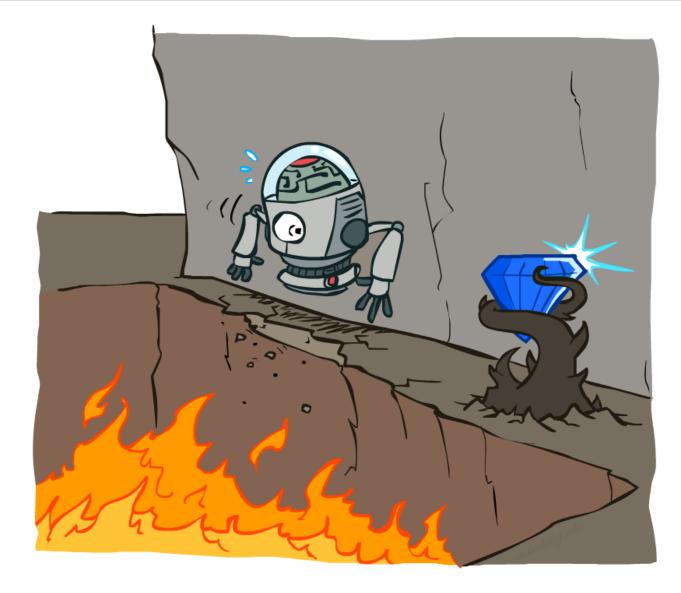
Hanna Hajishirzi Markov Decision Processes

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Review and Outline

- Adversarial Games
 - Minimax search
 - α-β search
 - Evaluation functions
 - Multi-player, non-0-sum
- Stochastic Games
 - Expectimax
 - Markov Decision Processes
 - Reinforcement Learning

Non-Deterministic Search

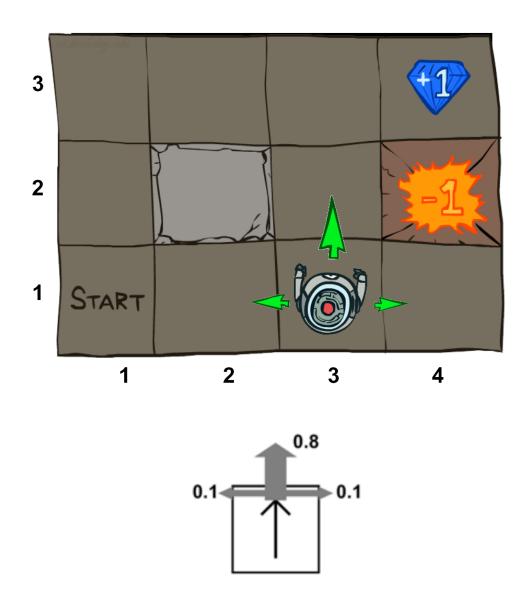


Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 (if there is use well there)

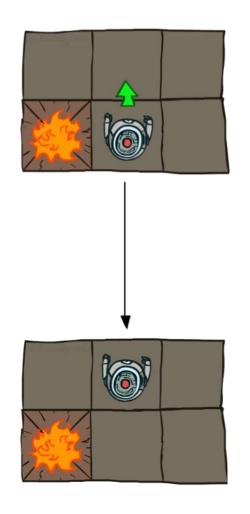
(if there is no wall there)

- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

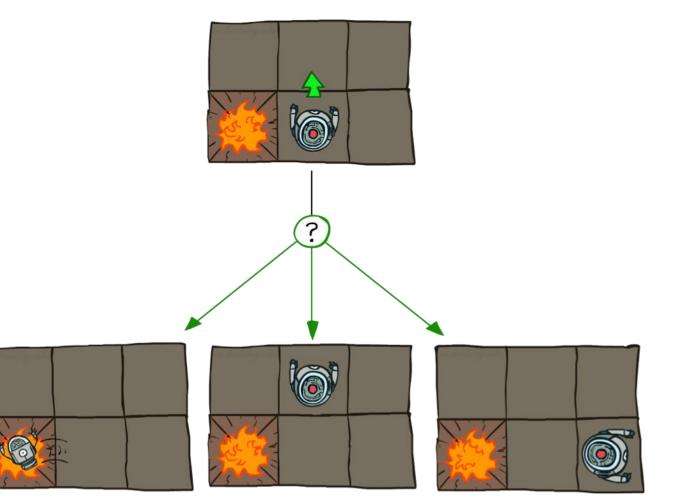


Grid World Actions

Deterministic Grid World



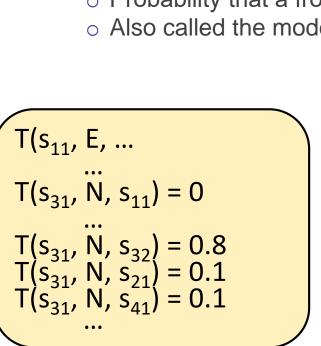
Stochastic Grid World



Markov Decision Processes

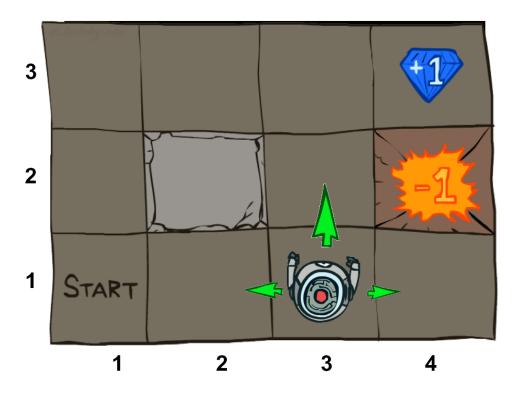
• An MDP is defined by:

- \circ A set of states s \in S
- A set of actions $a \in A$
- \circ A transition function T(s, a, s')
 - \circ Probability that a from s leads to s', i.e., P(s'| s, a)
 - Also called the model or the dynamics



T is a Big Table! 11 X 4 x 11 = 484 entries

For now, we give this as input to the agent



Markov Decision Processes

• An MDP is defined by:

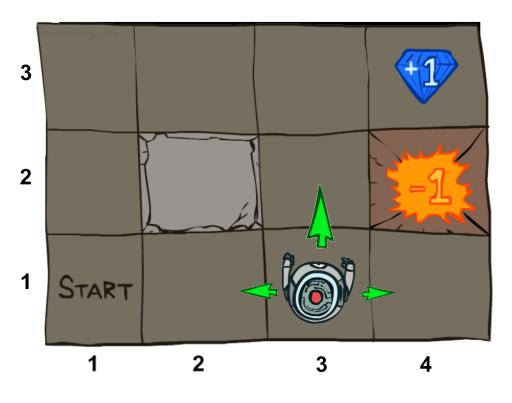
- $\circ \ A \ set \ of \ states \ s \ \in \ S$
- \circ A set of actions $a \in A$
- A transition function T(s, a, s')
 - \circ Probability that a from s leads to s', i.e., P(s'| s, a)
 - Also called the model or the dynamics
- A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')

$$R(s_{32}, N, s_{33}) = -0.01 \leftarrow R(s_{32}, N, s_{42}) = -1.01 \leftarrow R(s_{33}, E, s_{43}) = 0.99$$

Cost of breathing

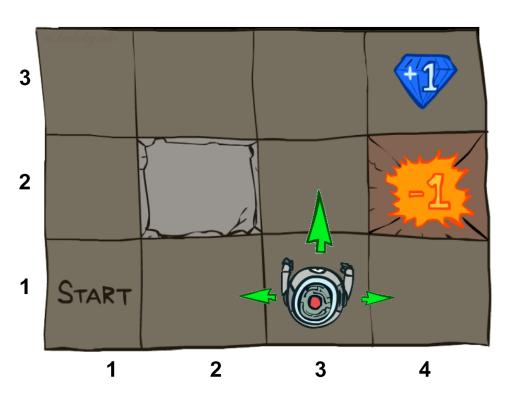
R is also a Big Table!

For now, we also give this to the agent



Markov Decision Processes

- An MDP is defined by:
 - $\circ \ A \ set \ of \ states \ s \ \in \ S$
 - \circ A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s, a)
 - $\,\circ\,$ Also called the model or the dynamics
 - A reward function R(s, a, s')
 - $\,\circ\,$ Sometimes just R(s) or R(s')
 - o A start state
 - o Maybe a terminal state
- MDPs are non-deterministic search problems
 - $\circ~$ One way to solve them is with expectimax search
 - o We'll have a new tool soon



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

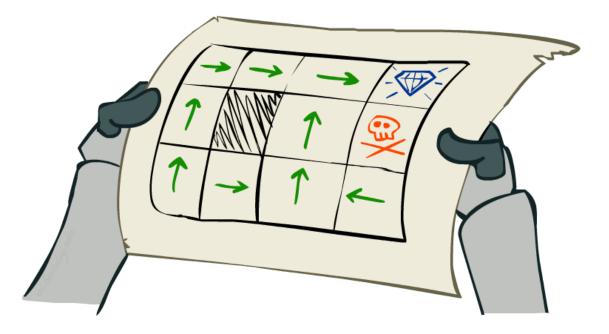
=

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

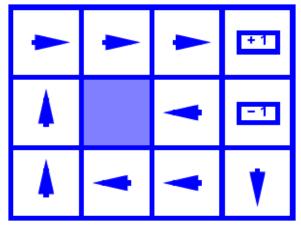
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \to A$
 - $\circ~$ A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - o An explicit policy defines a reflex agent

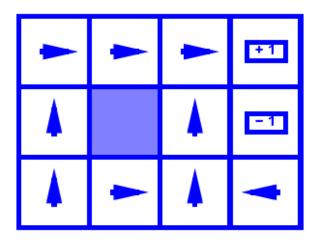


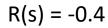
Optimal policy when R(s, a, s') = -0.4 for all non-terminals s

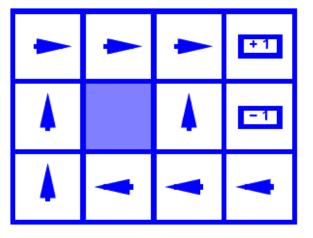
Optimal Policies



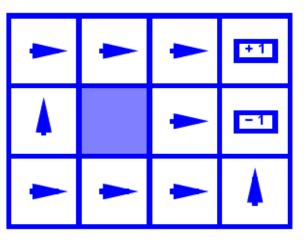
R(s) = -0.01



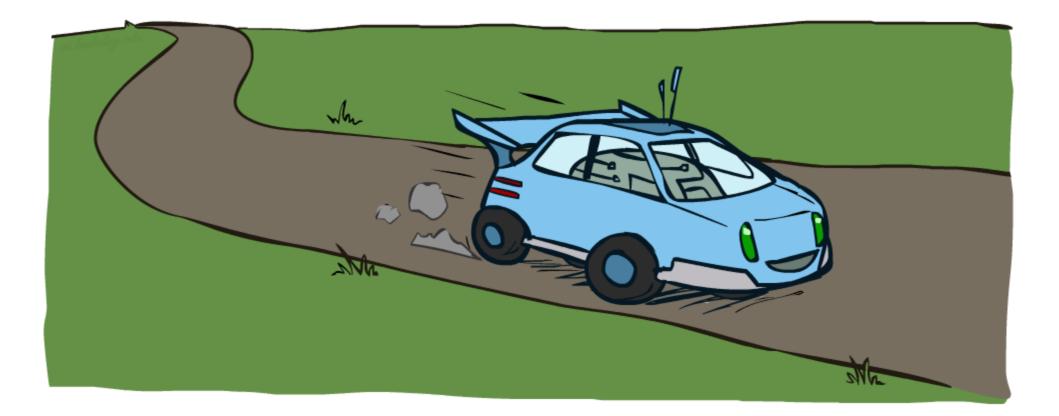




R(s) = -0.03

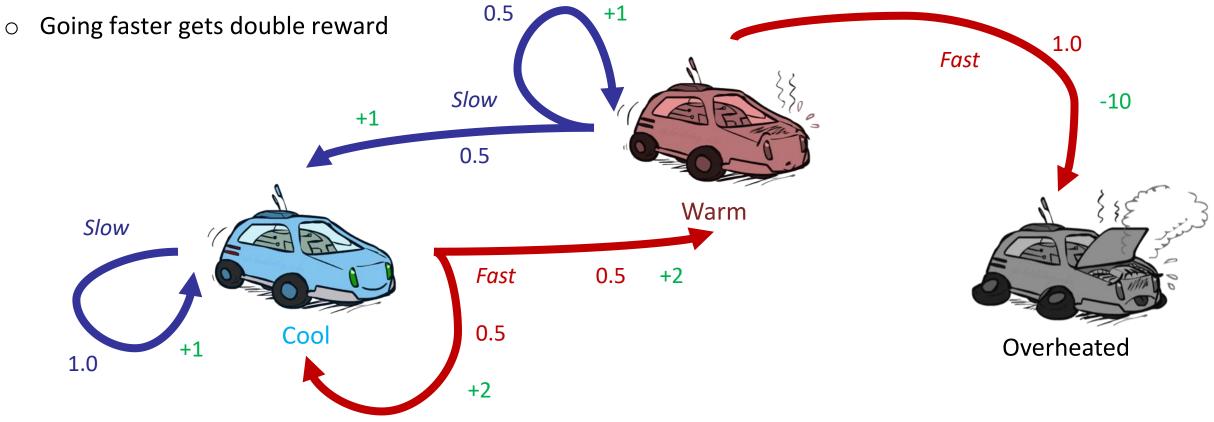


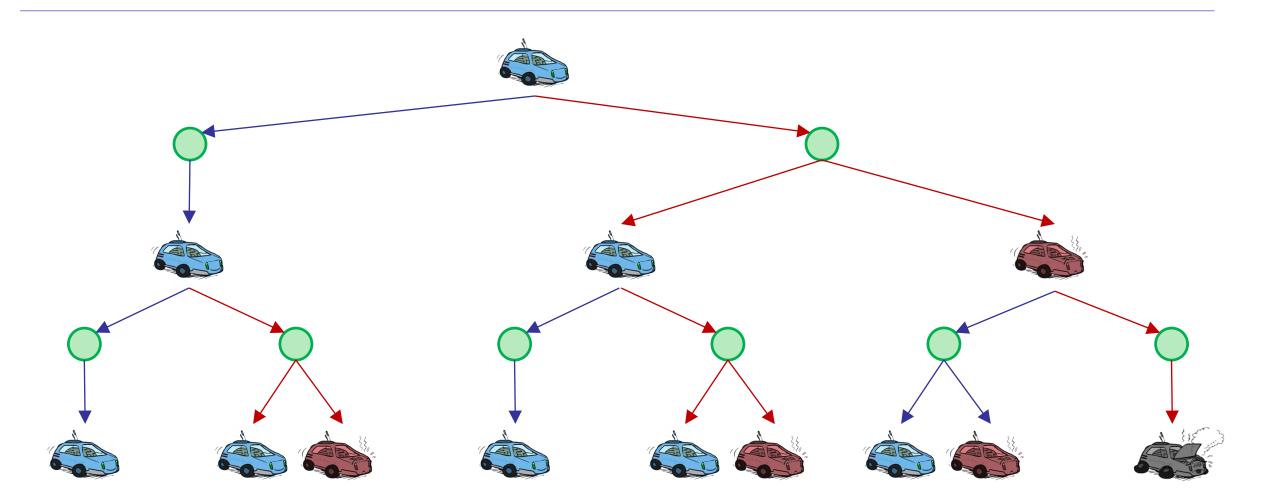
Example: Racing



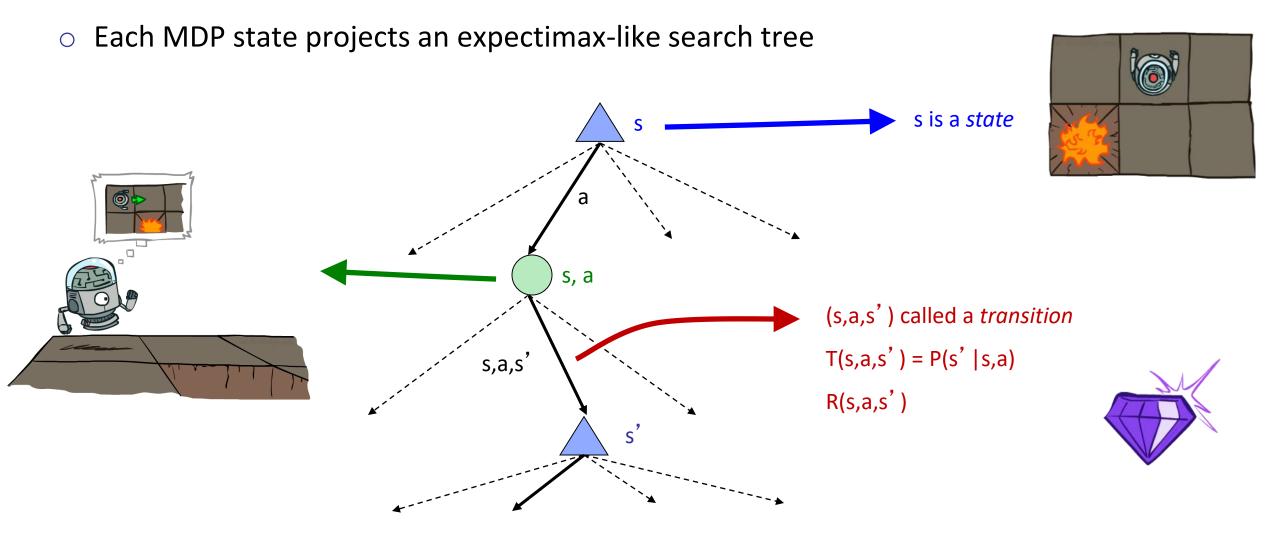
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*

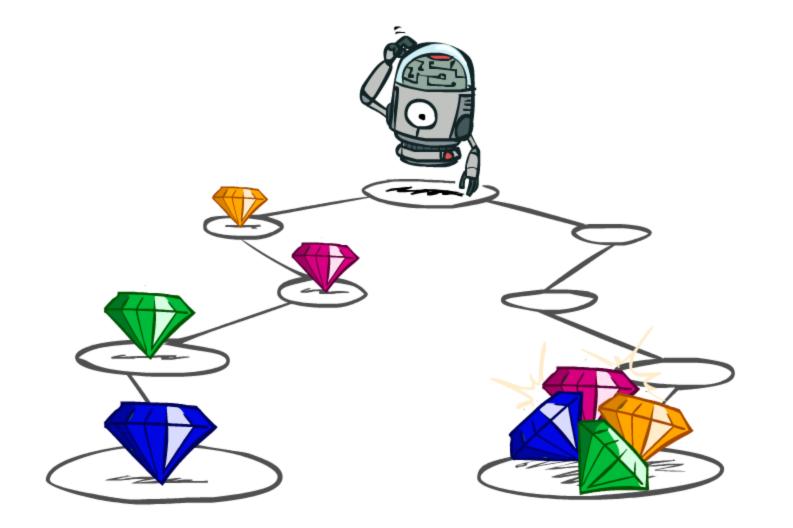




MDP Search Trees



Utilities of Sequences

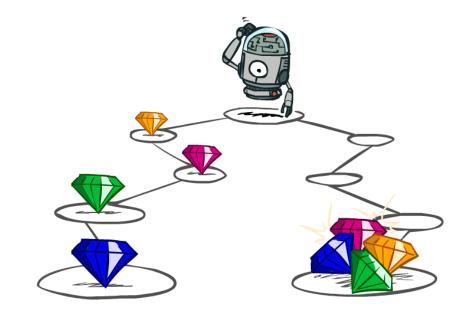


Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less? [1, 2, 2] or [2, 3, 4]

• Now or later? [0, 0, 1] or [1, 0, 0]



Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

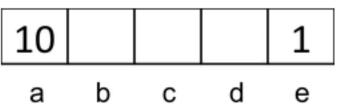
Discounting

• How to discount?

- Each time we descend a level, we multiply in the discount once
- Why discount?
 - Think of it as a gamma chance of ending the process at every step
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 U([1,2,3]) < U([3,2,1])

Quiz: Discounting

• Given:



o Actions: East, West, and Exit (only available in exit states a, e)

Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy?

10 <-	<-	<-	1
-------	----	----	---

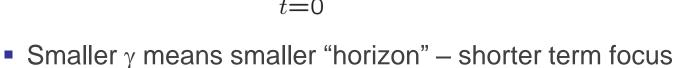
• Quiz 2: For $\gamma = 0.1$, what is the optimal policy? 10 <-

10 <- <- -> 1

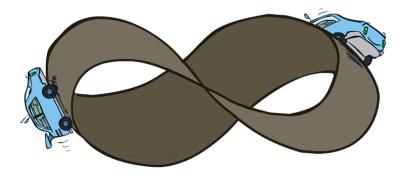
 $\circ\,$ Quiz 3: For which γ are West and East equally good when in state d? $_{1\gamma=10\,\gamma^3}$

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - Discounting: use $0 < \gamma < 1$ $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$



 Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



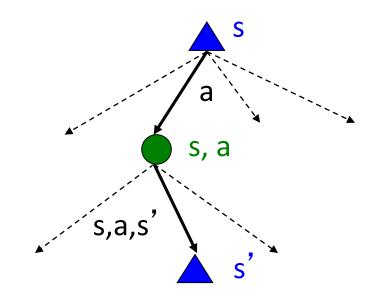
Recap: Defining MDPs

Markov decision processes:

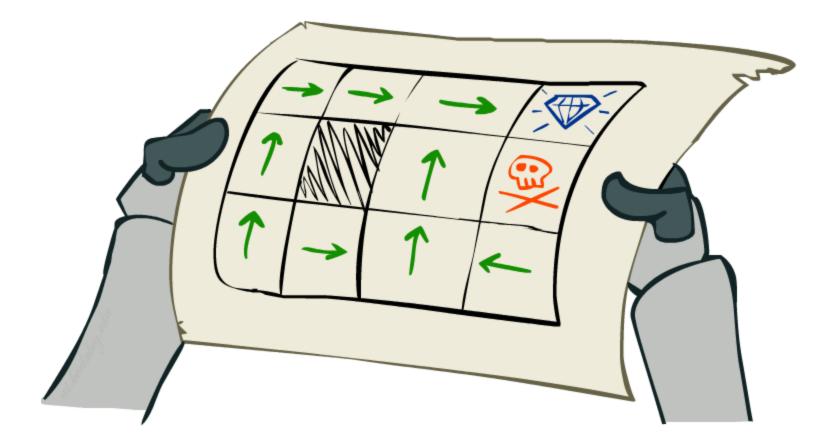
- o Set of states S
- o Start state s₀
- o Set of actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- \circ Rewards R(s,a,s') (and discount γ)

• MDP quantities so far:

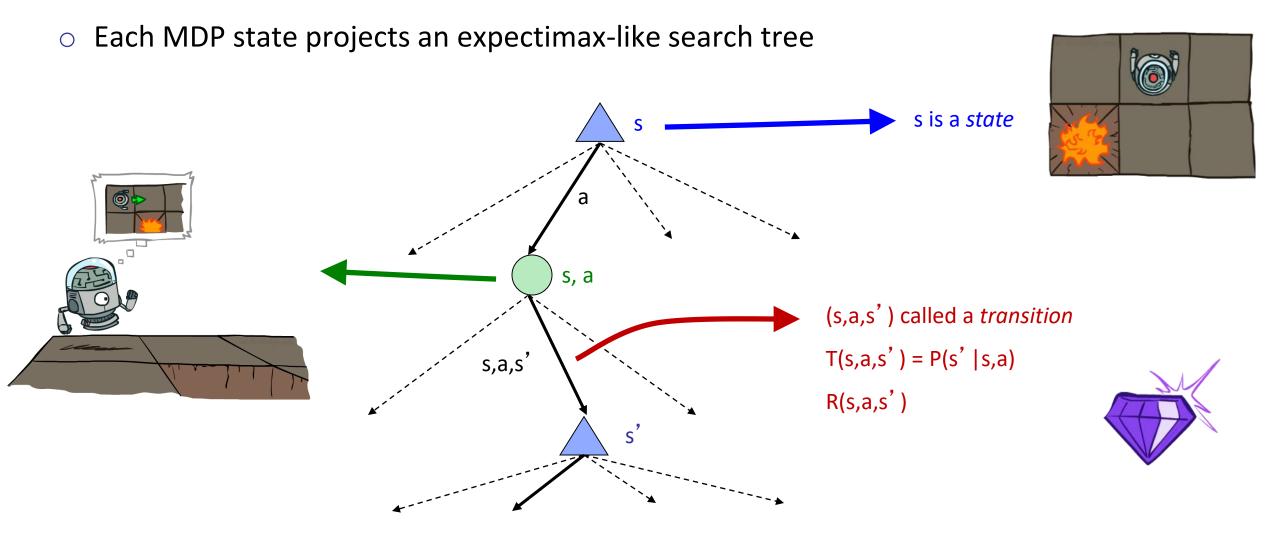
- Policy = Choice of action for each state
- Outility = sum of (discounted) rewards



Solving MDPs

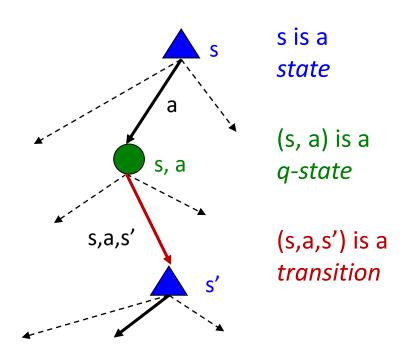


MDP Search Trees



Optimal Quantities

- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s

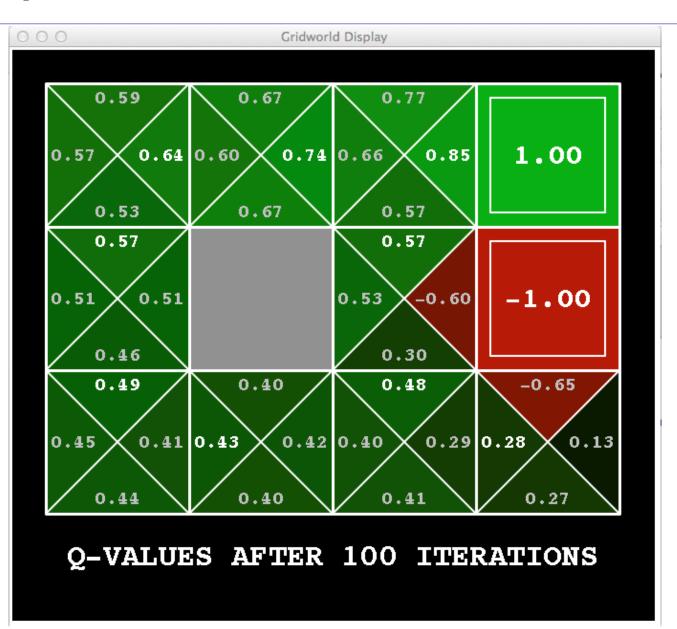


Snapshot Gridworld V Values

000	Gridworld Display					
	0.64)	0.74 →	0.85)	1.00		
	• 0.57		• 0.57	-1.00		
	▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28		
	VALUES AFTER 100 ITERATIONS					

Noise = 0.2 Discount = 0.9 Living reward = 0

Snapshot of Gridworld Q Values



Noise = 0.2 Discount = 0.9 Living reward = 0

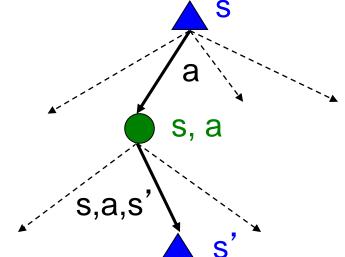
Values of States (Bellman Equations)

• Fundamental operation: compute the (expectimax) value of a state

Expected utility under optimal action
Average sum of (discounted) rewards
This is just what expectimax computed!

Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



Recap: MDPs

Search problems in uncertain environments

- o Model uncertainty with transition function
- o Assign utility to states. How? Using reward functions
- Decision making and search in MDPs <-- Find a sequence of actions that maximize expected sum of rewards
 - Value of a state
 - Q-Value of a state
 - \circ Policy for a state

Recap: MDPs

Search problems in uncertain environments

- o Model uncertainty with transition function
- o Assign utility to states. How? Using reward functions
- Decision making and search in MDPs <-- Find a sequence of actions that maximize expected sum of rewards
 - Value of a state
 - Q-Value of a state
 - \circ Policy for a state

The Bellman Equations

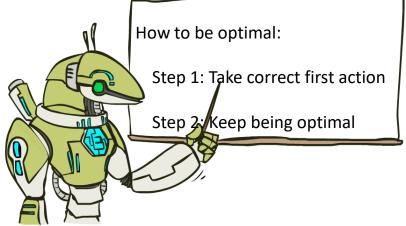
 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

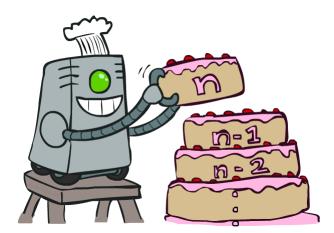


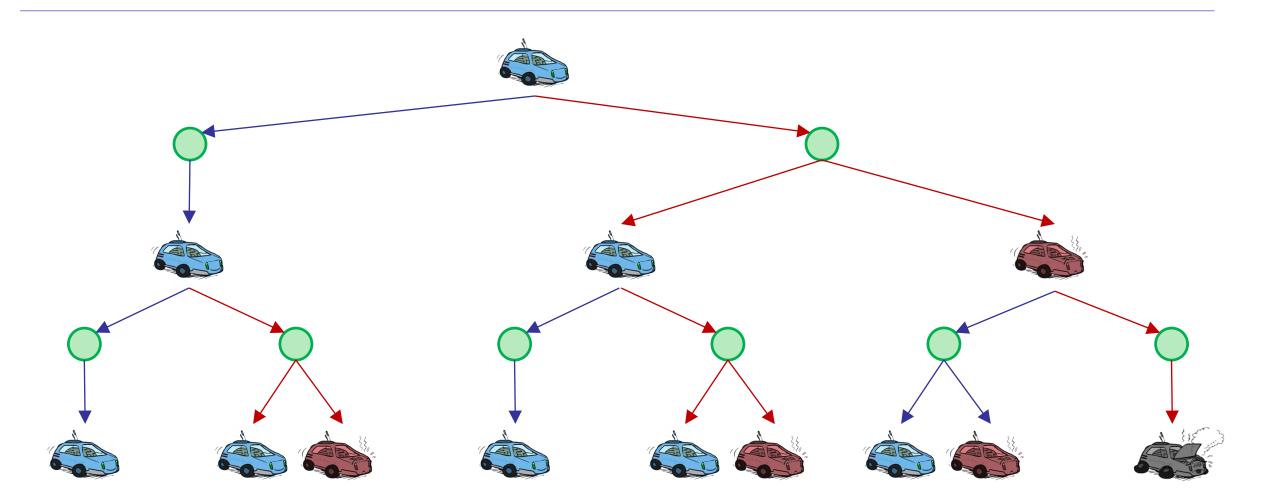
s, a

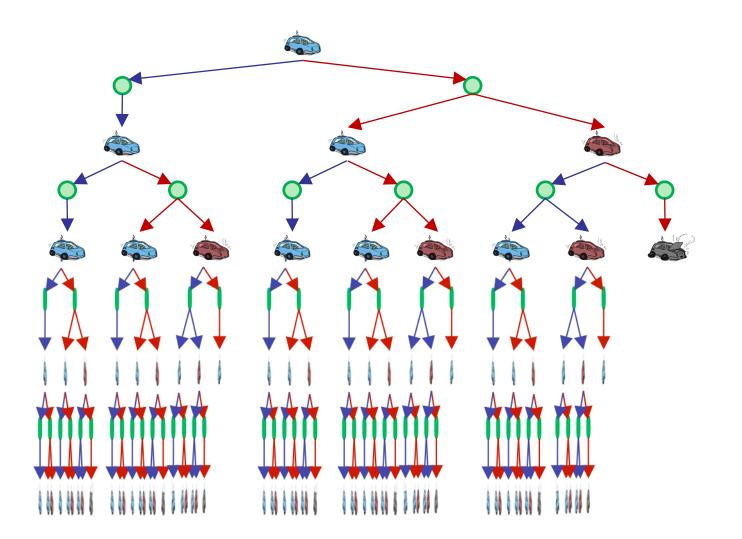
s,a,s'

Solving MDPs

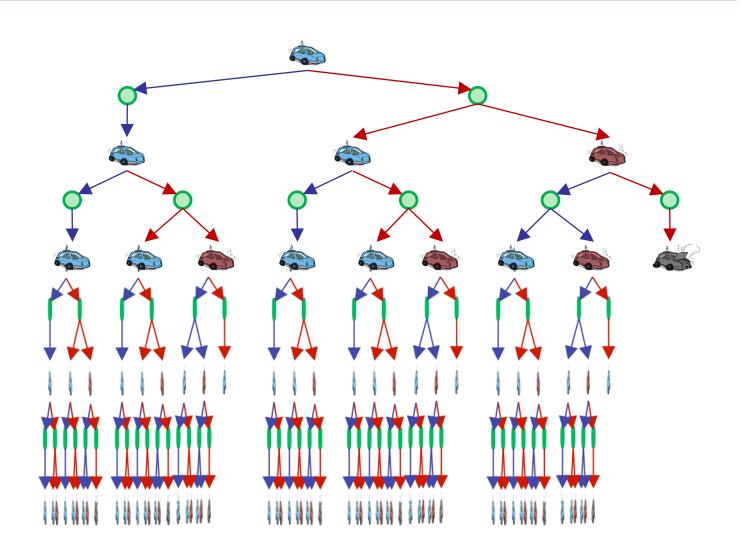
o Finding the best policy → mapping of actions to states
o So far, we have talked about one method





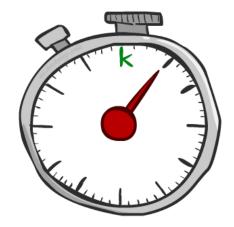


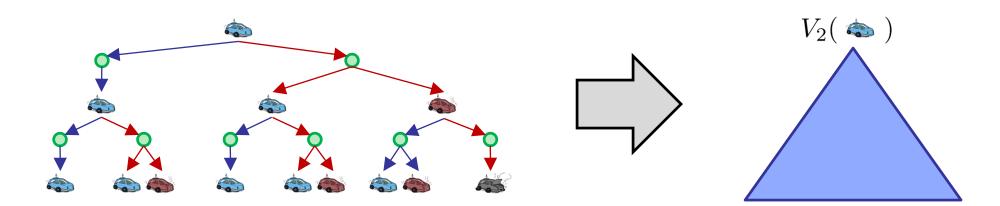
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea quantities: Only compute needed once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - o Note: deep parts of the tree



Time-Limited Values

- Key idea: time-limited values
- $\,\circ\,$ Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s





O O Gridworld Display				
•	•	• 0.00	0.00	
		•		
0.00		0.00	0.00	
0.00	0.00	0.00	0.00	
VALUES AFTER O ITERATIONS				

00	Gridworl	d Display	-	
•	• 0.00	0.00 >	1.00	
• 0.00		∢ 0.00	-1.00	
•	•	• 0.00	0.00	
VALUES AFTER 1 ITERATIONS				

○ ○ Gridworld Display				
•	0.00 >	0.72 →	1.00	
•		• 0.00	-1.00	
•	• 0.00	• 0.00	0.00	
VALUES AFTER 2 ITERATIONS				

0 0	0	Gridworl	d Display		
	0.00 >	0.52)	0.78 →	1.00	
	•		• 0.43	-1.00	
	•	•	•	0.00	
	VALUES AFTER 3 ITERATIONS				

k=4

0 0	Gridworld Display				
	0.37 ♪	0.66)	0.83)	1.00	
	•		• 0.51	-1.00	
	•	0.00 →	• 0.31	∢ 0.00	
	VALUES AFTER 4 ITERATIONS				

000	C C Cridworld Display				
(0.51 →	0.72 →	0.84 →	1.00	
	▲ 0.27		• 0.55	-1.00	
	•	0.22 →	• 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

000	○ ○ ○ Gridworld Display			
	0.59 →	0.73)	0.85)	1.00
	• 0.41		• 0.57	-1.00
	• 0.21	0.31 →	• 0.43	∢ 0.19
	VALUES AFTER 6 ITERATIONS			

000	Gridworld Display				
	0.62)	0.74 →	0.85 →	1.00	
	• 0.50		• 0.57	-1.00	
	• 0.34	0.36)	▲ 0.45	∢ 0.24	
	VALUE	S AFTER	7 ITERA	FIONS	

0 0	Gridworld Display			
	0.63)	0.74 ▸	0.85)	1.00
	• 0.53		• 0.57	-1.00
	• 0.42	0.39 →	▲ 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

0 0	○ ○ ○ Gridworld Display			
	0.64)	0.74 →	0.85)	1.00
	•		• 0.57	-1.00
	• 0.46	0.40 →	• 0.47	∢ 0.27
	VALUES AFTER 9 ITERATIONS			

000	Gridworl	d Display		
0.64 →	0.74)	0.85 →	1.00	
▲ 0.56		▲ 0.57	-1.00	
• 0.48	∢ 0.41	▲ 0.47	∢ 0.27	
VALUES AFTER 10 ITERATIONS				

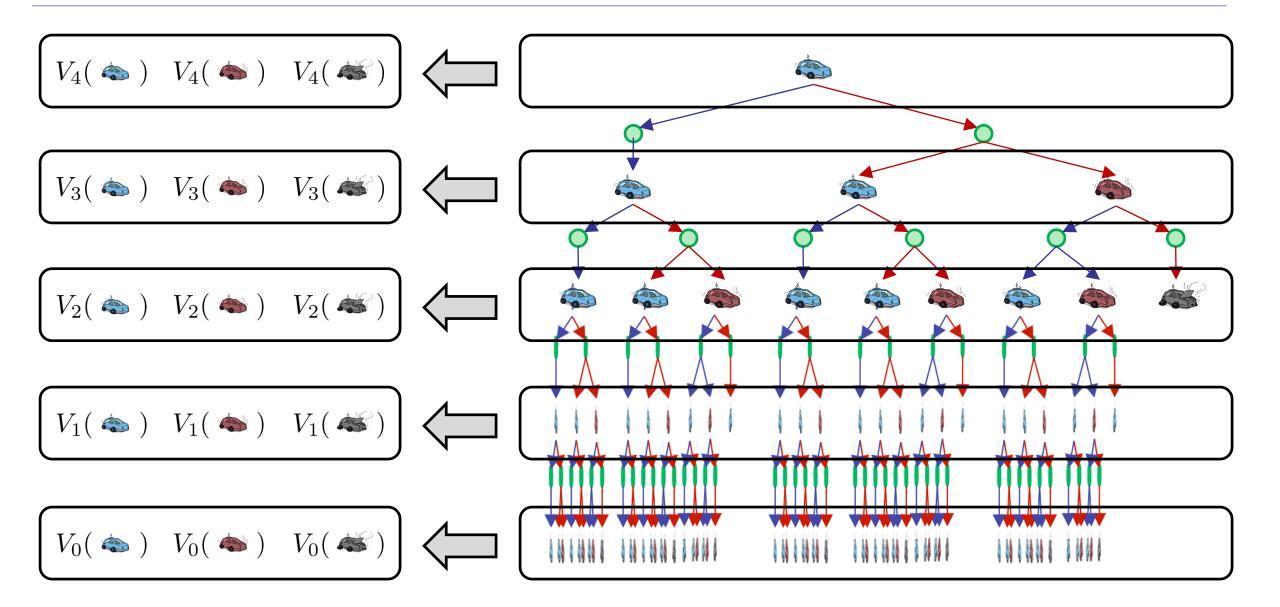
0 0	0	Gridworl	d Display	
	0.64 →	0.74 ▸	0.85)	1.00
	▲ 0.56		▲ 0.57	-1.00
	• 0.48	◀ 0.42	• 0.47	∢ 0.27
VALUES AFTER 11 ITERATIONS				

0 0	Gridworld Display			
0.64 →	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.42	• 0.47	∢ 0.28	
VALUE	S AFTER	12 ITERA	TIONS	

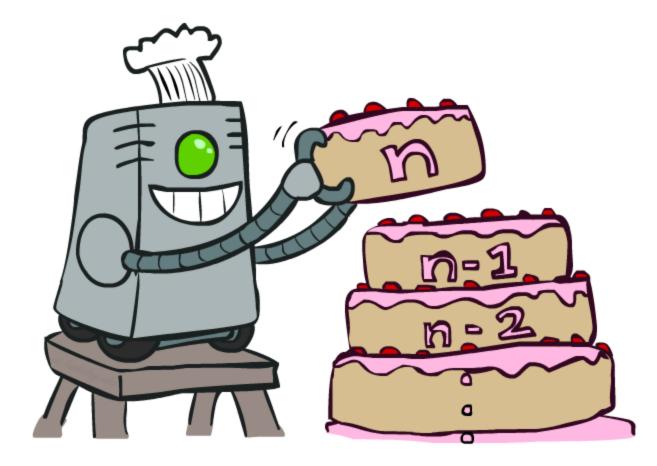
00	O Gridworld Display				
0.64)	0.74 →	0.85 →	1.00		
• 0.57		• 0.57	-1.00		
▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28		
VALUES AFTER 100 TTERATIONS					

VALUES AFTER 100 ITERATIONS

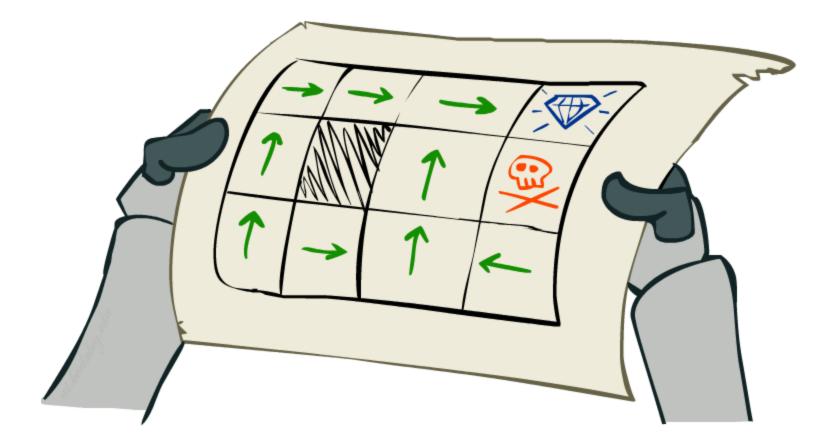
Computing Time-Limited Values



Value Iteration



Solving MDPs

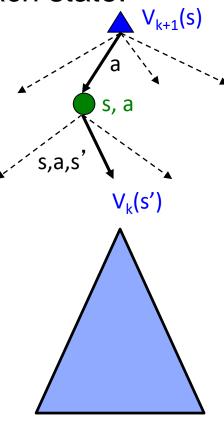


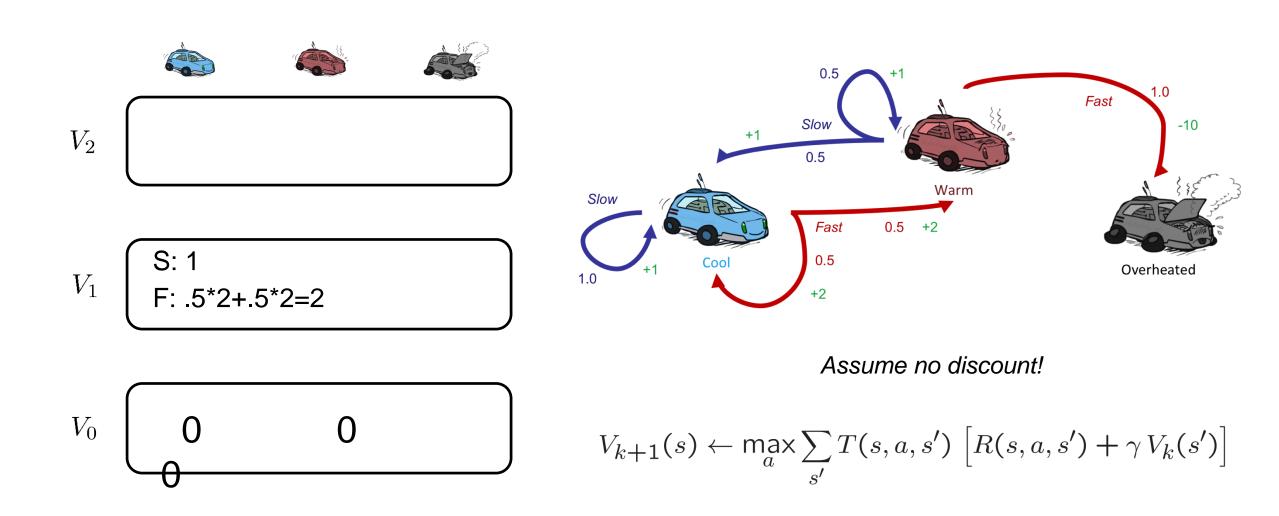
Value Iteration

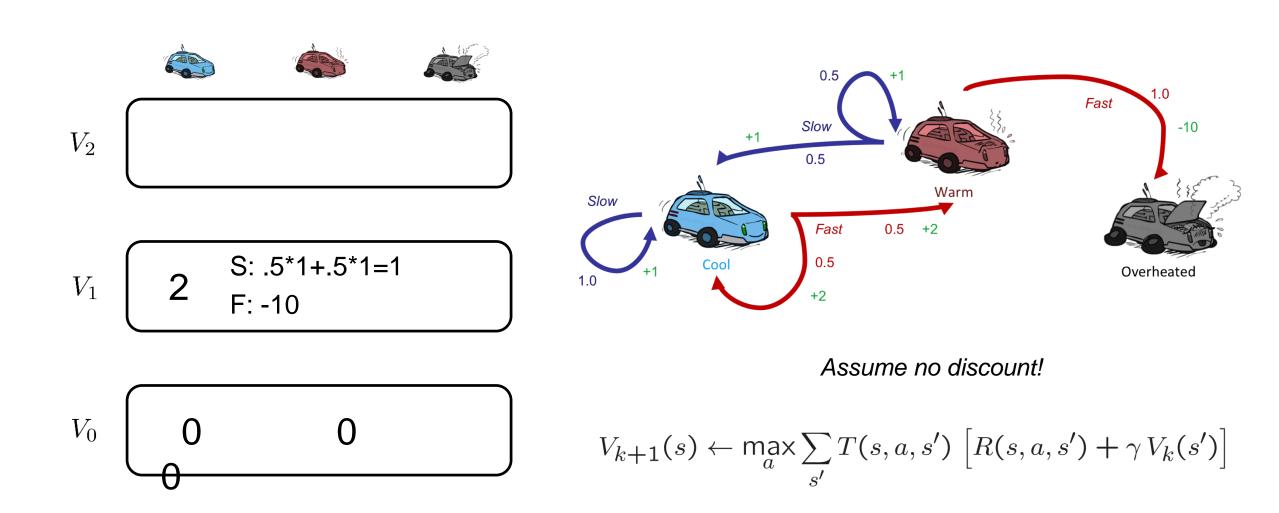
- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- \circ Given vector of V_k(s) values, do one ply of expectimax from each state:

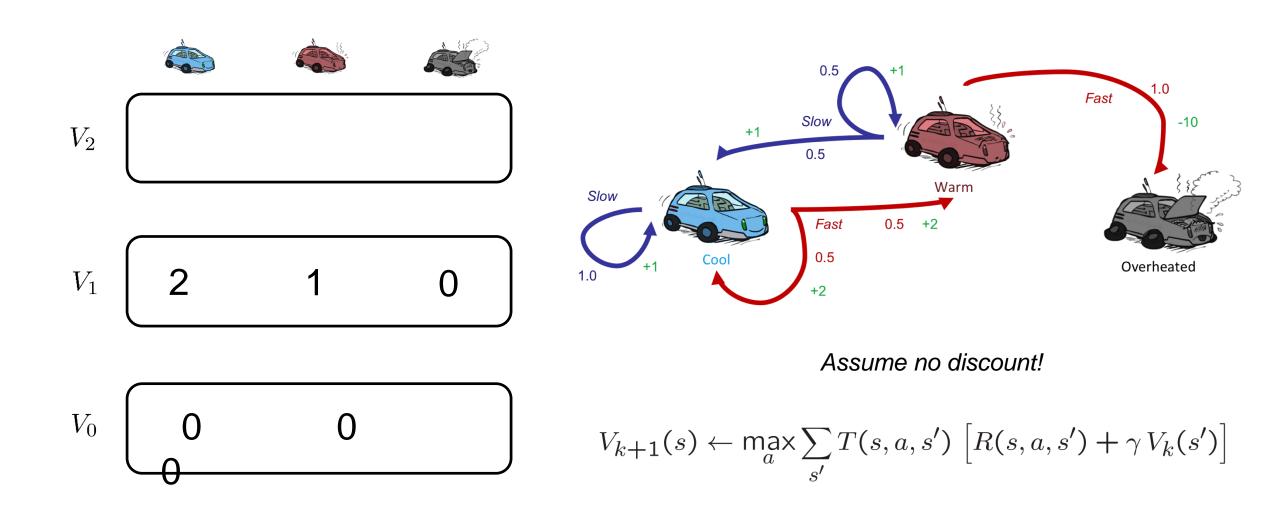
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

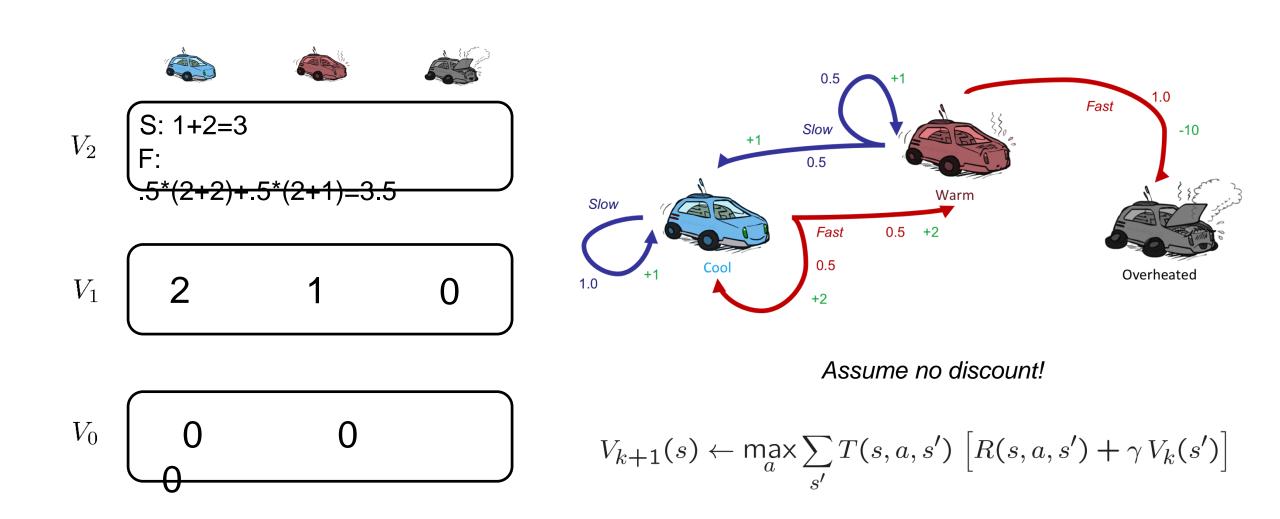
- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

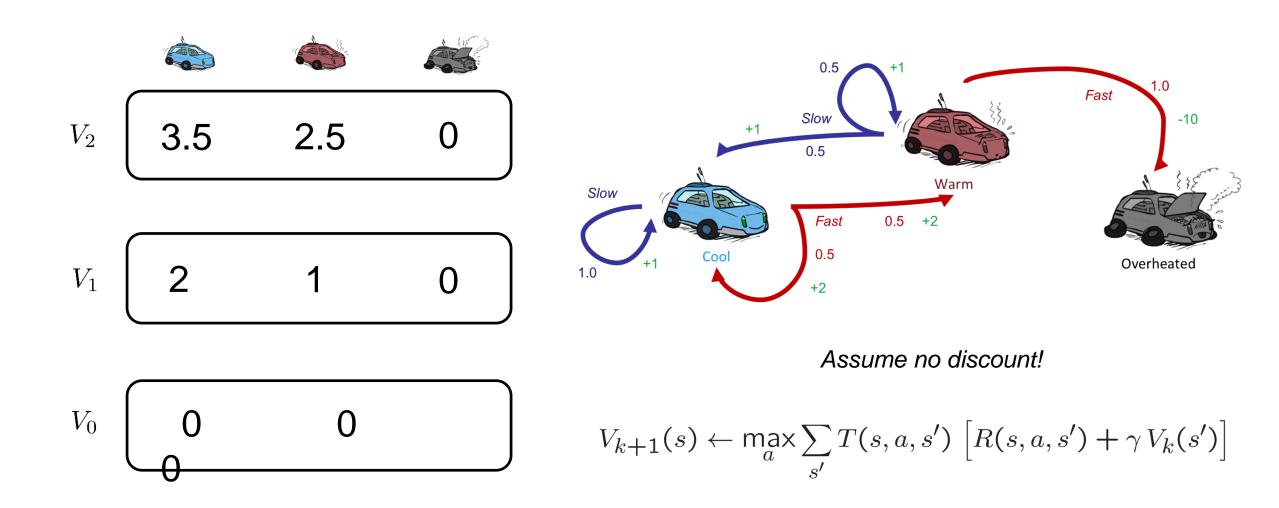




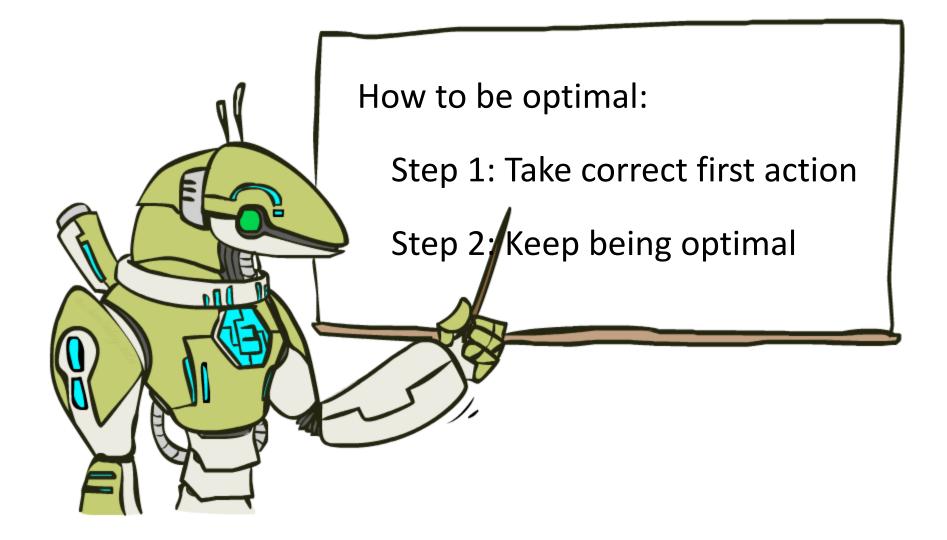








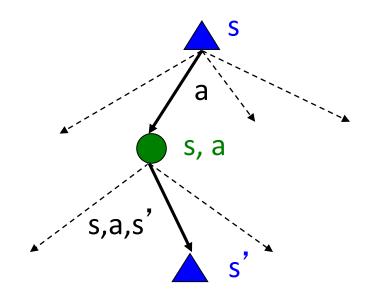
The Bellman Equations



The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

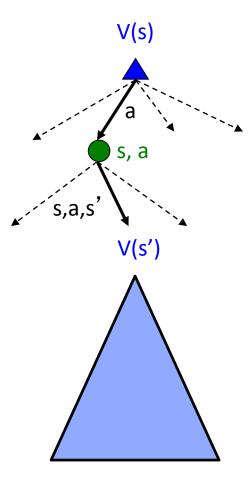
• Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• Value iteration **computes** them:

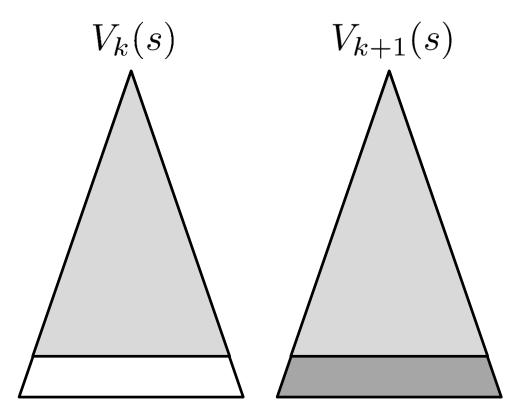
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method
 ... though the V_k vectors are also interpretable as time-limited values



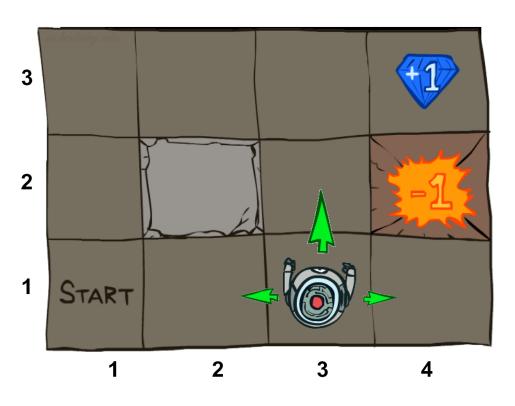
Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - $\circ~$ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - $\circ~$ That last layer is at best all $\rm R_{MAX}$
 - $\circ~$ It is at worst $R_{\rm MIN}$
 - $\circ~$ But everything is discounted by γ^k that far out
 - $\circ~So~V_k$ and V_{k+1} are at most γ^k max[R] different
 - \circ $\,$ So as k increases, the values converge



Recap: Markov Decision Processes

- An MDP is defined by:
 - $\circ \ \ \text{A set of states s} \in S$
 - \circ A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s, a)
 - $\,\circ\,$ Also called the model or the dynamics
 - A reward function R(s, a, s')
 - $\,\circ\,$ Sometimes just R(s) or R(s')
 - o A start state
 - o Maybe a terminal state
- MDPs are non-deterministic search problems
 - $\circ~$ One way to solve them is with expectimax search
 - o We'll have a new tool soon



Recap: MDPs

Search problems in uncertain environments

- o Model uncertainty with transition function
- o Assign utility to states. How? Using reward functions
- Decision making and search in MDPs <-- Find a sequence of actions that maximize expected sum of rewards
 - Value of a state
 - Q-Value of a state
 - \circ Policy for a state

The Bellman Equations

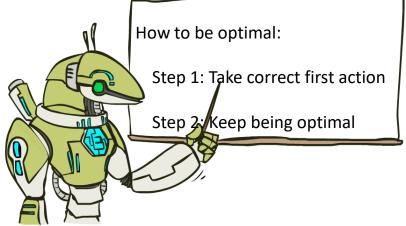
 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over



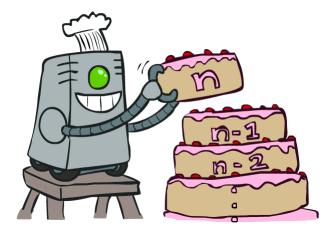
s, a

s,a,s'

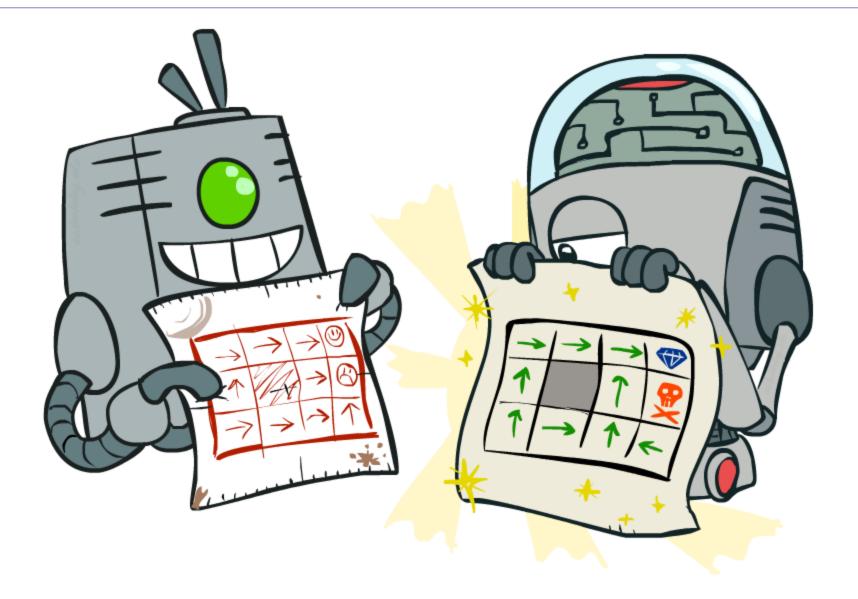
Solving MDPs

○ Finding the best policy → mapping of actions to states
 ○ So far, we have talked about one method

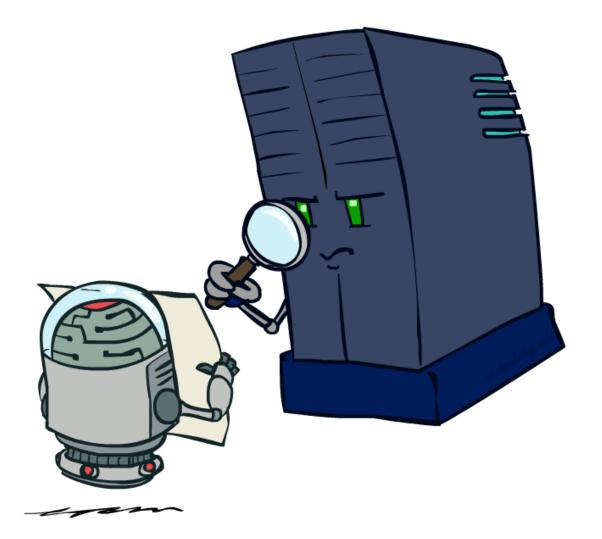
o Value iteration: computes the optimal values of states



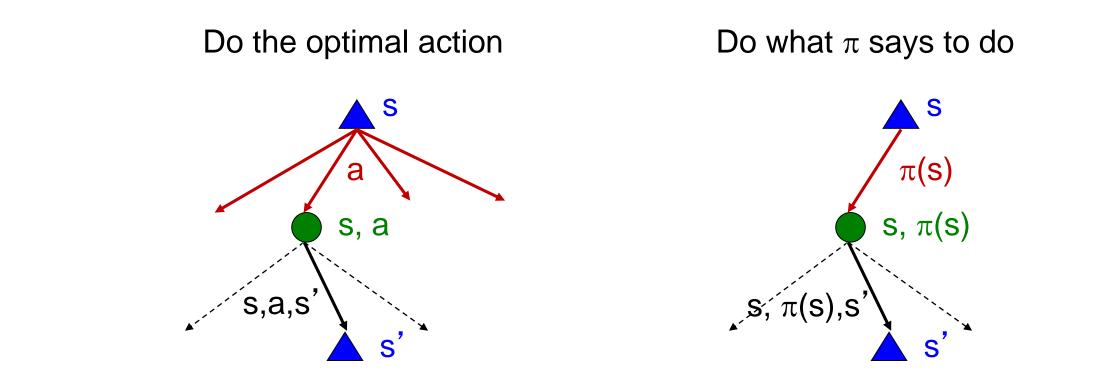
Policy Methods



Policy Evaluation



Fixed Policies

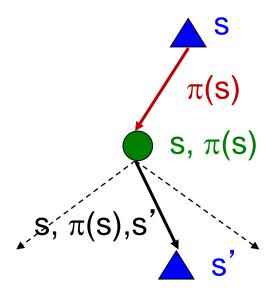


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - $\circ \ \ldots$ though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) =$ expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

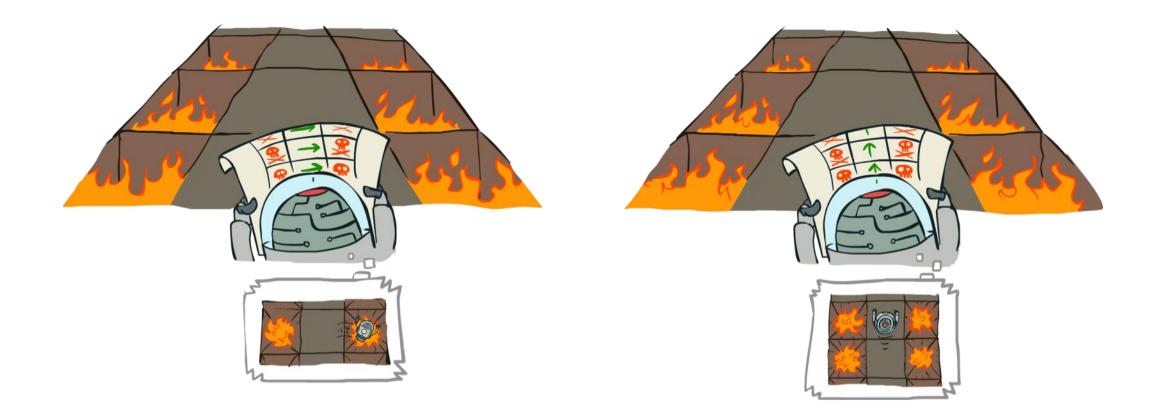
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



Example: Policy Evaluation

Always Go Right

Always Go Forward



Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 ▶	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	^ 70.20	-10.00
-10.00	4 8.74	-10.00
-10.00	3 3.30	-10.00

Policy Evaluation

π(S)

S, $\pi(S)$

_S, π(S),S

• How do we calculate the V's for a fixed policy π ?

 Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

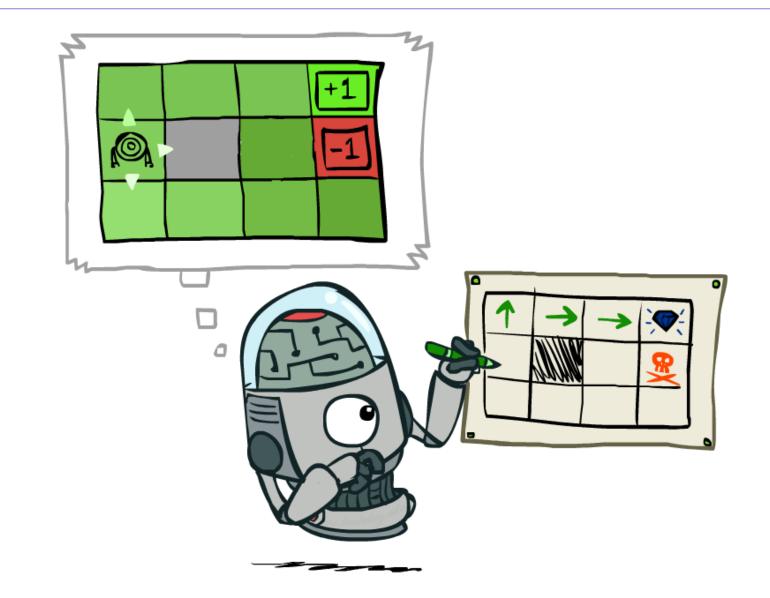
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

Let's think...

- Take a minute, think about value iteration and policy evaluation
 - o Write down the biggest questions you have about them.

Policy Extraction



Computing Actions from Values

- \circ Let's imagine we have the optimal values V*(s)
- How should we act?
 It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

 This is called policy extraction, since it gets the policy implied by the values

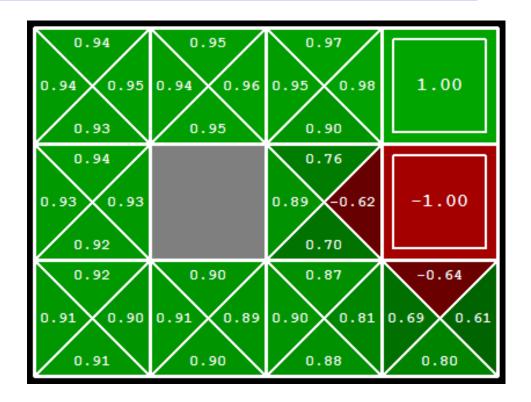
0.95)	0.96 ኑ	0.98 ▶	1.00
▲ 0.94		∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?

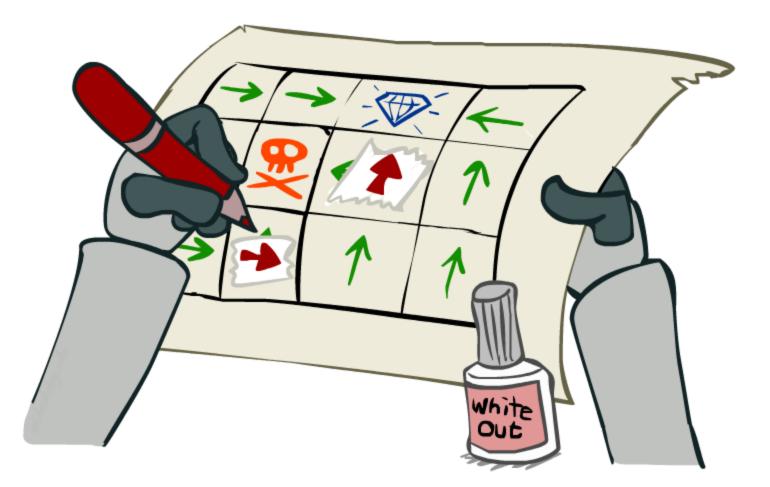
o Completely trivial to decide!

 $\pi^*(s) = \arg\max_a Q^*(s,a)$



 Important lesson: actions are easier to select from q-values than values!

Policy Iteration



Problems with Value Iteration

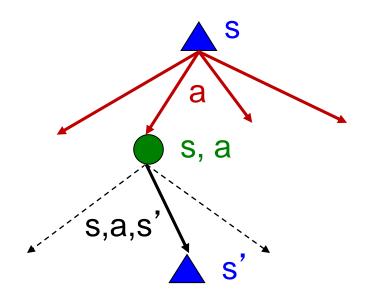
○ Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 \circ Problem 1: It's slow – O(S²A) per iteration

• Problem 2: The "max" at each state rarely changes

• Problem 3: The policy often converges long before the values



k=12

C Cridworld Display			
0.64)	0.74 →	0.85)	1.00
• 0.57		• 0.57	-1.00
▲ 0.49	◀ 0.42	• 0.47	∢ 0.28
VALUES AFTER 12 ITERATIONS			

Noise = 0.2 Discount = 0.9 Living reward = 0

k=100

00	O Gridworld Display			
0.64)	0.74 →	0.85 →	1.00	
• 0.57		• 0.57	-1.00	
▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28	
VALUES AFTER 100 TTERATIONS				

VALUES AFTER 100 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0

Policy Iteration

Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges

• This is policy iteration

- o It's still optimal!
- o Can converge (much) faster under some conditions

Policy Iteration

• Evaluation: For fixed current policy π , find values with policy evaluation:

o Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction
 One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

• Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

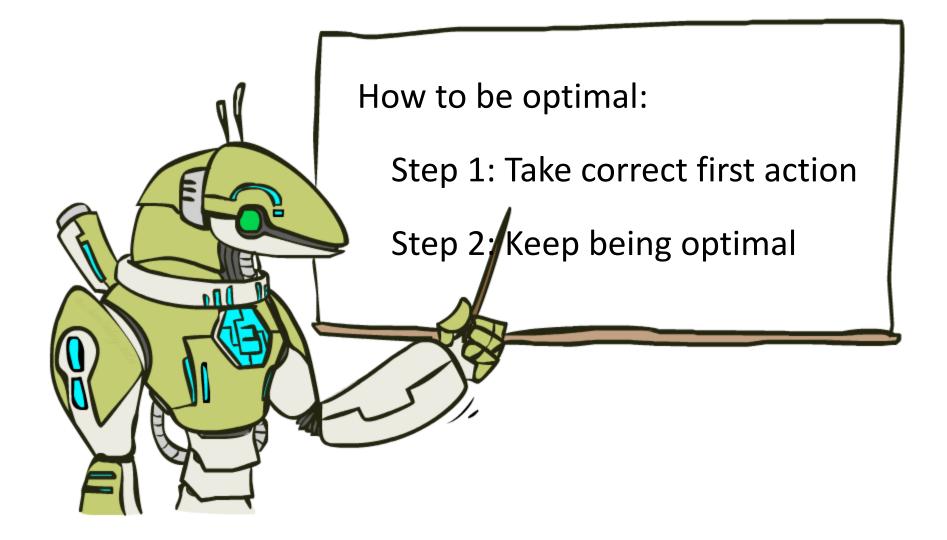
• So you want to....

- o Compute optimal values: use value iteration or policy iteration
- o Compute values for a particular policy: use policy evaluation
- o Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

- They basically are they are all variations of Bellman updates
- o They all use one-step lookahead expectimax fragments
- o They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations



Next Topic: Reinforcement Learning!